4.1 图像增强引言 4.2 空域图像增强 4.3 频域图像增强 4.3.1 频域滤波器 4.3.2...

51
4.1 图图图图图图 4.2 图图图图图图 4.3 图图图图图图 4.3.1 图图图图图 4.3.2 图图图图图图图图图图图

description

4.1 图像增强引言 4.2 空域图像增强 4.3 频域图像增强 4.3.1 频域滤波器 4.3.2 从频域规范产生空域模板. 为什么要用频率域进行图像增强呢?. 图像从空间域变换到频率域后, 1 、低频分量对应图像中灰度变化比较缓慢的区域; 2 、高频分量表征了图像中物体的边缘和随机噪声等信息。 3 、频率域上计算得到“简化”。. 频域增强原理. u. 边缘、噪音、 变化陡峭部分. 变化平缓部分. v. 4.3.1 频域滤波器. 频域滤波器 1 )低通滤波:保留低频分量,抑制高频分量 2 )高通滤波:保留高频分量,抑制低频分量. - PowerPoint PPT Presentation

Transcript of 4.1 图像增强引言 4.2 空域图像增强 4.3 频域图像增强 4.3.1 频域滤波器 4.3.2...

Page 1: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.1 图像增强引言

4.2 空域图像增强

4.3 频域图像增强4.3.1 频域滤波器4.3.2 从频域规范产生空域模板

Page 2: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

为什么要用频率域进行图像增强呢?

图像从空间域变换到频率域后,1 、低频分量对应图像中灰度变化比较缓慢的

区域;2 、高频分量表征了图像中物体的边缘和随机

噪声等信息。3 、频率域上计算得到“简化”。

Page 3: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

频域增强原理

边缘、噪音、

变化陡峭部分 变化平缓部分

u

v

Page 4: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板
Page 5: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板
Page 6: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器

频域滤波器1 )低通滤波:保留低频分量,抑制高频分量2 )高通滤波:保留高频分量,抑制低频分量

Page 7: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

频域滤波的理论基础

图像函数 f(x,y) 与线性位移不变算子 h(x,y) 的卷积结果是 g(x,y) ,即 g(x,y)= f(x,y)* h(x,y)

由卷积定理可得: G(u,v)=F(u,v) H(u,v) H(u,v) 称为传递函数或滤波器函数。

Page 8: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

频域滤波器的主要步骤:

1 、对原始图像 f(x,y) 进行傅里叶变换得到 F(u,v);

2 、将 F(u,v) 与传递函数 H(u,v) 相乘得到 G(u,v);

3 、将 G(u,v) 进行傅里叶反变换得到增强图像 g(x,y) 。

¸µÁ¢Ò¶±ä»»

g (x , y )

ÏßÐÔµÍͨÂ˲¨ ¸µÁ¢Ò¶·´±ä»»

F (u , v ) G (u , v )f (x , y )

Page 9: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波

1 )低通滤波 理想低通滤波器 Butterworth 低通滤波器 指数低通滤波器 梯形低通滤波器

Page 10: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波

理想低通滤波器 理想低通滤波器的定义 理想低通滤波器截止频率的设计 理想低通滤波器的分析

Page 11: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的定义

一个二维的理想低通滤波器( ILPF )的转换函数满足(是一个分段函数)

其中: D0 为截止频率 D(u,v) 为距离函数 D(u,v)=(u2+v2)1/2

0

0

),( 0

),( 1),(

DvuDif

DvuDifvuH

Page 12: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波理想低通滤波器的截面图

0 D0 D(u,v)

H(u,v)

1

H(u,v) 作为距离函数 D(u,v) 的函数的截面图

Page 13: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波理想低通滤波器的三维透视图

vu

H(u,v)

H(u,v) 作为 u、 v的函数的三维透视图

Page 14: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的截止频率的设计

先求出总的信号能量 PT :

其中: p(u,v) = |F(u,v)|2 = R2(u,v) + I2(u,v)

是能量模

),(1

0

1

0

vuPPN

v

N

uT

Page 15: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的截止频率的设计

如果将变换作中心平移,则一个以频域中心为原点, r 为半径的圆就包含了百分之 β的能量

其中: (u2 + v2) 1/2 < r

u vTPvuP /),(100

Page 16: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的截止频率的设计

求出相应的 D0

r = D0 =(u2 + v2)1/2

Page 17: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的计算

1. 对于给定的 β

2. 用下面的公式计算出截止频率 D0

r = D0 =(u2 + v2)1/2

3. 用频域理想低通滤波器 H(u,v) 与 F(u,v) 相乘

u vTPvuP /),( 100

0

0

),( 0

),( 1),(

DvuDif

DvuDifvuH

Page 18: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的分析

例如:整个能量的 90% 被一个半径为 8 的小圆周包含 , 大部分尖锐的细节信息都存在于被去掉的 10% 的能量中

被钝化的图像被一种非常严重的振铃效果——理想低通滤波器的一种特性所影响

Page 19: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

( c )( b )( a) 理想低通滤波结果

半径分别为 15 , 30 , 80 ,滤去的能量为 5.4% 、 3.6% 、 2% 。

Page 20: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 理想低通滤波器的分析

振铃效果——理想低通滤波器的一种特性

Page 21: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

振铃效应f(t) 是一个输入信号, g(t) 是 f(t) 通过一冲激响应为 h(t) 的线性系统后的输出。由于 h(t) 的两个负边带的存在,导致 h(t) 和 f(t) 卷积后,在输出图像上信号的两侧出现过冲现象,即称为振铃效应。

Page 22: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

振铃效应G(u,v)=H(u,v)F(u,v)

g(x,y)=h(x,y)*f(x,y)

( a )半径为 5 的脉冲图像 ( b )相应的空间滤波器 ( c )空域的 5 个脉冲 ( d)滤波结果

Page 23: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 梯形低通滤波器

1

10101

0

),(0

),()(]),([

),(1

),(

DvuD

DvuDDDDDvuD

DvuD

vuH

性能介于理想低通滤波器和 Butterworth 滤波器之间,有一定的模糊和振铃效应

调整 D1, 平滑图像,保持足够的清晰度。

Page 24: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

指数低通滤波器4.3.1 频域滤波器 : 低通滤波

}]),([347.0exp{

}]),()][21exp{[ln(),(

0

0

n

n

DvuD

DvuDvuH

图像模糊程度比 Butterworth 严重,无振铃效应。

Page 25: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波

Butterworth 低通滤波器 Butterworth 低通滤波器的定义 Butterworth 低通滤波器截止频率的设计 Butterworth 低通滤波器的分析

Page 26: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波

Butterworth 低通滤波器的定义 一个截止频率在与原点距离为 D0 的 n 阶 But

terworth 低通滤波器( BLPF )的变换函数如下:

nDvuDvuH

20/),(1

1),(

Page 27: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 Butterworth 低通滤波器的截面图

0 2D(u,v)/D0

H(u,v)

1由于 H(u,v) 在通过频率和滤去频率之间没有明显的不连续,更无阶跃或突变,而是存在一个平滑的过渡带,因而平滑图像不存在振铃现象,较理想低通滤波器好。

1 3

0.5

4

Page 28: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 Butterworth 滤波器截止频率的设计

变换函数中不存在一个不连续点作为一个通过的和被滤波掉的截止频率的明显划分

通常把 H(u,v) 开始小于其最大值的一定比例的点当作其截止频率点

Page 29: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波有两种选择:1 、选择 H(u,v) = 0.5 时的 D(u,v) 为截止频率 D0 ,其

传递函数为:

2 、选择 H(u,v) = 1/2 时的 D(u,v) 为截止频率 D0 ,

其传递函数为: nDvuD

vuH 20/),(414.01

1),(

nDvuDvuH

20/),(1

1),(

Page 30: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

BLPF 特性曲线

ELPF 特性曲线

Page 31: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

2 阶 BLPF 滤波的结果( a )原图像( b )半径 15 ( b )半径 30 ( d )半径 80

2 阶 ELPF 滤波的结果( a )原图像( b )半径 15 ( b )半径 30 ( d )半径 80

Page 32: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 Butterworth 低通滤波器的分析

在任何经 BLPF 处理过的图像中都没有明显的振铃效果,这是滤波器在低频和高频之间的平滑过渡的结果

低通滤波是一个以牺牲图像清晰度为代价来减少干扰效果的修饰过程

Page 33: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 Butterworth 低通滤波器的分析

BLPF 处理过的图像中都没有振铃效果

Page 34: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 低通滤波 Butterworth 低通滤波器的分析

Page 35: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

理想低通滤波器 Butterworth 滤波器

Page 36: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

四种滤波器比较

低通滤波器类型 振铃 平滑效果 模糊

理想 ILPF 严重 最好 严重

梯形 TLPF 较轻 好 轻

指数 ELPF 无 一般 较轻

巴特沃斯 BLPF 无 一般 很轻

Page 37: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

2 )高通滤波 频域高通滤波的基本思想 理想高通滤波器 Butterworth 高通滤波器

Page 38: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

频域高通滤波的基本思想 G(u,v)=F(u,v)H(u,v) F(u,v) 是需要锐化图像的傅立叶变换形式。 目标是选取一个滤波器变换函数 H(u,v) ,通过它减少 F(u,v) 的低频部分来得到 G(u,v) 。

运用傅立叶逆变换得到锐化后的图像。

Page 39: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

理想高通滤波器 理想高通滤波器的定义 理想高通滤波器截止频率的设计 理想高通滤波器的分析

Page 40: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

理想高通滤波器的定义 一个二维的理想高通滤波器( ILPF )的转换函

数满足(是一个分段函数)

其中: D0 为截止频率 D(u,v) 为距离函数 D(u,v)=(u2+v2)1/2

0

0

),( 1

),( 0),(

DvuDif

DvuDifvuH

Page 41: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

理想高通滤波器的截面图

0 D0 D(u,v)

H(u,v)

1

H(u,v) 作为距离函数 D(u,v)的函数的截面图

Page 42: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波理想高通滤波器的三维透视图

H(u,v) 作为 u、 v的函数的三维透视图

vu

H(u,v)

Page 43: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

梯形高通滤波器4.3.1 频域滤波器 : 高通滤波

0

0110

1

1

),(1

),(),(

),(0

),(

DvuD

DvuDDDD

DvuD

DvuD

vuH

Page 44: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波 Butterworth 高通滤波器

Butterworth 高通滤波器的定义 Butterworth 高通滤波器截止频率设计 Butterworth 高通滤波器的分析

Page 45: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

Butterworth 高通滤波器的定义 一个截止频率在与原点距离为 D0 的 n 阶 Butt

erworth 高通滤波器( BHPF )的变换函数如下:

nvuDDvuH

20 ),(/1

1),(

Page 46: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

Butterworth 高通滤波器的截面图

0 2D(u,v)/D0

H(u,v)

1

H(u,v) 作为 D(u,v)/D0

的函数的截面图

1 3

0.5

Page 47: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波 Butterworth 高通滤波器截止频率设计

变换函数中不存在一个不连续点作为一个通过的和被滤波掉的截止频率的明显划分

通常把 H(u,v) 开始小于其最大值的一定比例的点当作其截止频率点

Page 48: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波

有两种选择:1 、选择 H(u,v) = 0.5 时的 D(u,v) 为截止频率 D0 ,

其 传递函数为:

2 、选择 H(u,v) = 1/2 时的 D(u,v) 为截止频率 D0 ,

传递函数为:

nvuDDvuH 2

0 ),(/414.01

1),(

nvuDDvuH

20 ),(/1

1),(

Page 49: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

4.3.1 频域滤波器 : 高通滤波 Butterworth 高通滤波器的分析

问题:低频成分被严重地消弱了,使图像失去层次 改进措施:

加一个常数到变换函数 H(u,v) + A

这种方法被称为高频强调为了解决变暗的趋势,在变换结果图像上再进行

一次直方图均衡化。这种方法被称为后滤波处理

Page 50: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

IHPF BHPFEHPF

Page 51: 4.1  图像增强引言 4.2  空域图像增强 4.3  频域图像增强 4.3.1  频域滤波器 4.3.2  从频域规范产生空域模板

IHPF 滤波效果,D0=15, 30, 80。 D0越小,振铃效应越明显。

BHPF,比 IHPF的结果平滑得多。

EHPF 滤 波 效果