二维电磁模型

36
二二二二二二 二二二二二二二二二 二二二二 0 0 0 0 ( ) 0 i d m q dt t t v E v B B E E B J B E

description

二维电磁模型. 基本方程与无量纲化 基本方程. 无量纲化. 方程化为. 二维时的方程. 网格划分. 时间上利用蛙跳格式. 计算步骤. 稳定性条件. 例子:磁场重联的二维粒子模拟. Magnetic reconnection rapidly converts magnetic energy into plasma energy, which leads to heating and acceleration of ions and electrons. - PowerPoint PPT Presentation

Transcript of 二维电磁模型

Page 1: 二维电磁模型

二维电磁模型基本方程与无量纲化 基本方程

0 0 0

0

( )

0

idm qdt

t

t

vE v B

BE

EB J

B

E

Page 2: 二维电磁模型

1pe

2

0 0 0

22 0 0

0

,

: , : , :

,

pe

e pe e pepe

pe ee e

t

m mJ en E B

e e

n e eB

m m

-1: 长度:网格距 ,速度:

无量纲化

2

( )

0

id

dt

t

ct

vE v B

BE

EB J

B

E

方程化为

Page 3: 二维电磁模型

二维时的方程

2

2

2 2

-( )

x z

y z

yxz

x zx

y zy

y xzz

d

dtB E

t y

B E

t xEEB

t y x

E Bc J

t y

E Bc J

t xB BE

c c Jt x y

vE v B

Page 4: 二维电磁模型

时间上利用蛙跳格式

网格划分

Page 5: 二维电磁模型

计算步骤

Page 6: 二维电磁模型

稳定性条件

22 2

1 11 ( ) ( )c t

x y

Page 7: 二维电磁模型

例子:磁场重联的二维粒子模拟

Magnetic reconnection rapidly converts magnetic energy into plasma energy, which leads to heating and acceleration of ions and electrons.

Page 8: 二维电磁模型

Topology changes of magnetic field lines during magnetic reconnection

(1) (2) (3)

Page 9: 二维电磁模型

Particle simulations[Fu and Lu, 2006]

With 2D particle-in-cell simulations we investigate the influence of the guide field on the electron acceleration near X-point and O-point.

Page 10: 二维电磁模型

Initial conditions and boundary conditions:

0 0 0

20

( ) tanh[( ) / ]2

( ) sec [( ) / ]2

yz

yb

LB y B y B

Ln y n n h y

x ze e

Initial conditions1D Harris current sheet in the (x,y) plane

Initial flux perturbation is introduced

0( , ) cos[2 ( ) / ]cos[ ( ) / ]2 2

yxx y

LLx y x L y L

Boundary conditionsX direction: periodic Y direction: ideal conducting boundary condition for EM fields, Reflection condition for particles

Page 11: 二维电磁模型

current sheet

Page 12: 二维电磁模型

Parameters

0 0 0

0

(12.8 / ) (6.4 / )

256 128

0.05 / , 0.0015

/ 100

20 , /

0.5 /

5

x y pi pi

x y

pi i

i e

A A i

pi

b

L L c c

N N

x y c t

m m

c V V B n m

c

n n

Page 13: 二维电磁模型

0 2 4 6 8 10 120

1

2

3

4

5

6

Y

X

it=0

0 2 4 6 8 10 120

1

2

3

4

5

6

Y

X

it=15

0 2 4 6 8 10 120

1

2

3

4

5

6

Y

X

it=20

0 2 4 6 8 10 120

1

2

3

4

5

6

Y

X

it=25

Page 14: 二维电磁模型

Time evolution of the reconnection flux for

0 00,0.5,1.0zB B

Page 15: 二维电磁模型

Contours of (a) ,(b) , (c) ,(d) at for

0 0zB xE yE zE zB

19it

Page 16: 二维电磁模型

Contours of (a) ,(b) , (c) ,(d) at for

0 00.5zB BxE yE zE 0z zB B

20it

Page 17: 二维电磁模型

Contours of (a) ,(b) , (c) ,(d) at for

0 0zB BxE yE zE 0z zB B

23it

Page 18: 二维电磁模型

Typical trajectories in (x,y) plane, one passes through X-point (from to , the other is trapped near O-point (from to

for 0 0zB

17.5it

20it 18.5it

19.5it

Page 19: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron passes through X-point .

0 0zB xv yv zv

Page 20: 二维电磁模型

Comparison with others[Hoshino,2005; Pritchett, 2006]

Page 21: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron is trapped near O-point .

0 0zB xv yv zv

Page 22: 二维电磁模型

Typical trajectories in (x,y) plane, one passes through X-point (from to , the other is trapped near O-point (from to

for 0 00.5zB B

15it

23it 18it

21it

Page 23: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron passes through X-point .

0 00.5zB Bxv yv zv

Page 24: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron is trapped near O-point .

0 00.5zB Bxv yv zv

Page 25: 二维电磁模型

Typical trajectories in (x,y) plane, one passes through X-point (from to , the other is trapped near O-point (from to

for 0 01.0zB B

17.5it

21.5it 19it

19it

Page 26: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron passes through X-point .

0 01.0zB Bxv yv zv

Page 27: 二维电磁模型

The time evolution of (a) the kinetic energy, (b) , (c) ,(d) for The electron is trapped near O-point .

0 01.0zB Bxv yv zv

Page 28: 二维电磁模型
Page 29: 二维电磁模型

The positions of the energetic electrons

Page 30: 二维电磁模型

Comparison with others [Pritchett, 2006]

no guide field

Page 31: 二维电磁模型

With guide field 1.0B0

Page 32: 二维电磁模型

Discussion

1.Observations of energetic electron in ion diffusion region in magnetotail [Oieroset, 2002]

Page 33: 二维电磁模型

Figure 5 shows the plasma temperature, magnetic field vectors, high-speed flows and energetic electron differential fluxes. The bottom four panels denote electron differential fluxes obtained from the RAPID on the four satellites from 35.1 to 244.1keV.

A depletion in the energetic electron fluxes in the diffusion region was detected by all the four satellites. The duration is about 162s. Please note that the first two low energy channels of c3 is not well calibrated (Private communication from Q. G. Zong), while the other energy channels have the same depletion as other satellites.

Similarly, a local minimum of the plasma temperature can also be found near the center of diffusion region

Page 34: 二维电磁模型

By WIND satellite, the fluxes of energetic electrons up to ~300keV peak near the center of the diffusion region and decrease monotonically away from this region. No secondary acceleration was found in the reconnection.Note:the initial guild field is about 50% of the total magnetic field magnitude during the magnetic reconnection.

From Øieroset et al PRL 2002 Fig 1.

From Øieroset et al NATURE 2001 Fig 2.

Page 35: 二维电磁模型

Potential applications in Solar atmosphere [Drake et al., 2006]?

Page 36: 二维电磁模型