Hacim Kalibi Tasarim Unsurlari 11 06

download Hacim Kalibi Tasarim Unsurlari 11 06

of 48

Transcript of Hacim Kalibi Tasarim Unsurlari 11 06

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    1/48

    TECHNICAL INFORMATION

    DuPontDelrin acetal resinMolding Guide

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    2/48

    ii

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    3/48

    iii

    Table o Contents

    Pages

    General Inormation 1

    Description 1

    Compositions 1

    SaetyPrecautionstoObserve

    WhenMoldingDelrinAcetalResins 2

    Packaging 3

    Polymer Structure and Processing Behavior 4

    GlassTransitionandMelting 4

    PVTDiagrams 4

    Heating-CoolingBehavior 6

    ViscosityandRheologicalBehavior 6

    Injection Molding Unit 8

    ScrewDesign 9

    ELCeeScreworOptimumProductivity 10

    CylinderTemperatureControl 10

    CylinderAdaptor 10

    Non-ReturnValve(BackFlowValveBFV) 10

    Nozzle 11

    EvaluationoMeltQuality 11

    Molds 13

    AbilitytoFill 13

    Gates 14

    RunnerSystem 16

    NozzleandSprue 17

    HotRunnerMoldorCrystallinePolymers 18

    Vents 19

    Undercuts 20

    SharpCorners 21RibsDesign 21

    WeldLines 21

    MoldMaintenance 22

    MoldCleaning 22

    (continued)

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    4/48

    iv

    Table o Contents (continued)

    Pages

    Molding Process 23

    Start-upandShutdownProcedures 23

    OperatingConditionsorDelrin

    TemperatureSettings 24

    OperatingConditionsorDelrin

    MoldingCycle 26

    OptimumProductivityMolding 29

    StandardMoldingConditions

    orISOTensileBars 30

    HoldPressureTime

    viaIn-cavityPressureMeasurement 30Dimensional Considerations 31

    FundamentalsoDimensional

    Control 31

    MoldShrinkage 31

    FactorsAectingMoldShrinkage 31

    MoldShrinkageoFilledResins 31

    EectoPigments 33

    Post-MoldingShrinkage 34

    InsertMolding 35Annealing 35

    EnvironmentalChanges 35

    DimensionalTolerances 36

    Auxiliary Operations 37

    MaterialHandling 37

    RegroundResin 37

    Drying 37

    Coloring 38

    Disposal 38

    Troubleshooting Guide 39

    Index 42

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    5/48

    1

    General Inormation

    Description

    Delrinacetalresinsaresemi-crystalline,thermoplasticpolymers

    madebythepolymerizationoormaldehyde,andarealso

    commonlyreerredtoaspolyoxymethylene(POM)Theyhave

    gainedwidespreadrecognitionorreliabilityinmanythousands

    oengineeringcomponentsallovertheworldSincecommercial

    introductionin1960,Delrinhasbeenusedintheautomotive,

    appliance,construction,hardware,electronics,andconsumer

    goodsindustries,amongothers

    Delrinisnotedor:

    Highmechanicalstrengthandrigidity

    Excellentdimensionalstability

    Naturallubricity

    Fatigueendurance

    Highresistancetorepeatedimpacts

    Excellentresistancetomoisture,gasolines,solventsand

    manyotherneutralchemicals

    Toughnessatlowtemperature(downto50C[58F])

    Wideuseultemperaturerange(inair:50to90C

    [58to194F],withintermittentuseupto120C[248F])

    Goodelectricalinsulatingcharacteristics

    Easeoabrication

    Delrinacetalresinsareavailableinavarietyocompositionsto

    meetdierentend-useandprocessingrequirements

    CompositionsThemainavailableDelrincompositionscanbe

    classiedasollows:

    a Standard

    b Toughened

    c Lowwear/Lowriction

    d Glasslled/Reinorced

    e UV-stabilized

    Thestandardcompositionscoverabroadrangeomelt

    viscositiesThehighestviscositycomposition,solike

    Delrin

    100P,areotenmoldedwhenmaximumtoughnesspropertiesareneededTheintermediatemeltviscosityDelrin

    500Pisusedorgeneral-purposeinjectionapplicationsThe

    resinshavinglowermeltviscosity,Delrin900Pisusuallychosen

    orinjectionmoldingapplicationswithhard-to-llmolds

    AsummaryothemaincompositionsisshowninTable 1

    Safety Precautions to ObserveWhen Molding Delrin Acetal Resins

    Delrinaswellasmanyotherthermoplasticpolymers

    decomposestogaseousproductswhenheatedoraprolonged

    timeThesegasescangeneratehighpressuresiconnedI

    materialisnotreetoexitromaninjectioncylinderthroughthe

    nozzle,itmayblowbackthroughthehopper

    InthecaseoDelrinacetalresin,decompositionisalmost

    entirelytogaseousproducts,sopressurebuild-upcanberapid

    Theproductodecompositionisormaldehyde

    Aswithanyacetalpolymer,Delrin,whenoverheated,can

    discolorandormgaseousdecompositionproducts,whichare

    largelyormaldehydeLowlevelsoormaldehydeemissions

    canalsooccurattypicalprocessingtemperaturesRepeated

    exposuretoormaldehydemayresultinrespiratoryandskin

    sensitizationinsomeindividualsFormaldehydeisapotential

    cancerhazard

    ProcessingtoughenedgradesoDelrin

    canreleaselowlevelsoisocyanatesRepeatedexposuretoisocyanatesmayresultin

    respiratoryandskinsensitizationinsomeindividuals

    Lowlevelsoormaldehydemayoccurintheheadspaceo

    bagsasreceivedorincontainersoormedpartsater

    processingBagsoresinorormedpartsshouldbeopenedin

    wellventilatedareas

    Useadequatelocalexhaustventilationinprocessareasto

    maintainexposuresbelowrecommendedcontrollimitsDropair

    shotsintowatertoreduceemissions

    WhenmoldingDelrin,itisimportantthattheoperatorbe

    amiliarwiththeactorsthatcancausedecomposition,withthe

    dangersignalsthatwarnothisproblem,andwiththeactionthat

    shouldbetakenThisinormationissummarizedonacardor

    displayatthemoldingmachine

    Theinormationgivenhereisbasedonourexperiencetodate

    Itmaynotcoverallpossiblesituationsanditisnotintendedasa

    substituteorskillandalertnessotheoperator

    Follow correct start-up, operating and shut-down procedures

    as described later in this guide.

    Be aware o troublemakerscauses o decomposition:

    Hightemperaturestickingtemperaturecontroller,aultythermocoupleconnections,incorrectreading,burned-out

    heaterorheaterwithahotspot,heatsurgesonstart-up

    DonotoverheatMaintainpolymermelttemperaturebelow

    230C(446F)

    CycledelayAvoidprolongedexposureatorabovethe

    recommendedprocessingtemperatureRecommendedmelt

    temperaturesaregiveninTable 5

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    6/48

    2

    High Viscosity Grades

    Delrin100/II100

    POMhomopolymerHighviscositymoldingmaterialExcellent

    tensilestrengthandresistancetocreepoverawidetemperature

    range,evenunderhumidambientconditionsHighatigue

    enduranceandimpactresistanceApplications:moldedparts

    suchashighlyloadedgears,plainbearingsandsnap-ts

    Delrin100P

    SamecharacteristicsandapplicationsasDelrin100,plus

    improvedthermalstabilityorlowdepositmoldingindemanding

    processingconditions,eg,hotrunnertools

    Delrin111P

    Characteristics:Delrin100Pwithenhancedcrystallinity

    Resistancetocreepandatigueenduranceimprovedover

    Delrin100PTypicalapplications:Highlyloadedgears,

    bearings,snap-ts

    Medium-High Viscosity Grades

    Delrin311DP

    POMhomopolymerOptimizedstabilizerormulationwithenhancedcrystallinity;excellentdimensionalstability

    Excellentresistancetouels,lubricants,solventsandmost

    neutralchemicals

    Medium Viscosity Grades

    Delrin500P

    POMhomopolymerGeneralpurposemoldingresinwith

    improvedprocessingstabilityorlowdepositmoldingin

    demandingprocessingconditions,eg,hotrunnertools

    Delrin511P

    Characteristics:Delrin500Pwithenhancedcrystallinity,

    goodresistancetocreepandatigue

    Applications:uelsystemcomponents,gears,astenersLow Viscosity Grades

    Delrin900P

    Characteristics:Lowviscosity,astmoldingresinplusimproved

    processingstabilityorlowdepositmoldingindemanding

    processingconditions,eg,hotrunnertoolsApplications:

    Multicavitymoldsandpartswiththinsections,eg,consumer

    electronicsparts,zippers

    Toughened Grades

    Delrin100ST

    POMhomopolymer,SuperToughHighviscosity,super

    toughmaterialorinjectionmoldingandextrusionExcellent

    combinationosuper-toughness,impactatigueresistance,

    solventandstresscrackresistance,aswellashightensile

    elongationatlowtemperatureApplications:Mainlyusedor

    partsrequiringresistancetorepeatedimpactsandloads,

    suchasautomotiveasteners,helmets,hosesandtubing

    Delrin100T

    POMhomopolymer,ToughenedHighimpactresistance

    Delrin500T

    Mediumviscosity,toughenedresinorinjectionmoldingand

    extrusionExcellentnotchedIzodandtensileimpactstrength

    Applications:Mainlyusedorpartssubjectedtorepeated

    impactsandalternatingloads,suchasautomotiveasteners,

    helmets,hosesandtubing

    Low-Wear/Low-Friction Grades

    Delrin100AL

    Highviscositylubricatedgradewithpackageoadvanced

    lubricants

    Delrin100KM

    Delrin100PmodiedwithKevlararamidresinorabrasivewearreductionApplications:Specialtyrictionandwear

    Delrin500AF

    Mediumviscositygradewith20%TefonPTFEbers,

    outstandingrictionandwearpropertiesApplications:Specialty

    rictionandwear,conveyorsystems

    Delrin520MP

    Delrin500Pwith20%TefonPTFEmicropowder,with

    low-wearandlow-rictionpropertiesApplications:Specialty

    rictionandwear

    Delrin500TL

    Delrin500with15%Tefonpowder,withlow-wearandlow-

    rictionpropertiesApplications:Specialtyrictionandwear,

    conveyorsystems

    Delrin500AL

    Mediumviscosityresinwithadvancedlubricantsystem,very

    goodlow-rictionandlow-wearpropertiesApplications:Gears,

    drivetrains,slidingdevices

    Delrin500CL

    ChemicallylubricatedDelrin500,verygoodlow-rictionandlow

    wearpropertiesApplications:Gears,drivetrains,slidingdevices

    Delrin500MP

    MediumviscositygradewithTefonPTPEmicropowder

    Delrin911AL

    Lowviscsoitygradewithadvancedlubricants;excellent

    dimensionalstability

    Glass-Filled/Glass-Reinorced Grades

    Delrin570

    Mediumviscosityresin,with20%glassberllerApplications:

    Wherehighstinessandcreepresistancearerequired

    Delrin510GR

    10%glass-reinorcedresinApplications:Partsrequiringhigh

    stinessandstrength,andcreepresistance

    Delrin525GR

    25%glass-reinorcedresinApplications:Partsrequiringvery

    highstinessandstrength,andcreepresistance

    UV-Stabilized GradesDelrin127UV

    Delrin100PwithUVstabilizerApplications:Automotiveinterior

    partswithmaximumUVperormancerequirements,skibindings

    seatbeltrestraintparts

    Delrin327UV

    Medium-highviscositygradewithUVstabilizerandenhanced

    crystallinity

    Delrin527UV

    Delrin500PwithUVstabilizerApplications:Automotiveinterior

    partswithmaximumUVperormancerequirements,interiortrim

    seatbeltrestraintparts

    Table 1

    Main Compositions o Delrin Acetal Resins

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    7/48

    3

    Hold-upareasincylinder,adapter,nozzle,screwtip,hot

    runnerandcheckvalveassembly

    Pluggednozzleromscrapmetalorhighermeltingpoint

    resin,orromclosednozzlevalve

    Foreignmaterials

    Additives,llersorcolorantsotherthanthosespecically

    recommendedoruseinDelrin

    Contaminants(especiallythosecontainingchlorineorgeneratingacidmaterials)suchaspolyvinylchlorideresin

    orfameretardants

    Copper,brass,bronzeorothercopperalloysincontactwith

    moltenDelrin(notinmoldswheretheresinsolidiesater

    eachcycle)

    Copper-basedlubricantsorgreaseorthreads

    Contaminatedreworkespeciallyreworkorreprocessed

    resinromoutsideorunknownsources

    DonotmixDelringradeswithotherDelringrades,nor

    withanyotherresins,withoutrstconsultingDuPont

    AvoidprocessingDelrinonequipmentthatisalsoused

    orincompatibleresins,particularlyhalogenatedpolymers,suchasPVCorhalogenatedthermoplasticelastomers,or

    UVstabilizedorfameretardantmaterials

    Watch or Danger Signals

    Frothynozzledrool

    Spittingnozzle

    Pronouncedodor

    Discoloredresinbrownorblackstreaking

    Badlysplayedpartswhitishdepositonmoldingormold

    Screwpushbackromgaspressure

    Action Required When Any o the Danger Signals Occur AVOIDPERSONALEXPOSUREWhenDANGERSIGNALS

    arepresent,DONOTlookintohopperorworkaroundnozzle

    asviolentejectionomeltispossible

    MINIMIZEPERSONALEXPOSURETODECOMPOSITION

    GASESbyusinggeneralandlocalventilationInecessary,

    leaveareaomachineuntilventilationhasreduced

    concentrationoormaldehydetoacceptablelevelsPersons

    sensitizedtoormaldehydeorhavingexistingpulmonary

    disabilitiesshouldnotbeinvolvedinprocessingDelrin

    FREENOZZLEPLUGbyheatingwithtorchIthisails,cool

    downcylinder,makesurePRESSUREISRELIEVED,and

    CAREFULLYREMOVENOZZLEandclean TAKEAIRSHOTStocooltheresinPURGEWITHCRYSTAL

    POLYSTYRENEDROPALLMOLTENDelrinINTOWATERto

    reduceodorlevel

    Turnocylinderheaters

    Checktemperaturecontrolinstruments

    Discontinueautomaticmoldingandrunmanuallyuntiljobis

    runningsmoothly

    Provideadequatemeansoventingeedmechanismincase

    oblowback

    Useexhaustventilationtoreduceormaldehydeodor

    Idecompositionoccurs:

    1 Shutoandpurgemachine

    2 Minimizepersonalexposuretodecompositiongases

    byusinglocalandgeneralventilation

    3 Inecessary,leaveareaomachineuntilventilationhas

    reducedconcentrationoormaldehydetoacceptablelevels

    Packaging

    Delrinacetalresinissuppliedassphericalorcylindricalpellets

    approximately3mm(012in)indimensionsTheyarepackaged

    in1,000kg(2,200lb)netweightbulkcorrugatedboxes,

    500kg(1,100lb)netweightfexiblecontainer,or25kg(5516lb)

    moistureprotected,tearresistantpolyethylenebagsThebulkdensityotheunlledresingranulesisabout08g/cm3

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    8/48

    4

    Polymer Structure andProcessing Behavior

    Thebehavioroapolymerduringthemoldingprocessandthe

    behavioroamoldedpartduringitswholeend-useliearehighly

    dependentonthetypeostructurethatthepolymertendstoormduringsolidication

    Somepolymersexhibitinthesolidstateroughlythesame

    moleculararrangementasinthemelt,ie,arandommass

    oentangledmoleculeswithnoorderThisclassisnamed

    amorphouspolymersandincludesorexampleABS,

    polycarbonateandpolystyrene

    Otherpolymerstendtosolidiyinanorderedmanner:the

    moleculesarrangingintocrystallineorms(lamellae,spherulites)

    Becauseothelengthothemacromolecules,partsothem

    cannotbelongtocrystals(duetolackospaceandmobility)and

    createanamorphousinter-crystallinezoneThesepolymersarethereorepartiallycrystallineorsemi-crystalline;orsimplicity,in

    thistextwewillreertothemascrystalline(asopposed

    toamorphous)

    TypicalcrystallinematerialsareDelrin(acetalresins),Zytel(polyamideresins),RynitePETandCrastinPBT(thermoplasticpolyesterresins),polyethyleneandpolypropylene

    Table 2summarizessomeundamentaldierencesbetween

    amorphousandcrystallinepolymersThesepointsare

    describedinmoredetailintheollowingparagraphsThis

    inormationisessentialtounderstandwhytheoptimization

    othemoldingprocessissubstantiallydierentorthetwocategoriesopolymers

    Table 2Comparison of Amorphous and Crystalline Polymers

    Resin type Amorphous Crystalline

    PropertiesThermal parameters T

    gT

    g, T

    m

    Maximum T in use* Below Tg

    Below Tm

    Specifc volume vs. T Continuous Discontinuity at Tm

    Melt viscosity vs. T High dependence Low dependence

    ProcessingSolidication Cooling below T

    gCrystallization below T

    m

    Hold pressure Decreased during cooling Constant during

    crystallization

    Flow through gate Stops ater dynamic lling Continues until end o

    crystallization

    Deects i bad process Over-packing, stress-cracking, Voids, deormations,

    sink marks sink marks

    * For typical engineering applications

    Glass Transition and MeltingAmorphous Polymers

    Theoverallbehavioroamorphouspolymersislargely

    determinedinrelationtotheirglasstransitiontemperatureTg

    Belowthistemperature,themoleculesareessentiallyblocked

    inthesolidphaseThematerialisrigidandhasahighcreep

    resistance,butitalsotendstobebrittleandsensitivetoatigue

    Whenthetemperatureisincreasedabovetheglasstransition

    temperatureTg,themoleculeshavesomereedomtomove

    byrotationaroundchemicalbondsTherigiditydecreases

    graduallyandthematerialshowselastomericproperties,lending

    itseltoprocesseslikethermoorming,blowmoldingand(at

    temperatures120150C[248302F]aboveTg)injectionmolding

    AmorphouspolymersusedinengineeringapplicationshaveTg

    abovetheambienttemperature,andthemaximumtemperature

    orend-useshouldbebelowTg;orexamplepolystyrenehasT

    g=

    90100C(194212F),andisinjectionmoldedbetween210and

    250C(410and482F)

    Crystalline Polymers

    Incrystallinepolymers,theonsetomolecularmovementinthe

    materialalsodenestheglasstransitiontemperatureTg

    WhenthetemperatureisincreasedaboveTg,thecrystalline

    polymersmaintainrigidityappropriateorengineering

    applications(orexamplewithDelrinapartcaneasilywithstand

    temperatureswellabovetheTg)

    Uponurtherheatingthematerialreachesitsmelting

    temperatureTm,wherethecohesionothecrystallinedomains

    isdestroyedWithinaewdegrees,thereisaconsiderablechangeomechanicalpropertiesromsolidtoliquidbehavior

    AboveTm,thecrystallinepolymersbehaveashighviscosity

    liquids,andcangenerallybeprocessedbyinjectionmolding,

    typicallyattemperatures3060C(86140F)abovetheirmelting

    temperatureAsaconsequence,thetemperaturedomainorthe

    useocrystallinepolymersisnotlimitedbytheglasstransition

    temperatureTg,butbythemeltingtemperatureT

    mForDelrin,

    theeectotheTgisnegligibleandverydiculttomeasure,due

    toitsverylowamorphouscontentTherearetwotransitionsor

    Delrin,aweakonearound015C(3259F)andastrongerone

    at80C(112F)Thetransitionjustbelowroomtemperatureis

    soweakthereisminimaleectonpropertiesForDelrinacetalhomopolymrs,T

    m=178C(352F)andthetypicalprocessing

    rangeis210220C(410446F)

    PVT Diagrams

    ThePVTdiagramisacondensedpresentationothe

    interrelationsothreevariablesthataecttheprocessingoa

    polymer:Pressure,VolumeandTemperature

    Theeectothetemperature(T)orvolume(V)isillustratedin

    Figure 1oranamorphousandacrystallinepolymerWhenthe

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    9/48

    5

    temperatureothematerialisincreased,itsspecicvolume

    (theinverseodensity)alsoincreasesduetothermalexpansion

    Therateoincreasebecomeshigherattheglasstransition

    temperature,becausethemoleculeshavemorereedomto

    moveandtheyoccupymorespaceThischangeoslopeis

    observedwithbothamorphousandcrystallinepolymersAt

    highertemperature,themeltingocrystallinepolymersis

    markedbyasuddenincreaseothespecicvolume,whenthewell-orderedandrigidcrystallinedomainsbecomerandomly

    orientedandreetomoveThespecicvolumeisthereore

    asignatureothechangesostructureothepolymerasa

    unctionotemperature

    APVTdiagramissimplythepresentationotheseriesocurves

    obtainedwhenthemeasurementospecicvolumeversus

    temperatureisrepeatedatdierentpressuresThePVTdiagram

    oatypicalamorphouspolymer(polystyrene)isshownin

    Figure 2,andthePVTdiagramoDelrinisshowninFigure 3

    Themoldingprocesscanbeillustratedbyacycleotransitions

    onthePVTdiagramForsimplication,itwillbeassumedintheollowingdescriptionthatheatingtakesplaceatconstant

    pressure(alongisobarlines)andthatapplicationopressureis

    isothermal(verticallines)

    Foranamorphousmaterialthemoldingcycleisas

    ollows(seeFigure 2):

    Startingromroomtemperatureand1MPapressure(point

    A)thematerialisheatedinthebarrelThespecicvolume

    increasesaccordingtotheisobarat1MPatoreachthe

    moldingtemperature(pointB)

    Thematerialisinjectedintothecavityandthepressureis

    appliedThisprocessisroughlyisothermal(topointC),and

    thespecicvolumeisdecreasedtoavalueclosetothatat

    1MPaandTg

    Theresiniscooledinthemold,andatthesametimethe

    holdpressureisdecreased,toollowahorizontallineinthe

    PVTdiagramandreachpointDwherethepartcanbeejected

    whenitisat1MPapressureandatemperaturebelowTg

    Ideally,thereshouldbenofowomaterialthroughthegate

    duringthiscoolingphasetoproduceastress-reepart

    Foracrystallinematerial,thepictureisdierent(seeFigure 3):

    thematerialisheatedat1MPapressureromroom

    temperature(pointA)uptotheprocessingtemperature

    (pointB)Thisresultsinalargechangeovolume(almost25%orDelrin);

    theresinisinjectedandcompressedinthecavityThespecic

    volumeisdecreasedtopointC,whereitsvalueisstillmuch

    higherthanat1MPa/23C(73F);

    crystallizationtakesplaceinthemoldunderconstant

    holdpressureWhenthecrystalsbuildupromtheliquid

    phase,alargedierenceovolumeoccurs,whichmustbe

    compensatedbyinjectionoadditionalliquidresinthroughthe

    gate(otherwisevoidsarecreatedwithinthepart);

    Temperature, C

    Specificvolum

    e,

    cm3/g

    Tg

    Temperature, C

    Specificvolume,

    cm3/g

    Tm

    "Liquid" phase

    "Solid" phase

    Tg

    AMORPHOUS

    CRYSTALLINE

    Figure 1. Specic Volume as Function o Temperature orAmorphous And Crystalline Polymers

    Figure 2. Pressure-Volume-Temperature (PVT) Diagram orPolystyrene. Points A, B, C, and D Reer to DierentSteps o the Molding Process (see text).

    Temperature, C

    Spe

    cificvolume,

    cm3/g

    30050

    AD

    B 1

    4060

    160

    100C

    100 150 200 2500

    0.95

    1.00

    1.05

    1.10

    0.90

    20

    Polystyrene

    P (MPa)

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    10/48

    6

    attheendocrystallization(pointD),thepartissolidandit

    canbeejectedimmediately;themoldingshrinkageisthe

    dierencebetweenthespecicvolumesatthecrystallization

    temperature(pointD)andatroomtemperature(pointA)

    Thisdierenceinbehaviorhasimportantimplicationsor

    injectionmoldingDuringthesolidicationprocess(ater

    dynamiclling):

    theholdpressureisdecreasedwithtimeoramorphous

    polymers,whereasitismaintainedconstantorcrystalline

    polymers;

    thefowthroughthegateisstoppedoramorphouspolymers,

    whileitcontinuesuntiltheendothecrystallizationor

    crystallinepolymersThisimpliesthatorcrystallinematerials

    thedesignoparts,gates,runnersandsprueshouldollow

    specialrulesthatwillbedescribedintheMoldssection

    Heating-Cooling Behavior

    Foranysubstance,theenergyneededtoincreasethe

    temperatureo1gmaterialby1C(18F)isdenedasits

    specicheatThisquantityisgenerallydeterminedbyDierential

    ScanningCalorimetry,andtheresultsorDelrin,polyamide

    6-6andpolystyreneareshowninFigure 4Thetwocrystalline

    polymers,Delrinandpolyamide6-6,showalargepeakthatis

    duetotheadditionalheatrequiredtomeltthecrystallinephase

    (latentheatousion)Theamorphouspolymerdoesnotshow

    suchapeak,butexhibitsachangeoslopeatTg

    Thetotalenergytobringeachmaterialuptoitsmolding

    temperatureisgivenbytheareaunderthecurveFrom

    Figure 4itisclearthatthecrystallinepolymersneedmore

    energythantheamorphousonesThisexplainswhythe

    designoascreworacrystallinepolymerlikeDelrin

    shouldbedierent(andusuallymorecritical)thanoran

    amorphouspolymer

    Temperature, C

    Specificvolume,

    cm3/g

    25050

    A

    C

    D

    B

    100 150 2000

    0.70

    0.75

    0.80

    0.85

    0.90

    0.65

    Delrin 500 1

    40

    80

    120140

    180

    P (MPa)

    Figure 3. Pressure-Volume-Temperature (PVT) Diagram ForDelrin 500. Points A, B, C, and D Reer to DierentSteps o the Molding Process (see text).

    Figure 4. Specic Heat versus Temperature or Delrin 500,PA66 and Polystyrene

    Specific

    heat,

    kJ

    kg

    1K

    1

    400300

    PS

    PA66

    2001000

    0.4

    0.8

    1.2

    1.6

    2.0

    2.4

    2.8

    0

    Temperature, C

    Delrin 500

    Viscosity and Rheological Behavior

    Meltviscositydeterminestoalargeextenttheabilitytollthe

    moldcavityHighviscositymeansdicultfowthroughthin

    sectionsandhigherinjectionllpressure

    Temperatureandshearratearecrucialparameterswhen

    consideringtheviscosityomoltenpolymers,andtheyshould

    alwaysbespeciedtogetherwithavalueormeltviscosity

    ForpolymersconsistingolinearmoleculeslikeDelrin,

    theviscosityisalsoindirectrelationtotheaverage

    molecularweight

    Inuence o Temperature

    Thegeneralrulethatliquidsbecomelessviscouswhen

    increasingtemperatureisalsotrueormoltenthermoplastics

    Howevercrystallineandamorphouspolymersbehavedierently

    asshowninFigure 5ThecurvesorDelrinandpolystyrene

    werebothobtainedbyreducinggraduallythetemperatureothe

    materialsrom230to100C(446to212F)Twodierencesare

    worthmentioningFirst,attemperaturesabove180C(356F),

    thedependenceoviscosityontemperatureismorepronounced

    ortheamorphouspolystyrenethanorDelrin;thereore,

    increasingthemelttemperatureoDelrindoesnotgreatly

    improveitsabilitytofowthroughathinsectionSecond,below

    170C(338F)theviscosityoDelrinrisessharplybecausethe

    materialcrystallizeswithinaewdegreesothattemperature

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    11/48

    7

    Figure 5. Viscosity/Temperature Curves for Delrin 500Pand or Polystyrene at a Constant Shear Rate o1000 s1 (Temperature Reduced rom 230 to 100C[446 to 212F])

    Temperature, C

    Apparentvisco

    sity,

    Pa.s

    180 220 240200120 140 160100

    600

    400

    200

    0

    Delrin 500

    Polystyrene

    Thermoforming

    Extrusion

    Injection molding

    Y

    V (Y)

    Figure 6. Approximate Shape o the Velocity DistributionBetween Two Parallel Plates. The Shear Rate is theDerivative dv(y)/dy.

    Figure 7. Viscosity versus Shear Rate o Delrin 500P atThree Temperatures

    Figure 8. Viscosity versus Shear Rate or Various Grades oDelrin at a Constant Temperature o 215C (419F)

    Inuence o Shear Rate

    Theshearratecharacterizestherateodeormationothe

    materialandisdenedasthederivativeothevelocityoverthe

    directionperpendiculartofow(seeFigure 6);inotherwords,the

    shearrateisproportionaltothevariationospeedwithinthepart

    thicknessSoitdependsonthevelocityothefowandonthe

    geometryothefowchannels

    Shear rate, s-1

    Viscosity,

    Pas-1

    200C

    215C

    230C

    102 103 104

    100

    1000

    10

    Table 3Viscosity, Flow and Molecular Weight (Mw)

    o the Delrin Grades

    Spiral fow lengthMFR MFR (215C/100 MPa/2 mm

    (190C/ (190C/ Ease Mw, 90C moldGrade 1.06 kg) 2.16 kg) o fow toughness temperature

    100 1 2.3 lowest highest 170 mm

    300 3.5 7

    500 7 14 295 mm

    900 11 24 350 mm

    ForDelrin,themeltviscositydecreasesconsiderablywhenthe

    shearrateincreases,asshowninFigure 7Thiseectismore

    importantthanthedierencesresultingromvariationsothe

    melttemperaturewithintheprocessingwindoworinjection

    molding

    Inuence o Molecular Weight

    DelrinisavailableinourgradesomolecularweightTheyare

    codedaccordingtotheirabilitytofow,asmeasuredbyMFRor

    meltfowrate(seeTable 3)Highvaluesmeaneasyfowand

    abilitytollthinparts,whereaslowvaluesmeanhighviscosity,

    highmolecularweightandhightoughness(impactresistance,

    elongationatbreak)

    Shear rate, s-1

    Viscosity

    ,Pas-1

    100 1,000 100,000

    100

    1,000

    10

    900500

    100

    MFRisameasurementperormedatlowshearrate,butthe

    relativedierencesbetweenthegradesaremaintainedathigh

    shearrates,asshowninFigure 8

    Amoredirectcomparisonotheabilitytollcanbeobtained

    usinganopen-endedsnake-fowmoldResultsorthedierent

    gradesoDelrinarepresentedintheMoldssection

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    12/48

    8

    Hold-up time, min

    Meltte

    mperature,

    C

    60 80 10040200

    200210

    220

    230

    240

    250

    190

    Minimum recommended

    melt temperature

    Recommended operatingzone

    Figure 9. Eect o Temperature on Hold-up Timeo Delrin 500

    Withascrewstrokeo1diameter(asmallshot)andacycletime

    o1min(averylongone),theaverageHUTisequalto8min

    AccordingtothedegradationcurveshowninFigure 9,Delrin

    shouldbestableenoughorinjection-moldingwiththisHUTat

    amelttemperatureo240C(464F)Somecustomershave

    experiencedmoldingDelrinsuccessullyatthattemperature

    Attherecommendedmelttemperatureo215C(419F),the

    maximumHUTisover30minandDelrin(standardgrades)is

    thermallystableevenundertheseextremeconditions

    Thereare3mainpotentialcausesodegradation:

    Material trapped in Hold-up spotsIntheinjectionunit,

    trappedmoltenmaterialwillstayorverylongtimesinany

    deadspotsandwillstarttodegradeSoalltheinjectionunit

    (screw,backfowvalve,adaptor,nozzleandhotrunners)

    shouldbedesignedtoavoidHold-upspots(seeollowing

    recommendeddesign)

    Material sticking to hot steelDuetothehighviscosityo

    polymers,thespeednexttothesteelotheinjectionunit

    (screw,backfowvalve,adaptor,nozzleandhotrunner)isalmostzeroandtheresidencetimeisalmostinnite(as

    evidencedbyhowlongittakestochangecolorsinaninjection

    unit)Whereasinsidethebarrelthemoltenpolymeriscleaned

    bythescrewandthevalve,insideallotherareasthematerial

    willsticktothewallsTowithstandaverylongresidencetime

    thesteelincontactshouldbecontrolledatatemperature

    lowerthan190C(374F)(seeFigure 9)

    Chemical degradationContamination(eg,PVC,fame

    retardantresins,acidgeneratingresins),incompatible

    coloringsystems(acidorbasicpigments),contactwith

    copper(pure,alloys,grease)willacceleratethethermal

    degradationomoltenDelrinintheinjectionunitNotethat

    moldcomponentsincopperorcopperalloys(suchascopper-

    beryllium)donotcauseanydegradationandhavebeenused

    oryearswithoutproblems

    Injection Molding Unit

    Delrinacetalresinsaremoldedthroughouttheworldina

    widevarietyotypesanddesignsoinjectionandextrusion

    equipment

    Therstpurposeotheinjectionunitormoldingacrystalline

    materialistodelivertothemoldthenecessaryamountoa

    homogeneousmelt(withnounmeltandnodegradedmaterial)

    Therulesoconstructionotheinjectionunitarethendependent

    onthemoldingmaterialrequirementsintermothermal

    behaviorandheatneededTherstpointtotakeintoaccountor

    acrystallinematerialisthethermalstabilityatmelttemperature,

    toavoiddegradationThen,screw,nozzle,backfowvalve,

    adaptor,shouldbedesignedtoprovideecientmeltingo

    crystallinematerialanddeliveryomoltenpolymertothemold

    Tworoughmethodstoevaluatethepresenceounmeltand

    odegradedmaterialwillbepresentedinEvaluationoMelt

    Quality(seepage11)

    Thermal Stability During Processing

    Aspresentedinthepreviouschapter,onedierencebetween

    amorphousandcrystallinematerialisthemeltingbehavior

    TheamorphouspolymerstartssoteningjustaterTgand

    presentsacontinuouschangeinviscosityThisgivesavery

    largetemperaturerangetooperate(butalargevariationo

    viscositywithtemperature)Incontrast,thecrystallinepolymer

    stayssoliduptothemeltingpointandsuddenlymeltstothe

    liquidphaseathightemperatureThislimitstheprocessing

    rangeotemperaturebetweenunmeltandthermaldegradation

    (specicallyorDelrin

    190250C[374482F])

    Thesecondactoristhetimethematerialstaysatthat

    temperatureForallpolymers,themoleculescanwithstanda

    certaintimeatacertaintemperaturebeoredegradationcan

    startObviouslythisacceptabletimelimitbecomesshorter

    whenthetemperatureishigherThetypicalbehavioroDelrin

    ispresentedinFigure 9DegradationoDelrinwillresultin

    generationogaseswhichcausebubblesinthemelt,splayson

    parts,molddeposit,yellowandbrownmarksontheparts

    Theaverageresidencetime(orHold-UpTime,HUT)intheinjection

    unitislinkedtotheamountopolymerinthecylinder,theshot

    weightandthecycletimeandcanbecalculatedwiththeollowingequation:

    AverageHUT= weightoresinincylindercycletime

    shotweight

    Aquickapproximationcanbedoneby:

    AverageHUT=maximumscrewstroke2cycletime

    currentscrewstroke*

    *Eectivescrewstroke=distancethescrewtravelsduringrotationonly

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    13/48

    9

    Screw Design

    Screwdesignisakeyparameterorproductivity,becauseor

    crystallinematerialsthescrewrotationtimeisaninherentparto

    thecycletime

    Asmentionedabove,itshouldtakeinconsiderationthespecic

    meltingbehaviorothecrystallinematerial,ie,soliduptothe

    meltingpoint,highdemandoheatduringmeltingandlow

    viscosityothemoltenmaterial

    Althoughgeneral-purposescrewsarewidelyusedormolding

    Delrin,optimumproductivitywillrequireaspecicdesign

    Exceedingtheoutputcapabilityoaninadequatelydesigned

    screwwillcausewidetemperaturevariationsandunmelted

    particles(sometimesunmeltanddegradedmaterialhavebeen

    observedatthesametime)Theresultislossotoughness,

    variabilityinshrinkageanddimensions,warping,surace

    deects,pluggedgates(leadingtoshortshots)orothermolding

    problems

    Duetothespecicsothemeltingprocessoacrystalline

    polymer,ascrewdesignedorDelrinwillhaveshallowfight

    depthsinthemeteringsectionandaslightlyhighercompression

    thanageneral-purposescrewSpecicsuggestionsaregivenor

    variousscrewdiametersandcompositionoDelrinacetalresin

    inTable 4Compressionratioistheratioovolumeooneturn

    intheeedsectiontothatinthemeteringsection(canbeap-

    proximatedtotheratioothedepthothetwozones)

    Thelengthothescrewwillalsoaectthemeltquality(an

    insulatingmaterialneedssometimetogetthethermalenergy

    transerredevenitheshearcontributestotheheatingprocess)

    Thepreerredlengthisabout20timesthescrewdiameteror

    20turnswhenthepitchanddiameterareequalThescrew

    shouldbedividedasollows:3040%(68turns)eedsection,

    3545%(79turns)transitionand25%(5turns)metering

    Table 4Screw Design or Delrin Acetal Resins

    Medium and Low Viscosity Grades: Delrin

    500P, 900P, 500T High Viscosity Grades of Delrin

    : Delrin

    100P, 100STNominal diameter (D) Depth o eed section (h

    1) Depth o metering section (h

    2) Depth o eed section (h

    1) Depth o metering section (h

    2)

    mm mm mm mm mm

    30 5.4 2.0 5.2 2.645 6.8 2.4 6.5 2.860 8.1 2.8 7.5 3.090 10.8 3.5 8.7 3.6

    120 13.5 4.2

    (in) (in) (in) (in) (in)

    (1-12) (0.240) (0.087) (0.230) (0.105)(2) (0.290) (0.100) (0.270) (0.115)

    (2-12) (0.330) (0.110) (0.300) (0.120)(3-12) (0.420) (0.140) (0.340) (0.140)(4-12) (0.510) (0.160)

    Dh1

    FEED SECTION

    Pitch h2

    METERINGSECTION

    TRANSITION

    (20/1 Length/Diameter Ratio)

    sectionScrewswith20turnsarecommonlydividedinto7turns

    eed,8turnstransitionand5turnsmeteringInscrewslessthan

    16diameterslong,itmaybenecessarytoreducethepitchtoget

    upto20turnsDenitively,theeedsectionshouldneverbeless

    than6turns

    TherelativelyhighcompressionratioscrewssuggestedorDelrin

    aredesignedtoincreasetheheatinputbymechanicalworking

    otheresinBecausetheenergyorthisincreasecomesrom

    thescrewmotor,additionalhorsepowermustbeavailableian

    increaseinmeltingcapabilityistoberealized

    Screw Size

    Theidealscrewsizeisdeterminedbythevolumeothecurrent

    shotOptimumproductivitywillbeachievedwhentheshotsize

    requiresascrewtravelduringplasticizationequaltoorlower

    than50%othecapacityotheinjectionunitOtherwise,screw

    rotationspeedwillhavetobedecreasedattheendothe

    traveltoguaranteeanhomogeneousmelt,leadingtoalossin

    productivityPractically,optimumproductivityisachievedwitha

    screwtravelobetween1and2diametersothescrew

    Thermalsettingsotheinjectionunitwillbedependentonthe

    residencetime(HUT)andhencedependentonthecycletime

    RuleswillbepresentedunderMoldingProcess

    Screw Design or the Use o Color Concentrate

    Afowanalysisshowsthatthemajorpartothefowinthe

    screwislaminar,thendividedinthebackfowvalve(duetothe

    changesinfowdirection),andstilllaminarintheadaptor,nozzle,

    sprue,etcTogetoptimummeltquality,todispersepigments

    andcolorconcentrates,itisstronglyrecommendedtoadda

    mixingheadThepurposeoaproperlydesignedmixingheadis

    nottomixmaterialbyturbulence(turbulentfowisimpossible

    withhighlyviscousmoltenpolymer),butbyorcedchangesin

    fowdirection

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    14/48

    10

    ELCee Screw for Optimum Productivity

    Anothersolutiontoachieveoptimumproductivitywhenmolding

    highlycrystallineresinssuchasDelrin,istouseaspecial

    screwdesignedbyDuPontcalledtheELCeescrew(patent

    appliedor)TheELCeescrewisdesignedtocapitalizeonthe

    rheologicalcharacteristicsoresinswithbettercontroloshear

    onthemelt,makingthescrewmoreecientThisallowsthe

    moldertorunthemoldingmachinesatastercyclesandproduce

    partsohigherquality(ConsultyourlocalDuPontrepresentative

    ormoreinormation)

    Cylinder Temperature Control

    Thisisdeterminedbythemachinemanuacturer,buttwo

    commentsshouldbemade

    Thetemperaturecontrolshouldprovideatleastthree

    independentzones,withthermocouplesplacednear

    thecenteroeachzoneBurn-outooneormoreheater

    bandswithinazonemaynotbereadilyapparentrom

    thetemperaturecontrollers,sosomemoldershaveused

    ammetersineachzonetodetectheaterbandmalunctions

    UsuallyorDelrinthereisnoneedtocooltheeedthroat,

    butincasesuchaneedexists,thewaterfowshouldbekept

    toaminimumOvercoolingtheeedthroathasbeenobserved

    asamajorreasonorcontaminationbyblackspecksThese

    aregeneratedinthebarrel,between therstandsecond

    heatingzones,withtheollowingmechanism(seeFigure 10)

    ThethermocoupleTC1isinfuencedbythelowtemperature

    duetoexcessivecooling,andthesystemwillrespondby

    switchingONtheheatingbandsHB1andHB2Thiscausesno

    problemwithHB1,butresultsinoverheatinganddegradation

    intheareaunderHB2Toreducetheriskoormationoblack

    specks,theollowingrecommendationsshouldbeobserved:

    a) theeedthroatcoolingshouldbelimitedtoaminimum

    temperatureo8090C(176194F);

    b) theheaterbandHB2shouldbecontrolledbyTC2,orTC1

    shouldbeplacedinthemiddleoHB2,orHB2shouldhave

    halthepowerdensityoHB1

    HB1 HB2

    TC1

    Cooling channels Contamination

    source

    TC2 TC3 TC4

    HB3 HB4 HB5 HB6 HB7

    HB8

    Figure 10. The Risk o Black Specks ContaminationThat Could Arise From the Presence o a CoolingSystem o the Feed Throat

    Figure 11. Design o Adaptor and Non-Return Valve

    Cylinder Adaptor

    TheadaptorshowninFigure 11isdesignedtoavoidholdup

    areasandfowrestrictions,thetwomaincausesodegradation

    andproblemslinkedtothisareaNotethattheconceptisthe

    sameorscrewedadaptorsasrepresentedinFigure 11(used

    orsmallscrews40mm)andorboltedadaptors(usedor

    largerscrews)Theadaptorshasshortcylindricalsections(Aand

    B)whereitjoinsboththenozzleandthecylindertomaintain

    accuratematchingothesediameters,eveniitbecomes

    necessarytoreacethematingsuracesThematingsuraces(C)

    shouldbenarrowenoughtodevelopagoodsealwhenthenozzle

    oradaptoristightenedandyetwideenoughtoavoiddeormation

    Inadditiontoitsmechanicalunctionoreducingthediameter,

    theadaptoractstoisolatethenozzlethermallyromtheronto

    thecylinderorbettercontrolonozzletemperatureAseparate

    adaptor,madeosotersteelthantheoneusedorthecylinder,

    iseasierandlessexpensivetorepairandchangethanacylinder

    Italsoprotectsthecylinderromdamageduetorequent

    changingothenozzleWiththeboltedadaptor,specialcare

    shouldbetakenduringassemblytoensureparallelism(dont

    overtightenscrewsromonesideonly)

    Nozzle

    Adaptor

    A

    D H

    E

    B

    G FC

    Non-Return Valve (Back Flow ValveBFV)

    Thenon-returnvalveorcheckringshowninFigure 11prevents

    meltromfowingbackwardduringinjectionThisunitis

    requentlynotproperlydesignedtoeliminateholduporesin

    andfowrestrictionsMalunctioningthatallowsresinbackfowisalsoacommonexperienceandiscausedbypoordesign

    ormaintenanceAleakingnon-returnvalvewilladdtoscrew

    retractiontime,whichcanincreasecycle,anditwillalsocause

    poorcontrolopackinganddimensionaltolerances

    Thenon-returnvalvemustmeettheollowingrequirements:

    Noholdupspots

    Nofowrestrictions

    Goodseal

    Controlowear

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    15/48

    11

    Figure 12. Reverse Taper Nozzle

    Heater Band

    Thermocouple well

    A

    B

    Thermocouple wellHeater BandA B

    Figure 13. Straight Bore Nozzle, Only or Machines WithoutScrew Decompression

    Theserequirementsareprovidedorinthenon-returnvalve

    showninFigure 11

    Theslotsorfutes(D)inthescrewtiparegenerously

    proportioned,andthespace(E)betweenthecheckringandtip

    issucientorresinfow

    Theseatingothexedringiscylindricalwhereitjoinsboththe

    endothescrew(F)andthescrewtip(G)topermitaccurate

    matchingothesediametersandavoidholdup

    Thescrewtipthreadhasacylindricalsection(H)aheadothe

    threadsthattscloselyinamatchingcounterboreorsupport

    andalignmentothescrewtipandseatring

    Thescrewtipandcheckringseatshouldbeharder(about

    Rc52)thanthefoatingring(Rc44),becauseitislessexpensive

    toreplacethefoatingringwhenwearoccurs

    CorrosionresistantsteelissuggestedorthetipGoodmatching

    ocylindricaldiametersisessentialtoavoidholdupspots

    NozzleAswithothersemi-crystallinepolymers,Delrinmaydroolrom

    thenozzlebetweenshotsithenozzleistoohot,oritmayreeze

    itoomuchheatislosttothespruebushing

    ThenozzledesignshowninFigure 12cansolvetheseproblems

    Theollowingshouldbeconsidered:

    1 Theheaterband(A)shouldextendasclosetothenozzletip

    aspossibleandcoverasmuchotheexposedsuraceas

    practicalThiscounteractsanyheatloss,especiallyheatloss

    tothespruebushing

    2 ThethermocouplelocationisimportantAnappropriate

    location(B)isshowninthesamepicture

    3 Adequatetemperatureuniormityisrequiredsothatlocal

    overheatingorprematurereezingisavoided

    4 Topreventpolymerdegradationthesteeltemperatureshould

    notexceed190C(374F)

    5 Thenozzleheatershouldhaveitsownindependent

    temperaturecontroller

    Screwdecompressionorsuckbackisrequentlyusedtomake

    controlodrooleasierwiththeseopennozzlesThiseatureis

    availableinmostmachines

    Whennotavailable,adesignsuchastheoneillustratedin

    Figure 13shouldbeused

    Althoughshutonozzleshaveoccasionallybeenused

    successullywithDelrin,theytendtocauseholduporesinthat

    resultsinbrownstreaksorgassing,especiallyatersomewear

    hasoccurredinthemovingpartsothenozzleThesenozzlesare

    notgenerallyrecommendedorDelrinonsaetygroundsalone

    Note:Withalongnozzle,thethermocouplewellBshouldbe

    positionedinthemiddleothenozzleandnotatthebackothe

    nozzle

    Evaluation of Melt Quality

    Belowarepresentedtwoquickandeasyteststoevaluatethe

    meltqualitydeliveredbytheinjectionunitAlthoughtheresultis

    linkedwiththetemperaturesettingotheinjectionunit,itisalso

    highlydependentonthedesignotheinjectionunit

    Foaming Test

    Theoamingtestisrecommendedtodeterminethequalityo

    theresinatermeltingintheinjectionunit,ie,thequalityothe

    resinANDthequalityotheinjectionunit

    Procedure:

    1 Whenthemachineisrunningincycle,stop

    themachineaterscrewretractionor3minorpigmentedDelrin(10minornaturalmaterial)

    2 Purgeatlowspeed(toavoidhotsplashes)intoacupand

    observethemoltenmaterialor1or2minThenputthe

    moltenmaterialinabucketowater

    3 Thenrechargethescrewandwait2moreminutes

    (10moreminutesornaturalmaterial)

    4 Repeatoperation2

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    16/48

    12

    Anunstablemeltwillgrow(oam)duringtheobservationand

    foatinthebucketAstablemeltwillstayshinywithatendency

    toshrinkduringtheobservation,andwillsinkinthebucket

    Foamingresinwillquicklycausemolddepositandwillaccelerate

    screwdeposit,whichmayleadtoblackspeckcontamination

    Thistechniqueisuseultoevaluatenon-DuPontcolorsystems

    (colormasterbatches,liquidcoloring)

    Theoamingtestcanalsobeusedtodetectinadequatequality

    otheinjectionunit(eg,problemsothroatcoolingand

    consequentoverheating,excessivenozzletemperature,hold-up

    spots,etc)

    Unmelt Test

    Theunmelttestisrecommendedtoevaluatemelthomogeneity:

    Whenthepressisrunningoncycle,stopattheendoacycle

    andpurgeoneshot;

    chargethescrewimmediatelywiththeshotvolumeusedand

    purgeagain;

    repeattheoperationuntildetectionolumps/irregularitiesin

    thepurgecomingoutothenozzle

    Isuchlumps/irregularitiesappearaterlessthan3purges,the

    riskounmeltisveryhighandshouldbedealtwithbyincreasing

    cylindertemperature,byloweringscrewRPMandbyincreasing

    backpressureIsuchchangeslengthenthecycletimetoo

    much,amoreappropriatescrewdesignshouldbeused(see

    Table 4)Ilumps/irregularitiesappearater3purgesbutbeore

    6,thesituationisacceptable,butthereisnotmuchsaety

    marginItheyappearater6purges,thereisaverylowriskounmelt

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    17/48

    13

    Figure 14. Exploded View o Mold

    LocatingRing

    SprueBushing

    FrontClampingPlate

    FrontCavityPlate(APlate)

    LeaderPins

    LeaderPinBushings

    RearCavityPlate(BPlate)

    SupportPlate

    Cavity

    SpacerBlock

    EjectorRetainerPlate

    ReturnPin

    EjectorPlate

    KnockOutPins

    RearClampingPlate

    SpruePuller

    SupportingPuller

    StopPin

    Ability to Fill

    Meltviscositylargelygovernstheabilityoaresintollamold

    DelrinacetalresinsrangeinmeltviscosityromDelrin900P,

    thelowestinviscosityormostfuid,toDelrin100P,thehighest

    TheviscosityoDelrindoesnotdecreaserapidlyasmelt

    temperatureincreases,incontrasttoamorphousthermoplastic

    resinsIncreasingmelttemperaturewillnotgreatlyimprovethe

    abilityoDelrintollathinsection

    Inadditiontothepropertiesotheresin,themoldingconditions

    andcavitythicknessdeterminethedistanceofowFigure 15

    showsthemaximumfowdistancesthatcanbeexpectedat

    twocavitythicknessesorDelrinacetalresinsasaunctiono

    injectionllpressureThesecomparisonsweremadeinanopen-

    endedsnakefowmoldwithnogaterestrictionObstructionsin

    thefowpath,suchassuddenchangesinfowdirectionorcore

    pins,cansignicantlyreducethefowdistance

    Molds

    Delrinacetalresinshavebeenusedinmanytypes

    omolds,andmoldershaveawealthoknowledgeconcerning

    molddesignorDelrinMoldsorDelrinarebasicallythesame

    asmoldsorotherthermoplasticsThepartsoatypicalmoldare

    identiedinFigure 14

    Thissectionwillocusontheelementsomolddesignthat

    deservespecialconsiderationorprocessingDelrinandcanlead

    tohigherproductivityandlowercostorthemolderThesetopics

    are:

    Abilitytoll Undercuts

    Gates Runnerlessmolds

    Runners Moldmaintenance

    Vents

    Moldshrinkageandotheraspectsomoldsizingarediscussedin

    DimensionalConsiderations(seepage29)

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    18/48

    14

    Gates

    Thegatesoamoldplayamajorroleinthesuccessorailure

    oamoldingjobThelocation,design,andsizeoagatearekey

    actorstoallowoptimumpackingObviously,thedesignwillbe

    dierentthantheoneusedormoldingamorphousmaterialIn

    thatcasethefowshouldstopassoonaspossibleaterllingthe

    cavitytoavoidoverpacking(fowin)andsinkmarksatgate(fow

    back)Withcrystallinematerial,thelocation,designandsizeo

    thegateshouldbesuchthatitwillallowacontinuousfowduring

    ALLthepackingphase(Holdpressuretimeseepage27)

    Gate Location

    Asakeyrule,whenapartisnotuniorminwallthickness,the

    gatemustbelocatedinthethickestsectionTherespecto

    thisbasicprincipleplaysanessentialroleinobtainingoptimum

    packingandconsequentlythebestmechanicalproperties,dimensionalstabilityandsuraceaspectOcourseevery

    bottleneck(reducedsectionalongthefowothemelt)shouldbe

    avoidedbetweenthegateandallareasothepart

    Anareawhereimpactorbendingwilloccurshouldnotbe

    chosenasthegatelocation,becausethegateareamayhave

    residualstressandbeweakenedsinceitworksasanotch

    Similarly,thegateshouldnotcauseaweldlinetooccurina

    criticalarea

    Thegateshouldbepositionedsothattheairwillbeswept

    towardapartinglineorejectorpinwhereconventionalvents

    canbelocatedForexample,aclosed-endtubesuchasapen

    capshouldbegatedatthecenterotheclosedend,soairwill

    beventedatthepartinglineAnedgegatewillcauseairtrapping

    attheoppositesideneartheclosedendWhenweldlinesareun

    avoidable,orexamplearoundcores,anescapeorgasesmust

    beprovidedtoavoidseriousweaknessandvisualfawsSpecicrecommendationsorventingaregivenlaterinthissection

    AnotherconsiderationinchoosingagatelocationorDelrin

    issuraceappearanceGatesmearorblush,aswellasjetting,

    areminimizedbylocatingthegatesothatthemeltenteringthe

    cavityimpingesagainstawallorcorepin

    Acentralgatelocationisotennecessarytocontrolroundnesso

    gearsandothercriticalcircularpartsMultiplegates,usuallytwo

    toour,arecommonlyusedwhenthereisacentralholetoavoid

    adicult-to-removediaphragmgate

    Gate Design

    Asmentionedabove,orcrystallinematerialslikeDelrinthe

    thicknessothegateoritsdiameter(orapin-pointgateor

    tunnelgate)determinesthereeze-otime,andthereore

    alsodetermineswhetheritispossibletopackthepart(to

    compensatethevolumereductionduetocrystallization)and

    maintainthepressureduringsolidicationThegateshould

    remainopenuntilthepartdensityismaximumoraspecic

    materialThethickness(ordiameter)othegateshouldamount

    to5060%othewallthicknessatthegateThewidthothe

    gateshouldalwaysbeequalorgreaterthanthegatethickness

    Thelengthothegateshouldbeasshortaspossibleandnever

    exceed08mm(003in)ThegateareaothepartshouldnotbesubjectedtobendingstressesduringactualserviceImpact

    stressesareparticularlyliabletocauseailureinthegatearea

    ThemostcommontypesogatesaresummarizedinFigure 16

    DIAPHRAGMGATE:Circulargateusedtollasingle

    symmetricalcavityTheadvantagesareareductionoweld

    lineormationandimprovementollingratesHoweverthe

    parthastobemachinedtoremovethegate

    DIRECTGATE:Thesprueeedsdirectlyintothemold

    cavitywithoutrunnersThisdesignmayotenleadtosurace

    deectscomingromthenozzle(eg,coldslug,coldskin,

    entrappedair)

    EDGEGATE:UsualtypeogatewithtwoplatemoldsItisno

    seldegating

    FANGATE:ThisgateisusedtoenlargethefowrontUsually

    itleadstoareductionostressconcentrationsinthegate

    areaLesswarpageopartscanusuallybeexpectedbythe

    useothisgatetype

    PINPOINTGATE:Thisgateisusedwiththreeplatemolds

    Itisseldegating

    Injection pressure, MPa

    Flowd

    istance,mm

    Flowd

    istance,

    in

    12080 100

    Injection pressure, psi

    17.40011.600 15.000

    500 20

    15

    10

    5

    600

    400

    300

    200

    100

    0

    100

    100ST

    100

    500100ST

    900

    500

    900

    2.5 mm (0.100 in)

    1 mm (0.04 in)

    Figure 15. Maximum Flow Distance o Delrin Acetal Resins

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    19/48

    15

    Diaphragm gate

    Submarine gate(bucket type)

    Direct gate

    Edge gate

    Fan gate

    Fan gate

    Pin point gate

    Ring gate

    Figure 16. Schematic View o the Most CommonTypes o Gates

    Figure 17. Details o a Typical Edge Gate Suitable or Delrin

    Runner

    Side View

    z = Max. 0.8 mm

    T = Part ThicknessT

    x = 0.5T

    T+1.0

    D1

    30

    D

    D1

    d

    T

    Figure 18. Details o a Submarine Gate (Tunnel Gate)Adequate or Delrin (let side). The One on theRight is Not Adequate or Crystalline Polymersand Would Give Problems with Delrin.

    RINGGATE:SeeDIAPHRAGMGATE

    SPRUEGATE:SeeDIRECTGATE

    SUBMARINEGATE:Atypeoedgegatewheretheopening

    romtherunnerintothemoldisnotlocatedonthemold

    partinglineItisusedtoseparatethegateromthepartwith

    atwoplatemold(sel-degating)

    TUNNELGATE:SeeSUBMARINEGATE

    DetailsoatypicaledgegatesuitableorDelrinareshownin

    Figure 17

    Figure 18showsdetailsoasubmarinegateadequate

    orDelrin(let),comparedtoasimilartypeogatenot

    recommendedorcrystallinematerials(right)

    Design criteria:

    alwaysgateinthickestareaothepart;

    diameterothegatedmustbeatleasthalthepart

    thicknessThelengthmustbeshorterthan08mm(003in)

    topreventprematuregatereezingduringpacking;

    theinscribeddiameterDothetunnelnexttothegatemustbeatleast12thepartthicknessT

    ThegateshownontherightsideoFigure 18isnot

    recommendedorcrystallinematerialslikeDelrin,because

    suchconicalgatesectionscrystallizebeoretheendocomplete

    partpackoutThisresultsinlowmechanicalperormanceand

    uncontrolledshrinkage

    Figure 19showsdetailsoathreeplategatedesignadequate

    orDelrin(let),comparedtoasimilartypeogatenot

    recommendedorcrystallinematerialsThedesigncriteria

    illustratedabovearealsoapplicabletothiskindogate

    Note:Restrictionsaroundthespruepullerwillleadtoincomplete

    partpackoutSo,thediameterD1 inFigure 19shouldbeatleast

    equaltodiameterD

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    20/48

    16

    Runner SystemGuidelines

    Keyguidelinestoollowwhendesigningarunner

    systeminclude:

    a runnersshouldstayopenuntilallcavitiesareproperlylled

    andpacked;

    b runnersshouldbelargeenoughoradequatefow,minimum

    pressurelossandnooverheating;

    c runnersizeandlengthshouldbekepttotheminimum

    consistentwithpreviousguidelines

    Eachotheseactorscanaectqualityandcostomolded

    partsFactor(a)shouldberegardedasthemostcritical

    Thecrosssectionotherunnersismostotentrapezoidal,which

    representsanoptimumpracticalcompromisewithrespectto

    theullroundsectionTheeectivecrosssectionotherunner

    isinthiscasethediameterotheullcirclethatcanbeinscribed

    init

    ForpartsoDelrintohavethebestphysicalproperties,

    therunnersnexttothegatemusthaveatleastaninscribed

    diameterthepartthicknessT+1mm

    Whenthemoldingsareverythin,however,thisrunnercannotbelessthanabout15mm(006in)inthicknessTherunner

    thicknessisusuallyincreasedateachotherstoneortwo

    turnsromthecavity,asshownintheexampleoFigure 20

    Figure 21. Direct Gating (Let) and Indirect Gating to Breakthe Flow (Right), in a One-Cavity Mold

    Figure 22. Balanced (Let) and Unbalanced (Right) RunnerSystems in a 16-Cavity Mold

    Single Cavity Mold

    Thesimplestrunnercongurationorasinglecavitymoldcould

    bedirectgating(seeFigure 21)Inthiscase,however,itwould

    benecessarytohaveacoldslugcatcherdirectlyonthe

    part,withassociatedsuraceproblemsandlowermechanical

    propertiesinthatareaThepreerredsolutionisthentobreak

    thefowasindicatedinFigure 21

    Runner Layout

    Aperectlybalancedlayout(withequalfowdistanceromthe

    spruetoeachcavity)isbestachievedithenumberocavities

    isequaltoapowero2(2,4,8,16,32,64,128,etc)Seean

    exampleoa16-cavitymoldinFigure 22withbalanced(let)and

    unbalancedrunnersystemsAperectlybalancedlayoutmaybe

    impracticalandexpensive

    D

    d

    2

    D1

    T*

    Figure 19. Details o a Three Plate Gate Design Adequate orDelrin (Let Side). The One on the Right is NotAdequate or Crystalline Polymers and WouldGive Problems with Delrin. *Gate Length Shouldbe

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    21/48

    17

    Figure 23. Examples o Unbalanced 16-Cavity Mold. TheSolution on the Right is Provided with OverfowWells to Trap Cold Slugs.

    Figure 24. Example o Spiral Eect in a 32-Cavity Mold.Cavities 11, 14, 19, 22 Will Be Filled First and MayShow Splays and Mold Deposits.

    1

    16 14

    1917

    32

    24

    9

    22

    11

    25

    8

    Figure 25. Sprue and Nozzle Design Oten Used withDelrin. The Dimensions are Linked with theDimensions o the Part and o the Runners.

    Figure 26. Example o a Design o a Nozzle Without SprueUsed with 2 Plate Molds. Remember that orDelrin the Nozzle Temperature Should NotExceed 190C (374F).

    D N1

    D N2

    1

    D N1

    D N2

    5 mm

    Whenanunbalancedrunnersystemisselected,thelayout

    showninFigure 23(let)couldpresentmorerisksoquality

    problemsThefowtendstostopateachotheearlygates

    duetotherestrictionandthematerialstartstocrystallize

    Then,astherunnercontinuestobelled,thepressurerises

    andthethecoldslugswhichstartedtobebuiltup,arepushed

    intothecavity

    Toreducesuchrisk,thesolutionshowninFigure 23(right)isrecommendedInsuchconguration,thecoldslugstendtobe

    trappedintoeachoverfowwell

    Incaseomulti-cavitymolds(16cavities),theso-calledspiral

    eectcouldtakeplaceintheinternalcavitiesothelayout

    (seeorinstanceFigure 24),duetoover-heatingothemeltin

    runners,causedbylocalizedshearTominimizenegativeeect

    likesplaysormolddeposit,shearshouldbereducedbyusing

    appropriaterunnerdimensions

    Formulti-cavitymoldsorsmallthicknessparts(1mm[004in]),

    thedesignorunnersshouldbecheckedbyrunningadetailed

    fowanalysisstudy

    Nozzle and Sprue

    Nozzleandspruediametersaredirectlylinkedwiththe

    dimensionsothepartandotherunnersThedesignershould

    rstdecideithesprueisneededornotIyes,adesignlike

    theoneshowninFigure 25couldbeselected,onethatin

    manycaseshasprovedtobethemosteectivewithcrystalline

    materialslikeDelrinDuetoitsparallelcylindricalshapeitis

    easytomachineandpolish,allowslargenozzlediameters,

    anditiseasytoejectduetohighshrinkageGuidelinesorthe

    dimensionare:

    aspruediameter1atleastequaltotheinscribeddiameter

    othemainrunner;

    anozzlediameterDN1equalto1minus1mm

    Incasethedesignerselectsadesignwithoutasprue,along

    nozzlemayberequiredasshowninFigure 26ora2platetool,

    andinFigure 27ora3platetoolAgain,thedimensionsare

    linkedtothedimensionsothepartandotherunners(guideline

    nozzlediameterDN1equalstothemainrunnerinscribed

    diameterminus1mm)

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    22/48

    18

    AreviewothekeyrecommendationsrelatedtothesprueandrunnersystemollowsItcanbeusedasaquickreerencelistto

    checktheirdesign

    1 Cylindricalparallelspruepreerred:seeFigure 25and

    Figure 28-1

    2 Spruepulleror2platemold:seeFigure 28-2.

    3 Coldslugwellor3platemold:seeFigure 28-3.

    4 Perpendicularfowsplitswithcoldslugwellsateachsplit,see

    Figure 28-4

    Temperature

    Modulus

    C

    A T

    BM

    IM

    Tg

    Tm

    Figure 29. Sotening/Melting Behaviour o Amorphous andCrystalline Polymers

    5 Nofowrestrictioncausedbyspruepullerin3platemold,see

    Figure 28-5

    6 Runnerdimensions:

    orpartshavingthickness>15mm(006in),ollowgenera

    rulesorcrystallinepolymers(Figure 20);

    orthinnerpartsandmulti-cavitymolds,afowanalysis

    mayberequiredtoselectdimensionsthatwillavoid

    over-shearing7 Runnersshouldbeproperlyvented,seeFigures 28,

    29and30

    8 Balancedrunnersrecommended(seeFigure 24)

    9 Forthinpartsandlargenumberocavities,unbalanced

    runnersmaybeacceptableHowever,partsshouldneverbe

    gateddirectlyontothemainrunner(seeFigure 23)

    Hot Runner Mold for Crystalline PolymersPreliminary Comments

    Thissectionincludesallhotrunner,hotspruebush,and

    runnerlessmoldsTheollowingisnotintendedtorecommend

    anytrademarkorsystembuttopresentthebehaviorandthe

    needsocrystallinepolymersinsuchtools

    Thequestionthatrequentlyarisesiswhentousehotrunner

    moldswithcrystallinepolymerslikeDelrinThechoicedepends

    onmanyactors,andparticularlyonthequalityneeded,ie,

    mechanicalperormance,suraceaspect,percentageorejects

    Status

    Allsuchmoldsgivetheobviousadvantagesolessmaterial

    toplastiy,no(orminimum)regrindandshortercyclesOnthe

    otherhand,hotrunnermoldsaremoreexpensiveandheavier;

    theyneedmoremaintenanceandbetter-trainedoperators

    thanconventionalmoldsInaddition,itheyarenotproperly

    designed,theheatneededtorunthemcouldspreadtoallparts

    othemoldandcaninactcausethecycletimetoincrease

    Figure 27. Example o a Design o a Nozzle without SprueUsed with 3 Plate Molds. Remember that orDelrin the Nozzle Temperature Should NotExceed 190C (374F).

    Figure 28. Key Rules or the Design o the Sprue and

    Runners o a 2 Plate Mold (Top) and o a3 Plate Mold (Bottom).

    D N1

    D N2

    DSP 1

    2

    5 mm

    1

    4

    6

    Vent

    channel

    2

    3

    5 6

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    23/48

    19

    Oneapproachistoevaluatetheexpectedincreaseotheoretical

    productivityversusconventionalmoldsIsuchanincreaseis

    lowerthan25%,itwouldbewisetostaywitha3platemoldthat

    willbecheapertobuild,startandrun

    Thebreak-evenoabout25%appliestoullhot-runnersystems;

    orothermolds(withhotspruebushes,coldsub-runners)the

    break-evenpointismuchlower

    Direct Gating Versus Cold Sub-Runners or CrystallinePolymers

    Whendesigningahotrunnermoldorcrystallinepolymers,it

    shouldbekeptinmindthatdirectgatingviahotrunnerismore

    dicultwithcrystallinepolymersthanwithamorphousonesThedierencecomesromthesoteningormeltingbehaviorothese

    twotypesopolymers

    Anamorphousmaterialexhibitsagradualsoteningbehavior

    aboveTgromthesolidstatetotheliquidstate,allowingawide

    processingwindowintermsotemperatureandviscosityIn

    act,asitstemperatureincreasesaboveTg(seeFigure 29)an

    amorphouspolymer(curveA)lendsitselrsttothermoorming

    (T),thentoblowmolding(BM)andnallytoinjection

    molding(IM)

    Vent LandEnd of flow

    Vent channels

    L 0.8 mm

    W > 2 mm

    D < 0.03 mm

    * 0.3 mm

    Figure 30. Recommended Venting o a Part and oits Runner System

    Onthecontrary,theTghasusuallyalimitedornegligibleeect

    onthestructureocrystallinepolymers,whicharesolidabove

    TgAtthetemperatureT

    m,crystallinepolymersmeltsharplyand

    becomeliquid(curveC)

    Suchbehavioroacrystallinematerialmayinvolvetherisko:

    Droolingaroundthegatewithconsequentproblemsobad

    suraceaspectanddeormation

    Pluggingothegatesbysolidiedmaterial,plugswhich

    willbepushedintothecavities,withconsequentproblems

    osuracedeectsandlowermechanicalperormances

    ThebestwaytopreventsuchproblemsistouseCOLD

    SUB-RUNNERS

    Thermal Control o Hot Runner Molds

    Thermalmanagementandstreamliningothefowarevery

    importantorhotrunnertoolsItshouldbecheckedthata

    relativelylowtemperaturesetting(190C[374F])givesan

    easyfowothematerialwithnohold-upspots

    Thereasonisthat,duetotheviscosityothepolymer,itsfowis

    alwayslaminarThismeansthatthematerialwillremainagainst

    thesteelwallothehotrunner,andresidencetimewillbevery

    longForDelrin,toavoidthermaldegradationwithprolonged

    times,thesteeltemperatureshouldneverexceed190C(374F)

    Ithehotrunnersystemsolidiesatthattemperature,then

    itmustbemodiedtoimprovethermalinsulationandheat

    distributiontoremovecoldspotsDegradationcanresultin

    splays,odor,blackspecksandmolddeposit

    Conclusions

    WithcrystallinepolymerssuchasDelrin,werecommend

    theollowing:

    Aminimumo25%theoreticalcostdecreaseshouldbe

    expectedbeoreahotrunnerisconsidered

    Highlytrainedmachineoperatorsandmoldmaintenance

    toolmakersshouldbeavailable

    Useocoldsub-runners,neverdirectgatingstraight

    ontothepart

    UseoDelrinPgrades

    Alltemperaturesinthehotrunnersystemmustnotexceed

    190C(374F)

    Avoidtheuseohotrunnermoldsisuracedeectsarenot

    acceptableandhighpartmechanicalperormanceisrequired

    Avoidtheuseohotrunnersortoughenedgrades

    Vents

    VentingamoldorDelrinisparticularlyimportant,andspecial

    attentionshouldbegiventothisactorduringboththedesign

    othemoldanditsinitialtrialThisattentionisrequiredbecause

    burningopartscausedbyinadequateventingisnoteasily

    observedwithDelrinWithotherresins,poorventingresultsin

    ablackenedandburnedspotonthepartWithDelrin,however,

    theremaybeeithernovisiblefaworaninconspicuouswhitish

    markonthemolding

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    24/48

    20

    VentingproblemswithDelrinacetalresinsmaybemade

    moreobviousbysprayingthemoldwithahydrocarbonor

    kerosene-basedsprayjustbeoreinjectionIventingispoor,the

    hydrocarbonwillcauseablackspotwheretheairistrappedThis

    techniqueisparticularlyuseulordetectingpoorventsinmulti-

    cavitymoldsAconvenientsourceohydrocarbonspray

    isarustpreventativespray

    Ventsshouldbelocatedat:

    1 theendoanyrunner;

    2 anyfowjunctionwhereairisentrappedandaweldline

    resultsThepositionoweldlinescanbedenedby

    shortshots

    OnlyNOventingtogetherwithexcessiveastinjectionspeedwill

    causecorrosionothetoolattheweldlineswithDelrin(diesel

    eect)InadequateventingomoldsorDelrinmaycausea

    gradualbuildupomolddepositwhereventsshouldbelocated

    andinmoldcrevicesthroughwhichlimitedventinghastaken

    placeThesedepositsconsistoawhitesolidmaterialormed

    romthetracesogasevolvedduringnormalmoldingGoodventsallowthisgastoescapewiththeairromthecavities

    Poorventingmayalsoreducephysicalpropertiesatweldlines

    Ventingproblemsmaybeaggravatedbyhighmelttemperature,

    longholduptime,orholdupareasintheinjectioncylinder,which

    willgeneratemorethannormalamountsogasFastinjection

    llspeedwillalsoaggravatetheseproblemsRemediesormold

    depositproblemsarelistedintheTroubleshootingGuide(see

    page39)

    Ventingusuallyoccursthroughthepartinglineoamoldandis

    providedbymachiningchannelsinthecavityplateandinserts

    Insomecases,ventingmaybeaccomplishedaroundanejector

    pinThisventwillalsobeimprovedbygrindingfatsonthepin

    andrelievingtheventaterashortlandPinsthatdonotmove

    withtheejectionsystemtendtoclogandnolongerprovide

    ventingaterashorttime

    Ventingtherunnersystemishelpulinreducingtheamounto

    airthatmustbeventedthroughthecavitiesBecausefashis

    unimportantontherunner,theseventscanbeslightlydeeper

    thancavityvents,orexample,006mm(00024in)

    ThedrawingsinFigure 30showtherecommendeddimensions

    orventsincavitiesorDelrin

    Note:Duringmoldmaintenance,ventdepthand/orhobbing

    shouldbecareullycheckedVentsshouldbemodiedithevent

    depthislessthan0010015mm(0000400006in)

    Undercuts

    GeneralsuggestionsorstrippingundercutswithDelrinacetal

    resinsare:

    Theundercutpartmustbereetostretchorcompress,that

    is,thewallothepartoppositetheundercutmustclearthe

    moldorcorebeoreejectionisattempted

    Theundercutshouldberoundedandwell-lletedtopermit

    easyslippageotheplasticpartoverthemetalandto

    minimizestressconcentrationduringthestrippingaction

    Adequatecontactareashouldbeprovidedbetweenthe

    knockoutandplasticparttopreventpenetrationothemolded

    partorcollapseothinwallsectionsduringthestripping

    action

    ThelengthothemoldingcycleandspecicallytheHold

    (Pressure)Time(HPT)shouldbeoptimumtoavoidexcessive

    shrinkagewithinsideundercutsSucientpartrigiditymust

    bedevelopedwithoutcausingbindingduetoexcessive

    shrinkagearoundpinsorminganinternalundercutEjection

    opartswithundercutsontheoutsidediameterwillbeaided

    bymoldshrinkage

    Highermoldtemperature,whichkeepstheparthotterand

    morefexiblewhenthemoldopens,mayaidejectionrom

    anundercut

    Generally,partsoDelrinacetalcanbemoldedwitha

    maximum5%undercutCalculationoallowableundercut

    isillustratedinFigure 31Theallowableundercutvaries

    somewhatwithbothwallthicknessanddiameter

    A

    R

    BInside undercuts

    Outside undercuts

    A

    B

    R

    A

    B

    30

    A

    B

    R

    R

    Figure 31. Calculations or % Undercut (BA)/B 5%

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    25/48

    21

    Notch radius, mm

    Impactstrength,

    kJ/m2

    0,50,1 0,2 0,3 0,40

    20

    40

    60

    80

    0

    Delrin 100P NC10

    Delrin 500P NC10

    Figure 32. Impact Strength as a Function o MoldedNotch Radius

    Figure 33. Suggested Rib Dimensions Versus Wall Thickness

    0.5-0.7T

    R = 0.2-0.3T

    T

    Filling time, s

    Tensilestrengthatyield,

    MPa

    Izodunnotched,

    J/m

    5 10 15 200

    50

    60

    70

    1,000

    800

    600

    400

    200

    0

    80

    40

    Tensile strength at yield, MPa

    Izod unnotched

    Figure 34. Tensile Strength (Let Scale) and Unnotched IzodImpact (Right Scale) o a Delrin 100P Test Bar,4 mm thick, Molded at Both Ends with DierentFilling Times.

    Sharp Corners

    Oneomajorcausesoailureoplasticpartsareinternalsharp

    cornersAsharpcornerinapartactsasanotchandinitiates

    breakataverylowenergyThediagraminFigure 32showsthe

    eectonotchradiusonimpactresistanceotestbarsmolded in

    twogradesoDelrinNotethatthenotcheshavebeenmolded

    (simulationoreallieandnotmachinedasrequiredbythe

    standardIzodtest)

    Fromthisdiagramitcanbeseenthatanincreaseo aninternal

    radiusocurvaturerom001(almostasharpcorner)to02mm

    doublestheimpactresistance

    Notealsothatsharpcornersarenotdesirableinplasticparts

    becausetheyareanimportantcontributingactortowarpage

    Ribs Design

    Veryoten,ribbedpartswillperormmuchbetterintermo

    cycletime,mechanicalperormancesandwarpagethanvery

    thickunproperlypackedpartsItiseconomicallyimpossibleto

    packsectionsabove68mm(024032in)thicknessduring

    allthecrystallizationtime(solidication:seeFigure 30or

    Hold[pressure]Timevspartthickness)Howeveranimproper

    ribdesigncouldalsocausedeectssuchassinkmarks

    RecommendedribdimensionsareshowninFigure 33Note

    thattheradiusatthebaseotheribshouldnotbetoosmallto

    preserveparttoughness(seeFigure 32)

    Weld Lines

    WeldlinesoccurwheretwomeltfowsjointogetherWeldline

    positioncanbedenedbyshortshots,orbyfowsimulations(i

    themolddoesnotexistyet)Ithemoldisprovidedwithproper

    venting(seepage18),theweldlinestrengthshouldbeatleast

    8090%othenominalstrengthvalueotheresin

    Tooptimizeweld-linestrength,twoparametersareimportant:

    1 optimumHold(Pressure)Time,toensuretheweldingothe

    fowrontsunderpressure(orthecorrectHPTseepage26);

    2 optimumllingrate,whichwilldependonpartthickness

    (approximately1secondpermm(004in)opartthickness)

    Figure 34showstheweldlinestrengthoa4mm(016in)

    thicktestbarinDelrin100PgatedatbothendsBothtensile

    strengthandtoughnessareseriouslyaectedillingtimeisnot

    optimized

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    26/48

    22

    Mold Maintenance

    Asageneralrule,moldsorprocessingDelrinrequirethe

    samecareasthoseorprocessingotherthermoplastic

    materialsWipingthemoldandapplyingarust-preventing

    solutionisusuallyadequateateraproductionrun

    Vent Maintenance

    Duetothecriticalnatureothevents,theventdimensionsshouldbecheckedduringroutinemaintenanceVentdepth

    and/orhobbing(deormationothepartinglineoppositethe

    vent)shouldbecareullycheckedVentsshouldbemodiedi

    theventdepthislessthan001mmto0015mmAnyhobbing

    thatblockstheventsshouldbegroundo

    Mold Cleaning

    Dependingonthetypeodepositthecleaningprocedureisas

    ollows:

    White deposit

    Whitedepositisduetotheaccumulationo

    paraormaldehydeThisdepositcanberemovedwithbenzyl

    alcoholorisopropanolFrequentcleaningothetoolwith

    thesesolventsduringmoldingwillpreventtheaccumulationothisdeposit

    Translucent or colored deposit

    Thisdepositisnormallyobservednearthegate(incaseo

    overshearothematerial),onpinsornearhotspotsTheuse

    oalessshearinggate(seegatedesignrecommendations)

    oramoreevenmoldtemperaturewillstoportremendously

    decreasethebuildupothisdepositItcanberemoved

    withcommercialalkalinechemicalcleanersEciencyothe

    cleaningagentcanbeimprovedwithanultrasonicbath

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    27/48

    23

    Molding Process

    InjectionmoldingoDelrinacetalresinissimilartothatoother

    thermoplasticresinsTheengineeringapplicationsorwhich

    Delrinisused,however,requentlyrequiretightspecications

    onstrength,dimensionsandsuracecondition,sothatcontrolo

    themoldingoperationbecomesmorecritical

    Theinormationdiscussedinthissectionincludes

    suggestionsor:

    Start-upandshutdownprocedures,handlingprecautions

    OperatingconditionsorDelrin

    Techniquesoroptimumproductivitymolding

    Start-up and Shutdown ProceduresStart-up with Resin Change

    Thesuggestedstart-upprocedurewithDelrinisdesigned

    topreventoverheatingotheresinandcontaminationintheinjectionunitwithmaterialrompreviousruns

    Tostartupamachinewhichcontainsanotherresin,theinjection

    unitmustbepurgedwithcrystalpolystyreneuntilthecylinder

    andotherhightemperaturezoneshavebeenclearedThiscan

    normallybedonewithcylindertemperaturesintherange

    210250C(410482F),iappropriateorthepreviousmaterial

    Thenozzleisquitediculttocleanbypurging,becausethe

    laminarfowinthisarealeadstoalayeropolymersticking

    tothemetal(thisisalsotrueorhotrunners)Itisthereore

    recommendedtoswitchothenozzleheater,removethe

    nozzle,cleanittogetridalltracesopreviouspolymer,and

    reassembleitThecylindertemperaturesshouldthenbe

    adjustedtoabout215C(419F),andthenozzletemperatureto

    190C(374F)Whenbothcylinderandnozzlehavereachedthe

    expectedtemperatures,Delrincanbeaddedtothehopper

    Inunusualcircumstances,anintermediatepurgewithaharsher

    compoundmayberequiredtoremoveadherentdepositsrom

    thescrewandcylinderSpecialpurgecompoundsareusedor

    thispurpose

    Thesepurgecompoundsmustalsoberemovedromthecylinder

    bypurgingwithpolyethyleneorpolystyrenebeoreDelrin is

    introducedIntheworstcases,eg,ateruseoglass-reinorced

    resinsorseveredegradationopreviousmaterial,itmaybe

    necessarytopullthescrewandcleantheequipmentmanuallyto

    preventcontaminationomoldings

    Saety point:Polystyreneischemicallycompatiblewith

    Delrin,whereasevenatraceopolyvinylchloride(PVC)is

    notContaminationoDelrinwithsuchmaterialcancause

    objectionableodororevenaviolentblowback

    Start-Up From a Cylinder Containing Delrin

    Aterasaeshut-downprocedure,thescrewandthecylinder

    shouldbeessentiallyemptyTorestart,thenozzleandcylinder

    temperaturesshouldbesetat190C(374F)topreheatthe

    cylinderandtheresinitcontainsWhenthecylinderhasreached

    thesettemperature,ensurethatthenozzleisopenandincrease

    thecylindersettingstonormaloperatingtemperaturesWhenall

    temperaturesareintheoperatingrange,thehoppercanbelledandmoldingcanbeginaterabriepurgewithDelrin

    Shutdown When a Restart with Delrin is Planned

    Shutothehoppereedandcontinuemoldinguntilthecylinder

    isemptyForlargemachines(withascrewdiameterabove

    40mm[157in])itisrecommendedtopurgethecylinderwith

    crystalpolystyrene,movethescrewullyorward,thenswitch

    otheheaterbandsForsmallmachinesmovethescrewully

    orwardandswitchotheheaterbands

    Shutdown When a Restart with Another Resin is Planned

    Shutothehoppereedandcontinuemoldinguntilthecylinder

    isemptyPurgewithcrystalpolystyrene,leavethescrewully

    orward,thenswitchotheheaterbands

    Temporary Interruption

    AmoldingmachinewithDelrininthecylinderatmolding

    temperaturesshouldnotbeallowedtostayidleThemaximum

    recommendedcylinderresidencetime,undernormalmolding

    conditions,is10minorpigmentedmaterialand20minor

    naturalstandardmaterialInexcessothesetimes,resin

    decompositionmayoccur

    I,duringthetemporaryinterruption,thecylinderresidence

    timereachestheabovelimits,closethehoppereed,emptythecylinderandleavethescreworwardThecylindertemperatures

    shouldbereducedtoabout150C(302F)(atthesetemperatures

    Delrinwillbestableevenoraweekendshutdown)

    Action to Follow When the Nozzle Heater Band Breaks Down

    Retracttheinjectionunit,closethehopperandslideitouto

    thewayIthenozzleisstillopen,ollowthenormalshutdown

    proceduresIthenozzleisrozen,heatthenozzlewithagas

    torchtomelttherozenmaterialinsidethenozzleandthen

    purge

    Start-up ater Emergency Shutdown

    Adierentprocedureshouldbeusedateranemergency

    shutdownduetolossopowerorothercausesInthiscase,the

    screwmaybeulloDelrinthatcooledslowlyandwasexposed

    tomelttemperaturesoraprolongedperiodThescrewmay

    evenbeintheretractedpositionwithalargequantityoDelrin

    inrontothescrewInordertoventgasesromresinthatmay

    bedegraded,itisessentialthatthenozzlebeopenandheated

    tooperatingtemperatureandDelrininthisareabecompletely

    meltedbeorethecylinderreachesmelttemperatureThe

    cylinderzonesshouldbeheatedtoanintermediatetemperature

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    28/48

    24

    belowthemeltingpointoDelrinandthemachineallowed

    toequilibrateatthattemperatureCylindertemperatureso

    150175C(300350F)aresuggestedAterallzoneshavebeen

    atthistemperatureor30min,cylindertemperaturesshouldbe

    raisedto195C(380F)AssoonastheDelrinhasmelted,it

    shouldbepurgedromthecylinderwithreshDelrinThepartly

    degraded,hotpurgeresinshouldbeplacedinapailowateri

    itemitsanodorWhentheoldresinispurgedromthecylinder,thecylindertemperaturesmayberaisedtonormalproduction

    settings

    Operating Conditions for Delrin Temperature SettingsIntroduction

    Thebasicpurposeotheinjectionunitistodelivertothemold

    thenecessaryamountoahomogeneousmelt(nounmeltand

    nodegradedmaterial)Therulesoconstructionotheinjection

    unitormoldingacrystallinematerialhavebeenpresentedin

    InjectionMoldingUnit,(seepage7);therulesorthesettings

    arepresentedbelow

    Note:Tworoughbutpracticalmethodstoevaluatethepresence

    ounmeltandodegradedmaterialweredescribedonpage11

    andcanbeusedhereaswell

    Delrinacetalresinisacrystallinepolymerwithameltingpoint

    o178C(352F)FormostgradesoDelrinhomopolymerthe

    preerredmelttemperaturerangeis215C(419F)5C*,as

    measuredwithaneedlepyrometerinthemeltThecalories

    neededtoheatandmeltDelrinwillbeprovidedbyshear(rom

    scewrotation)andthebalancebyconductionintheheated

    cylinder(slowheattranserduetotheinsulatingcharactero

    polymers)

    Cylinder temperature

    Themainparameterinfuencingthetemperatureproleothe

    cylinderistheresidencetime(orHold-UpTimeHUT)othe

    polymerintheplasticationunit(seepage8tocalculateHUT)

    WithashortHUT(5minutes,longcycletime,lowmeltoutput),

    lowersettings,especiallyintherearzone,maybeusedSince

    generalizationocylindertemperaturesettingsisdicult,itis

    otenwisetobeginwithalevelproleandadjustasneededThediagramshowninFigure 35canbeusedasaguidelineorinitial

    temperaturesettings

    Notes:

    1 AsthepreerredmelttemperatureorDelrin100STand

    Delrin500Tisabout10C(18F)lower,thezonesettings

    shouldbe10C(18F)lowerthanshowninFigure 35

    2 Hoppercoolingisnotneededandshouldnotbeusedor

    DelrinAsdescribedinChapter3,excessivehoppercooling

    maycreateproblemsoscrewdepositandblackspecks

    3 Withverysmallinjectionunitsand/orshortresidencetime

    (HUT),pre-heatingthegranules(eg,withaheatedhopper)

    mayhelptoachieveanhomogeneousmelt

    Nozzle Temperature

    Thenozzletemperatureisadjustedtocontroldroolandreezing

    (seeNozzlepage11),butitshouldneverbesetabove190C

    (374F)inordertopreventpolymerdegradation(thelaminar

    fowandhighviscosityothemoltenpolymerresultinverylong

    contacttimewiththemetalwall)Ithenozzlereezeswitha

    settingo190C(374F),itsinsulationromthespruebushing

    shouldbeimproved,oritsinsidediametershouldbeincreased

    ieasible

    Notes:

    1 Practically,itisalwayseasiertosetthenozzletemperature

    correctlybyusingspruebreakTheinjectionunitispulledbac

    aterscrewrotationandthenthenozzleisinsulatedrom

    thecoldmoldThisallowsthecaloriestofowtothetipo

    thenozzlewithouthavingtosettoohighatemperature,and

    reducestheriskostringingromthenozzle

    2 HotrunnerByanalogy,ahotrunnersystemisanozzle

    transerringthemoltenresinromtheinjectionunittothe

    partHencetheprinciplesandrecommendationsornozzles

    *ThepreerrredmelttemperatureorDelrin100STandDelrin 500Tisabout205C(401F)

    Figure 35. Cylinder Temperatures Prole VersusResidence Time or a Given Recommended MeltTemperature. Recommended Nozzle Temperatureis 190C (374F) or All Delrin Grades.

    Residence time

    215

    220

    225

    195

    180

    FRONT ZONE CENTER ZONE REAR ZONE

    < 3 min

    > 5 min

    Hopper

    no cooling or 8090C (176194F) min

    3 5 minRecommendedmelt

    temperature,C

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    29/48

    25

    arealsovalidorhotrunnersInparticular,thelaminarfow

    andhighviscosityothemoltenpolymeragainresultinvery

    longcontacttimeswiththemetalwall;sothetemperature

    othemetalinthehotrunnershouldneverexceed190C

    (374F),inordertopreventdegradationothepolymer

    Screw Rotation Speed

    Screwrotationspeedbehavesasathermalsetting,because

    therotationothescrewwillshearthematerialandsupplyaroundhalothecaloriesneededtomeltandheatDelrinto

    therecommendedmelttemperaturerangeo215C(419F)

    5C(205C[401F]5CorDelrinTandST)Aswithall

    polymers,Delrinissensitivetoshearandamaximumo

    02to03m/soscrewperipheralspeedisrecommended

    Figure 36showstheoptimumscrewrotationspeedorhigh

    viscosityDelrin(type100)andlowviscosityDelrin(types

    500to900)asaunctionoscrewdiameter

    Back Pressure

    BackpressurealsobehaveslikeathermalsettingIncreasing

    backpressureincreasestheworkdonebythescrewon

    themelt

    Theuseotheoptimumscrewdesignorcrystallinematerials,

    suchasDelrin,shouldprovidethenecessaryworktomeltand

    bringDelrintotherecommendedmelttemperaturewiththe

    minimumbackpressureOnlymeltingohighlyviscous

    DelrinsuchasDelrin100Pmayrequiresomebackpressure

    toavoidthescrewwormingback(leadingtoinconsistentshot

    volumeandpad)

    Figure 36. Maximum Screw Rotation Speed as Function

    o Screw Diameter. The Curve or Delrin

    500Pis Also Valid or the Low Viscosity GradesDelrin 900.

    Screw diameter, mm

    Max.s

    crewr

    otationspeed,rpm

    80 1006040200

    50

    100

    150

    200

    250

    300

    0

    Delrin 500P

    Delrin 100P

    Theuseoaninappropriatescrewmayrequiresomeback

    pressuretoincreasetheworkdonebythescrewonthemelt,

    toincreasethemelttemperatureanditsuniormityHigher

    backpressuremaybeusedtoeliminateunmeltedparticles

    andtoimprovecolormixingwhencolorconcentratesareused

    Increasingbackpressure,however,tendstoreduceglassbre

    lengthandchangepropertiesolledresinssuchasDelrin570

    Moreimportantly,increasingbackpressurealwaysdecreasestheoutputothescrew,leadingtolongercycletimesandlower

    productivityThisincreasesthebuilduposcrewdepositleading

    tocontaminationandlowpartperormance

    Thereore,backpressureshouldbeusedonlywhenincreasing

    cylindertemperatureorotherchangesarenoteectiveor

    possible

    Forallmaterials,thebackpressureused(specicorinherentto

    theinjectionunit)willcreatesomepressureonthemeltinronto

    thescrewTocontroldroolattheendothescrewrotation,some

    suckbackisrequiredThisshouldbekepttoaminimum

    Mold Temperature

    Thebestmoldtemperatureorlongtermpartperormance

    wouldbejustbelowthecrystallizationtemperatureoDelrin,

    eg,155C(311F)Thistemperaturewouldallowthepolymer

    tocrystallizeinanoptimumstateandeliminateanyrisko

    re-crystallization(postmoldingshrinkage)Obviouslyitis

    economicallyimpossibletosetthemoldatthattemperatureas

    thecrystallizationtimebecomesalmostinnitealongwiththe

    cycletime

    Practically,alowermoldtemperatureisused,leadingtoshorter

    crystallizationtime(HPT),henceshortercycletime,lowermold

    shrinkagebuthigherpostmoldshrinkage(especiallyipartsare

    thenexposedtoelevatedtemperatures)Acompromiseshould

    beounddependingonthetemperatureinuseandtherequired

    dimensionalprecisionothemoldedpartshortandlongterm

    ForstandardDelrin,amoldtemperatureo80100C

    (176212F)isagoodcompromiseornormaluse,giving

    relativelyshortcrystallizationtime,highshrinkagebutlowpost

    moldshrinkage(seeDimensionalConsiderations,page31)

    Ahighermoldtemperaturewillleadtohighermoldshrinkage,

    longercycletimebutlowerpostmoldshrinkageItisspecially

    recommendedorhighprecisionpartsusedathightemperature

    Alowermoldtemperatureleadstoshortercycletime,lowermoldshrinkagebutmuchhigherpostmoldshrinkageleadingto

    stressesanddistortion

    FortoughenedresinssuchasDelrin100STand500T,theuse

    oalowermoldtemperature(50C[122F]10C[50F])is

    acceptablewithoutendangeringlongtermpartperormances

    Kalipteknolojisi.com

  • 8/3/2019 Hacim Kalibi Tasarim Unsurlari 11 06

    30/48

    26

    Note 1:Moldtemperatureisalwaysthetermusedbutthe

    importantparameteristhesuracecavitytemperatureWith

    astcyclingoperations,itmaybenecessarytousealowermold

    coolanttemperaturetomaintainthemolds