Lecture Slides (s) S. Hasegawa & F. Grey, Surface ...€¦ · M. Aitani, et al., Jap. J. Appl....

17
Schedule of The First Half of The Course (Hasegawa) Lecture Slides (PDF files) http://www-surface.phys.s.u-tokyo.ac.jp/KougiOHP/ 1.Nanoscience and Surface Physics ナノサイエンスと表面物理 Nanoscience in Nobel Prize 2.Atomic Arrangements at Surfaces 表面原子配列構造 Scanning Tunneling Microscopy, Electron Diffraction 走査トンネル顕微鏡、電子回折 3.Surface Electronic States 表面電子状態 Surface states 表面状態、 Rashba Effect ラシュバ効果 Topological Surface States トポロジカル表面状態、 Band Bending バンド湾曲 4.Surface Electronic Transport 表面電気伝導 Space-Charge-Layer Transport and Surface-State Transport 空間電荷層伝導と表面状態伝導 2D Materials 2次元物質 Atomic-Layer Superconductivity 原子層超伝導 Surface States and Space-Charge Layer (Band bending) S. Hasegawa & F. Grey, Surface Science 500 (2002) 84–104 2DEG: Two-dimensional Electron Gas Three Channels for Electrical Conduction S. Hasegawa & F. Grey, Surface Science 500 (2002) 84–104 1. Surface-State Conduction 2. Space-Charge-Layer Conduction 3. Bulk Conduction B sc ss Measured conductivity 電界効果トランジスタ Field-Effect Transistor FET Gate-Controlling Bending of Bulk Bands near Surface

Transcript of Lecture Slides (s) S. Hasegawa & F. Grey, Surface ...€¦ · M. Aitani, et al., Jap. J. Appl....

  • Schedule of The First Half of The Course (Hasegawa)Lecture Slides (PDF files)

    http://www-surface.phys.s.u-tokyo.ac.jp/KougiOHP/

    1.Nanoscience and Surface Physics ナノサイエンスと表面物理Nanoscience in Nobel Prize

    2.Atomic Arrangements at Surfaces 表面原子配列構造Scanning Tunneling Microscopy, Electron Diffraction走査トンネル顕微鏡、電子回折

    3.Surface Electronic States 表面電子状態Surface states 表面状態、 Rashba Effect ラシュバ効果Topological Surface States トポロジカル表面状態、Band Bending バンド湾曲

    4.Surface Electronic Transport 表面電気伝導Space-Charge-Layer Transport and Surface-State Transport空間電荷層伝導と表面状態伝導

    2D Materials 2次元物質Atomic-Layer Superconductivity 原子層超伝導

    Surface States and Space-Charge Layer (Band bending)

    S. Hasegawa & F. Grey,Surface Science 500 (2002) 84–104

    2DEG: Two-dimensional Electron Gas

    Three Channels for Electrical ConductionS. Hasegawa & F. Grey,Surface Science 500 (2002) 84–104

    1. Surface-State Conduction2. Space-Charge-Layer Conduction3. Bulk Conduction

    Bscss Measured conductivity

    電界効果トランジスタ Field-Effect Transistor FET

    Gate-Controlling Bending of Bulk Bands near Surface

  • 量子ホール効果 Quantum Hall Effect

    *

    22

    2mkE

    21nE c ...)3,2,1,0( n

    2DEG

    *meB

    c

    Landau levels

    Cyclotron freq.H

    all R

    esist

    ance

    RH

    (kΩ

    )

    Long

    itudi

    nal R

    esist

    ivity

    ρxx

    (kΩ

    )

    ・Hall resistance is quantized.Klitzing constant RKh/e2 = 25812.807557(18) Ω

    ・Longitudinal resistance is zero.edge conduction

    Topology (Berry’s phase)

    Nobel prizes1985 von Klitzing IQHE1998 Laughlin, Storner, Tsui FQHEOkamoto Lab.

    Various Surface States

    ** mk

    mpE

    22

    222

    Wavenumber k

    Ener

    gy E

    Valence Band

    Cond. Band

    222 )()( pcmcE

    kcpcE

    0m

    Free-Electron-like

    Massless Dirac Electrons

    Mono-Layer Agon Si(111)

    Au(111)Bi(111)

    Graphene(Monolayer Graphite)

    Topological Surface StatesBi2Se3

    SpinSpin

    SpinSpinSpin-Deg.Spin-Deg

    Spin split Due to Rashbaeffect

    Valence Band

    Cond. Band

    Valence Band

    Cond. Band

    Valence Band

    Cond. Band

    Relativistic

    (Non-relativistic)

    2D Metal(Monatomic-Layer Metal)

    -Inert and atomically flat surface-Free-electron-like surface state

    Mono-Layer Ag on Si : Si (111)-√3×√3-Ag Surface

    **////

    mk

    mp

    E22

    222

    Standing Waves on Si(111)-√3×√3-Ag Surface at 65K

    STM Images dI/dV Images

    -0.9 V -0.9 V

    -0.8 V

    -0.7 V

  • Carrier Doping Into Surface States to Change Electrical Conductivity

    Au Adsorption on Si(111)-√3×√3-Ag 0.02 ML Au

    RT 65 K

    0.01 ML Au 0.02 ML Au 0.03 ML

    RT

    135 K

    1. Carrier doping in the surface-state band⇒ Increase in band occupation

    2. Hybridization of the localized state and surface-state band⇒ Band splitting

    C. L

    iu, I

    . Mat

    suda

    , R. H

    obar

    a, a

    nd S

    . Has

    egaw

    a,

    Phys

    . Rev

    . Let

    t. 96

    , 036

    803

    ( 200

    6).

    ne

    Macro-Four-Terminal Measurements in UHV

    S. Hasegawa, et al., Phys. Rev. Lett. 68, 1192 (1992)

    Carrier Doping into Surface-State Band by Adatoms

    6K

    70K

    RT

    Res

    ista

    nce

    (kΩ

    )

    2D Gas Phase

    Nucleation

    Y. Nakajima, et al., PRB 54, 14 134(1996); 56, 6782 (1997).

    N. Sato, et al., PRB 60, 16 083(1999).

    Ag Adatoms on Si(111)-√3×√3-Ag Surface

    neR 1

    Drude Theory

  • Crystal Structure of Bi2Se3 : Topological Insulator

    H. Zhang, et al., Nature Physics (May 2009)

    Crystal Structure of Bi2Se3 (Bi2Te3)H. Zhang, et al., Nature Physics (2009) S. Borisova, et al.,

    Cryst. Growth Des. 12, 6098 (2012)

    XTEM

    van der Waals gap

    van der Waals gap

    van der Waals gap

    Electronic States of Bi2Se3 (Theory)

    H. Zhang, et al., Nature Physics (May 2009)

    Isolated Atom(Atomic Orbitals)

    Atomic Bondings

    Split due to Crystal filed

    Spin-Orbit Intercation

    Conduction Band

    Valence Band

    SSDirac Cone

    Dirac Cones of Topological Insulators

    Bi2Se3 Bi2Te3

  • Hole‐doping by Pb alloying in Bi2Te3

    Formation of stoichiometric PbBi4Te7, Bi2Te3(PbTe)0.5 orTe‐Bi‐Te‐Pb‐Te‐Bi‐Te?  

    Fermi Level

    Dirac Point

    Band Dispersion Truly bulk insulator

    M. Aitani, et al., Jap. J. Appl. Phys.52 (2013) 110112

    Conductivity of a single Dirac-cone surface state

    heSSS

    2

    5.020

    Conductivity of Single (Spin-split) Dirac Cone

    Drude Model ne 12104n cm-2Carrier Density

    ⇒ Mobility 30 cm2/Vs

    Not high mobility!

    Bulk carrier

    SS carrier

    2D Conductivity

    M. Aitani, et al., Jpn. J. Appl. Phys. 52, 110112 ( 2013)

    Current I

    Electrical Resistance

    R = VI ・C C: Correction Factor

    Voltage Drop V

    Bulk-Sensitive(Surface -Insensitive)

    Macro-4-Point ProbeSurface -Sensitive

    Micro-4-Point Probe

    - Contact Resistance- Three Parallel Conduction Channels- Surface Sensitivity- Local Conductivity

    σmeas=σSS+σSC+σB

    Four-Point Probe Method for Transport Measurements

    σSS

    σSC

    σB

    Temperature-Variable Monolithic Micro-Four-Point Probe

    Contacting to Si(111) sample surface in SEM

    Developed at Denmark Technical UniversityCommercially available; http://www.capres.com

    Si(111) Crystal

    I. Shiraki, et al., Surf. Rev. Lett. 7 (2000) 533.C. L. Peteresen, et al., Appl. Phys. Lett. 77 (2000) 3782.S. Hasegawa, et al., J. Phys: Cond. Matters 14 (2002) 8379.T. Tanikawa, et al., e-J. Surf. Sci. Nanotech. 1 (2003) 50.

  • 1D, 2D, and 3D conduction

    d: probe distance(length of measured

    area of sample)

    1mm

    1mm

    200μm

    5μm

    SEM Images of Independently Driven Four W-Tips in UHV

    I. Shiraki, et al., Surf. Sci. 493 (2001) 633.S. Hasegawa, et al., Current Appl. Phys. 2 (2002) 465.

    Square 4PP正方4端子プローブ法

    Linear 4PP線形4端子プローブ法

    Four-Tip STM as Micro-Four-Point Probes142

    Surface-Dominated Transport on a Bulk Topological Insulator Bi2Te2Se L. Barreto, et al.,

    Nano Letters 14, 3755 (2014)

    ⇒ Mobility 390 cm2/Vs

    2D transport

    3D transport

    LT: Bulk carriers are frozen out.⇒ SS transport only

    Fairly high mobility!

    Probe Spacing d (m)

    SRR 22ln

    dR

    2

    2D transport

    3D transport

    SRIVR

    22ln

    dIVR

    2

    Current Distribution vs. Probe-Spacing Dependence of Resistance

    SR : Sheet Resistivity (Ω)

    : 3D Resistivity (Ωcm

  • Four-Point Probe Resistance for a 3D sample 152 Four-Point Probe Resistance for a 2D sample153

    Intrinsic conduction through topological surface states of insulating Bi2Te3 epitaxial thin films on BaF2 (111)

    K. Hoefer, et al., PNAS 111, 14979 (2014)

    ⇒ Mobility 600,4 cm2/Vs Very high mobility!

    Four-Tip STM with 20 nm Tip Spacing

    S. Yoshimoto, et al., Nano Letters 7, 956 (May, 2007)

    209

  • Electrical Resistance due to an Atomic Step

    Standing Waves on Si(111)-√3×√3-Ag Surface at 65K

    STM Images dI/dV Images

    -0.9 V -0.9 V

    -0.8 V

    -0.7 V

    166

    Resistance Measurements Across a Step Bunch or On a Terrace

    VOn Terrace Across Step Bunch

    Step BunchTerrace

    10μm

    10μm

    Step BunchTerrace

    TerraceStep Bunch

    Monatomic Steps decorated by a tiny amount of Ag adsorption

    161Line Profile of Resistance measured across Step Bunches at RT in UHV

    Si(111)-7×7 Clean Surface Si(111)-√3×3-Ag Surface

    162

  • Line Profile of Resistance measured through Step Bunches at RT in UHV

    Si(111)-√3×3-Ag Surface

    R= 800Ω/300 steps ~3Ω

    800Ω

    Resistance of a single step(Experiment)

    R=1/G~5ΩResistance of a single step

    (Friedel振動から)

    Good Match

    S. Hasegawa et al.,J. Phys.: Cond. Matter 14, 8379 (2002).

    168Tunneling Transport Landauer Formula (Tsu-Esaki)

    1D: G = ・T(μ) [Ω-1]h2e2

    2D: g = ・T(μ) [Ω-1m-1]h2e2

    πkF

    3D: g = ・T(μ) [Ω-1m-2]h2e2

    4πkF2

    T(μ): Transmission Probability througha potential barrier/a inlet・exit

    I. Matsuda, et al., Physical Review Letters 93, 236801 (Dec, 2004)

    ナノワイヤにおける電気伝導 Electrical Conduction through a nano-wire

    谷城(東工大)

    ⇒ Ohm’s Law 𝐺 ∝ 𝑤ρ · ℓ

    ⇒ independent of Length ℓ ConductanceQuantization

    𝝀𝒇: Fermi wave length , n: number of modes

    ℓ𝒎𝒇𝒑: Mean free path, 平均自由工程2次元 ブロッホ波

    入射波 Ψi=exp[i(kx・x+ky・y)]・u(x, y)E=E0+ (kx2+ky2)2m*

    h2

    u(x,y)= cell function

    反射波 Ψr=R・exp[i(-kx・x+ky・y)]・u(x, y)R=|R|・exp[iη]

    η:反射位相シフト

    ポテンシャル障壁ステップドメイン境界

    ρ(E, x)(局所状態密度)∝|Ψi+Ψr|2∝{1+|R|2+2|R|cos(2kx・x-η)}・|u(x,y)|2

    定在波原子像

    定在波の波長λ=kxπ

    電子定在波 108

  • Phase Shift in Reflection at a Step Edge

    Phase shifts at a step edge, : - 0.8

    Ψi ∝ exp{-ikx}

    Ψr ∝ exp{i(kx-η)}

    ∝ | Ψi + Ψr |2

    I. Matsuda, et al., Physical Review Letters 93, 236801 (Dec, 2004)

    Phase Shift, Transmission Coefficient, and Conductance

    1+tan2 (η+π)1Transmission Prob. T=1-

    η= - 0.8π ⇒ T = 0.3 ~ 0.4

    Transmission through δ- potentialL. Buergi, et al. Phys. Rev. Lett. 81, 5370 (1998)

    g = ・T(μ) [Ω-1m-1]h2e2

    πkF

    2D Landauer Formula

    3d

    Measured Conductance G ~ g・3d

    kF= 0.1Å-1d = 8μm (Probe Spacing)

    R=1/G~5ΩResistance of a single step

    =5×103 [Ω-1m-1]

    173

    Atomic-Layer Superconductivity Surface-State Superconductivity

    Resistance of Bilayer Graphene w/wo Ca/LiS. Ichinokura, K. Sugawara, A. Takayama, T. Takahashi, and S. Hasegawa:“Superconducting Calcium‐Intercalated Bilayer Graphene” , ACS Nano 10, 2761‐2765 (Jan, 2016)

    Tconset=4 K

    Intercalation in GraphiteBulk Ca‐GIC

    Stage1  Stage2  Stage3  TC=11.5K  non‐SC    non‐SC

    Weak Localization

  • S. L. Surnev, et. al. A. A. Sarranin, et. al. S. Takeda, et al.

    Indium-adsorbed Silicon (111) Surface

    √7×√3

    Insulator 2D MetalQuasi-1D Metal4×1√3×√3

    RT(metallic)Plan View 60 K (CDW)H. Y. Yeom, et al., PRL 82, 4898 (1999)

    Electrical Resistance of (Sub)Monolayer In-adsorbed Si

    Semicond.

    Quasi-1D metal

    2D Metal

    S. Yamazaki, et. al., Phys. Rev. Lett., 106, 116802 (2011).

    (Ω)

    Si(111)

    λ=1.1Shee

    t Res

    istiv

    ity

    Temperature T(K)

    (CDW)

    In Atoms

    ・e-Ph coupling constant (PES)(LBI USA 2003)・Energy gap (STS)(Tsinghua Univ. China 2010)

    √7×√3: Suggestions of Superconductivity

    In Atoms

    Eli. Rotenberg, et. al.,Phys. Rev. Lett. 91 246404 (2003)

    Circular Fermi surface

    Parabolic dispersion relation

    Fermi wave number

    emm 1.1*

    -1nm14Fk

    *

    22

    2mkE

    Effective mass

    Isotropic two dimensionalnearly-free electron gas

    ]nm[eV6.4 212*

    2

    mD D

    Fermi Surface

    (very large)

    120 Fk→metallic conduction

    ARPES for Si(111)-√7×√3-In

    2151013 cmn .・T-dependence of Peak width in spectra

    ⇒ e-Ph coupling constant λ~1 (Very large)⇒ Superconducting Band Dispersion

    Unisoku Co. 2011

    Sub-Kelvin μ4PP with strong B

    MBE-RHEED

    μ4PPSCMagnet

    Sample

    μ4PP

    Lowest T:~800 mKMag. Field:7 T(⊥Surface)UHV (10-10Torr) in situ

    M. Yamada, T. Hirahara, S. Hasegawa, T. Nagamura, e-J. Surf. Sci. Nanotech. 10, 400-405 (Jul, 2012).

  • 0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5 6 7 8

    Sheet Resis

    tance (

    /)

    T (K)

    Tc= 2.77K

    Superconductivity at Si(111) -√7x√3-In

    2D Aslamazov-Larkin (AL) termExcess conductivity by Cooper pairsgenerated by thermal fluctuation

    Superconducitivy only locally

    ・Below TcGlobal coherent superconductivityTc=2.77 K

    (Uchihashi:Tc=2.8 K)< Tc=3.18 K (from STS)< Tc=3.41 K (Bulk In)

    aMTAL

    R

    0

    1Above Tc:

    Large fluctuation above TC

    Si(111)-√7x√3-In : Under Magnetic Field

    0

    100

    200

    300

    400

    500

    600

    700

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Sheet Resis

    tance (

    /)

    B (T)

    BDP= 0.33T

    Bc2= 0.43T

    0

    100

    200

    300

    400

    500

    600

    0 1 2 3 4 5

    Sheet Resis

    tance (

    /)

    T (K)

    0T0.15T0.30T

    cf. bulk In : Hc=293 Oe Strong Critical Field Hc2 (0)~5000 Oe

    Very high Hc (=short ξ)

    Short Coherence LengthξGL(0)~25 nm

  • Cooper Pairs in Free-Electron Band

    kx

    ky

    k

    E

    kkkk

    kkkk

    Singlet

    , kk , kkTriplet22

    2k

    mE

    Fermi SurfaceBand Dispersion

    Spin Split and Cooper Pairs in Free-Electron Band

    kx

    ky

    k

    E

    kkkk

    kkkk

    Singlet

    , kk , kkTriplet22

    2k

    mE

    k

    E

    ⊿k

    20

    2

    )(2

    kkm

    E

    kx

    ky

    kk

    '' kk

    Outer

    Inner kkkkkkkkkk21

    21

    Singlet(s-wave) Triplet(p-wave)

    Fermi SurfaceBand Dispersion

    ⇒ Parity-Broken Superconductors

    Si(111)–1x1-Tl

    Si(111)–√3x√3-(Tl, Pb)

    SiSi

    Tl

    Pb

    √3x√3

    1x1

    +Pb 1/3 ML @ 300K

    Mono-Layer

    Tl 1ML on 7x7 @ 600K

    Sample: Si(111)–√3x√3-(Tl, Pb) Surface SuperstructureD. V. Grunev, et al.; Sci. Rep. 4, 4742 (2014).

    Si(111)-√3×√3-(Tl, Pb) :Rashba-type SS

    ARPES+Theory⇒ Spin-Split Surface-State Bands

    D. V. Gruznev, et al., Sci. Rep. 4, 4742 (2014)

  • STS below TC on Si(111)-√3×√3-(Tl,Pb) w/o BT. Nakamura, et al.; Phys. Rev. B 98, 134505 (Oct, 2018).

    Fitting STS Spectra by Theory

    s-wave (isotropic gap)(1.0 meV)

    cos10 anisotropic gap

    47.00 84.01

    meVmeV

    .const

    T. Nakamura, et al.; Phys. Rev. B 98, 134505 (Oct, 2018).

    Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 J-F. Ge, et al., Nature Materials 14, 285 (Mar, 2015)

    Cf: Bulk FeSeTC = 9.4 K

    measured in situ by μ4PP in UHVSpin Transport at Surfaces and Edges

  • - Storage Media記憶媒体 Magnetic Disk/Head, MRAM, …

    - Energy-Saving /High-Speed Devices省エネ・高速素子

    spin currentspin transistors sensors

    - 量子情報処理素子Quantum Infomration Devices

    Superposition of spin-up and spin-down states

    Magnetic MaterialsHetero-, Wire-structuresDiluted Mag. SemiconductorsMagnetic molecuesGrapheneTopological Insulators

    Utilizing Spins

    Fert(France)

    Gruenberg(Germany)

    Miyazaki(Tohoku Univ.)

    Discovery of Giant MagnetoResistance (GMR) Effect巨大磁気抵抗効果の発見

    France Germany 南パリ大学 Julich Inst

    b. 1938 b. 1939

    Albert Fert Peter Grünberg

    The Nobel Prize in Physics 2007

    S. Yuasa, et al., Nature Materials 3, 868 (2004).

    Tunnel MagnetoResistance (TMR) Effect

    磁気ヘッド(ハードディスクの小型化・高密度化)Magnetic Head (HDs becomes smaller and high-density)

    Fe

    Fe

    酸化Mg

    Various Surface States

    ** mk

    mpE

    22

    222

    Wavenumber kEn

    ergy

    EValence Band

    Cond. Band

    222 )()( pcmcE

    kcpcE

    0m

    Free-Electron-like

    Massless Dirac Electrons

    Mono-Layer Agon Si(111)

    Au(111)Bi(111)

    Graphene(Monolayer Graphite)

    Topological Surface StatesBi2Se3

    SpinSpin

    SpinSpinSpin-Deg.Spin-Deg

    Spin split Due to Rashbaeffect

    Valence Band

    Cond. Band

    Valence Band

    Cond. Band

    Valence Band

    Cond. Band

    Relativistic

    (Non-relativistic)

  • Spin-Textured Fermi Surface+Electric Field⇒Current –Induced Spin Polarization電流誘起スピン偏極

    ky

    kx

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Spin-Textured Fermi Surfaceフェルミ面のスピン繊維構造

    Spin Hall Effect・外因性(SOCによる非対称散乱)Extrinsic reason (asymmetric scattering due to SOC)・内因性Intrinsic (バンド構造に内在するベリー位相)

    Intrinsic reason (Berry phase in band structure)

    -

    +E

    磁場の印加が不要No external magnetic field非磁性物質(SOCが強い)Non-magnetic materials(strong SOC)

    Spin Current

    FxFxFxS

    vnvnvnJ

    2.....

    pVσmcxVpmH grad)( 22 4 121スピン-軌道相互作用 (Spin-Orbit Coupling) Hamiltonian

    Spin Current

    Detecting Spin Hall Effect

    Current Current/Voltage

    Spin FlowSHE ISHE Electrical

    Detection

    It should be L < Ls (Spin relaxation length).

    •Bi2Se3; 8QL thick•Se capping →FIB Fabrication•Heating → Remove Se Capping

    Y. K. Kato, et al., Science 306, 1910 (2004)

    GaAsKerr Rotation Microscopy

    Up-

    Spin

    Dow

    n-Spin

    Edge Currents at Q(A)(S)HE

    HgTe (QW)

    QHE (chiral)2D Topol. Ins. (QSHE)

    (helical)

    3D Topol. Ins. 3D Mag.Topol. Ins. (chiral)

    Breaking time-reversal symmetryby magnetic order Mag. proximity

    3D Higher-OrderTopol. Ins.

    QAHEE(+k, ↑)≠E(-k, ↓)

    Need EF tuning EF should be in the gap. 

    1D chiral edge state

  • Magnetic Topological InsulatorCr or V doped Bi1-xSbxTewithout external mag. Field

    Anomalous QHE

    C. Z, Chang, et al., Science 340, 167 (2013)

    Quantum Hall Effect at 2DEGunder strong external mag. field

    Longitudinal ResistivityVanishes

    from Okamoto Lab

    Hall ResistanceQuantizedin unit of h/e2

    - Hall Resistance : quantized in unit of h/e2

    - Longitudinal Resistance : vanishes

    Hal

    l Res

    ista

    nce

    RH

    (kΩ

    )

    Longitudinal Resistivity ρ

    xx(kΩ

    )

    Mag. Proximity to break TRSBut, bulk doping isInhomogeneous.

    Si/SiGe HeterojunctionT=40 mK

    Dissipation-less currents at atomic layers/edges/hinges1. Superconducting Current

    (1) UC FeSe on SrTiO3(2) Monolayer Metals, Pb, In, Ga,…(3) Metal-intercalated Graphene

    2. Ballistic Current3. Edge Currents

    (1) QHE(2) 2D Topological Insulators (QSHE)(3) 3D Magnetic Topological Ins.(QAHE)(4) Higher-order Topo. Ins.

    4. Spin Current(1) Strong Spin-Orbit Int. Mat.(SHE)(2) Heterojunctions at Ferro/Non-mag.

    Hinge statesAt higher-order Topol.

    Edge states at 2D Topol. Ins.

    Edge states at QHE

    Rashba Superconductor

    Graphene Superconductor

    High-TC Superconductor

    Pure Spin Current.