Robotics 3

36
May 21, 2006 EXPERT SYSTEMS AND SOLUTIONS Email: [email protected] [email protected] Cell: 9952749533 www.researchprojects.info PAIYANOOR, OMR, CHENNAI Call For Research Projects Final  year students of B.E in EEE, ECE, EI, M.E (Power Systems), M.E (Applied Electronics), M.E (Power Electronics) Ph.D Electrical and Electronics. Students can assemble their hardware in our Research labs. Experts will be guiding the  projects.

Transcript of Robotics 3

Page 1: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 1/36

May 21, 2006

EXPERT SYSTEMS AND SOLUTIONS

Email: [email protected]

[email protected]

Cell: 9952749533www.researchprojects.info

PAIYANOOR, OMR, CHENNAI

Call For Research Projects Final

 year students of B.E in EEE, ECE, EI,

M.E (Power Systems), M.E (Applied

Electronics), M.E (Power Electronics)

Ph.D Electrical and Electronics.

Students can assemble their hardware in our 

Research labs. Experts will be guiding the projects.

Page 2: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 2/36

May 21, 2006

Sizing Electric Motors for Mobile Robotics

Page 3: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 3/36

May 21, 2006

The Basics

Page 4: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 4/36

May 21, 2006

Unit Conversions

sec1

sec2

revrad !T 

sec11

m N W att 

!

sec111

CoulombV ol t  AmpereV ol t W att  !!

Page 5: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 5/36

May 21, 2006

Basics

The FORCE applied

by a wheel is alwaystangent to the wheel.

Force is measured in units of weight (lb, oz, N)

Page 6: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 6/36

May 21, 2006

Basics

The required

TORQUE to move amobile robot is the

force times the

radius of the wheel.

Torque is measured in units of weight x length

(lb·ft, oz ·in, N·m)

Page 7: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 7/36

May 21, 2006

Procedure for Sizing DC

Motors

Page 8: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 8/36

May 21, 2006

Information Needed Estimated Weight

Number of wheels and motors

Maximum incline

Desired maximum velocity at worst case

Push/Pull forces

Page 9: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 9/36

May 21, 2006

Procedure Step One: Determine total applied force

at worst case

Page 10: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 10/36

May 21, 2006

Friction Static Friction

 ± Used to determine traction failure

Rolling Friction

 ± Used to determine motor requirements

Kinetic Friction

Page 11: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 11/36

May 21, 2006

Rolling Friction

QR Is the coefficient of Rolling friction ± Using the coefficient of Static friction (QS)will typically be to high

To determine QR:

 ± Roll a wheel at a initial velocity, v, andmeasure the time, t, in which it takes tostop

 N  F   R R !

 g t 

v

 R

!

Page 12: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 12/36

May 21, 2006

Rolling Friction Some typical values for QR

 ± Steel on steel: 0.001

 ± Rubber on pavement: 0.015

Page 13: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 13/36

May 21, 2006

Other Forces

U

Usin!W  F  I 

Gravity

External

Page 14: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 14/36

May 21, 2006

Total Force Calculate worst case

 ± Up hill with rolling friction

 ± Up hill with rolling friction, pushing

 ± Level ground with rolling friction

 ± Level ground with rolling friction, pushing

)sincos( UU Q !  RW  F 

 EX  R F W  F  ! )sincos( UU Q

W  F   R ! Q

 EX  R F W  F  ! Q

Page 15: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 15/36

May 21, 2006

Other Cases Tracks

 ± Set Qr =0

 ± Use a spring scale to determine the force requiredto pull the chassis in neutral and add that to the

worst case force

Gear Trains

 ± Bulky gear trains may significantly affect theoutcome

 ± If this is a concern, it may be best to test in the

same way as tracks

Page 16: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 16/36

May 21, 2006

Procedure Step One: Determine total applied force

at worst case

Step Two: Calculate power requirement

Page 17: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 17/36

May 21, 2006

Power Requirement Determine velocity, v, requirement

under maximum load (worst case force)

Using the worst case force and velocity,calculate the power requirement

This is the total power, divide by thenumber of motors if more than onemotor is used

v F  P  !

RULE OF THUMB: 3 TIMES MARGIN

Page 18: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 18/36

May 21, 2006

Procedure Step One: Determine total applied force

at worst case

Step Two: Calculate power requirement

Step Three: Calculate torque and speed

requirement

Page 19: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 19/36

May 21, 2006

Speed/Torque Requirements Using the velocity requirement, v, and

the radius of the wheel, r 

Using the speed from above and the

power per motor 

v![ 

Speed requirement

is in rad/sec

 P T  !

Page 20: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 20/36

May 21, 2006

Procedure Step One: Determine total applied force

at worst case

Step Two: Calculate power requirement

Step Three: Calculate torque and speed

requirement

Step Four: Find a motor that meets

these requirements

Page 21: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 21/36

May 21, 2006

Spec Sheet

Page 22: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 22/36

May 21, 2006

Spec Sheet

Page 23: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 23/36

Page 24: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 24/36

May 21, 2006

Torque vs. Speed Curve

Where T = Torque

TPK = Stall Torque

SNL = No Load Speed [  = Speed

[ !

 NL

 PK  PK 

T T T 

Page 25: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 25/36

May 21, 2006

Torque vs. Speed CurveTorque vs. Speed

0.00 +00

1.00 -02

2.00 -02

3.00 -02

4.00 -02

5.00 -02

6.00 -02

7.00 -02

0 1000 2000 3000 4000 5000 6000 7000 8000

Speed, rpm

   T  o  r  q  u  e ,

   N  m

From this plot,

maximum speed canbe determined for a

given load.

Page 26: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 26/36

Page 27: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 27/36

May 21, 2006

Power Power vs. Speed

0 00 +00

2 00 +00

4 00 +00

6 00 +00

8 00 +00

1 00 +01

1 20 +01

0 1000 2000 3000 4000 5000 6000 7000

Speed, rpm

       P  o  w  e  r ,  w  a   t   t  s

[ [ [  !  PK  NL

 PK 

T S 

 P 

2

)(

Page 28: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 28/36

May 21, 2006

Power Power vs. Torque

0 00 +00

2 00 +00

4 00 +00

6 00 +00

8 00 +00

1 00 +01

1 20 +01

0 0 01 0 02 0 03 0 04 0 05 0 06

Torque, Nm

       P  o  w  e  r ,  w  a   t   t  s

T S T T 

T  P   NL PK 

 NL

!

2

)(

Page 29: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 29/36

May 21, 2006

Power Power 

¡ 

¢ 

£ 

¤ 

eed

0 00¦ 

§ 

00

2 00¦ 

§ 

00

 ̈

00¦ 

§ 

00

6 00¦ 

§ 

00

© 

00¦ 

§ 

00

1 00¦ 

§ 

01

1 20¦ 

§ 

01

0 1000 2000 

000 ̈

000 

000 6000 

000

Speed, r pm

   P  o  w  e  r ,  w  a   t   t  s

Power vs. Tor   

e

0 00¦ 

§ 

00

2 00¦ 

§ 

00

 ̈

00¦ 

§ 

00

6 00¦ 

§ 

00

© 

00¦ 

§ 

00

1 00¦ 

§ 

01

1 20¦ 

§ 

01

0 0 01 0 02 0 0 

0 0 ̈

0 0 

0 06

Tor    e, Nm

   P  o  w  e  r ,  w  a   t   t  s

max2

1T T  !

max2

1[ [ !

Peak power is obtained at half of 

maximum torque and speed

Page 30: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 30/36

May 21, 2006

Procedure Step One: Determine total applied force

at worst case

Step Two: Calculate power requirement

Step Three: Calculate torque and speed

requirement

Step Four: Find a motor that meets

these requirements

Step Five: Plot motor characteristics

Page 31: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 31/36

May 21, 2006

 A Few Extra Points

Page 32: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 32/36

May 21, 2006

Simple DC Motor Model

e R I V  ! [ !e

k e [ !e

k  R I V 

 I k T t !

2

max 1 ¹¹ º ¸©©

ª¨ !

 P 

 NL

 I  I L

Page 33: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 33/36

May 21, 2006

Motor Inductance The windings of a DC motor creates an

Inductance, L

Change in current through an

inductance creates a voltage

Switching current to a motor causes

di/dt to spike (Flyback)

dt 

di LV  !

Flyback voltages can be very high and damage

electronics, that is why a flyback diode in the

switching circuit is required.

Page 34: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 34/36

May 21, 2006

Winches Similar to drive motors

Page 35: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 35/36

May 21, 2006

Common Mistakes Using static or kinetic friction instead of rolling

friction

 ± If a wheel is rolling without slipping, the onlyenergy loss is due to deformations in thewheel/surface (rolling friction)

Using PWM to control a motor reduces theavailable torque

 ± The average power, speed and torque arereduced, however, effective torque is notsignificantly effected

Page 36: Robotics 3

8/8/2019 Robotics 3

http://slidepdf.com/reader/full/robotics-3 36/36

May 21, 2006

Questions?