A Novel Robust Extended Dissipativity State Feedback ...

16
A Novel Robust Extended Dissipativity State Feedback Control system design for Interval Type-2 Fuzzy Takagi-Sugeno Large-Scale Systems Mojtaba Asadi Jokar, Iman Zamani, Mohamad Manthouri * , Mohammad Sarbaz Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran * Corresponding author. Tel.: +98 21 51212029. E-mail addresses: [email protected], [email protected], [email protected], [email protected] Abstract: In this paper, we use the advantage of large-scale systems modeling based on the type-2 fuzzy Takagi Sugeno model to cover the uncertainties caused by large-scale systems modeling. The advantage of using membership function information is the reduction of conservatism resulting from stability analysis. Also, this paper uses the extended dissipativity robust control performance index to reduce the effect of external perturbations on the large- scale system, which is a generalization of ∞ , 2 βˆ’ ∞ , passive, and dissipativity performance indexes and control gains can be achieved through solving linear matrix inequalities (LMIs), so the whole closed-loop fuzzy large-scale system is asymptotically stable.. Finally, the effectiveness of the proposed method is demonstrated by a numerical example of a double inverted pendulum system. Keywords: membership function dependent, type-2 fuzzy, large-scale system, extended dissipativity, state feedback. I. Introduction Since years ago, with the expansion and complexity of industries, a challenge in the engineering has been control of processes like mechanical engineering, electrical engineering, chemical engineering, or so. Many algorithms and approaches have proposed in dealing with the instability of systems. But since decades ago, systems have been turned to large in scope and dynamic. Consequently, control of the process has become an essential task and the main problem facing such systems is the complexity of mathematical relationships that make it hard to solve in practice. Various controllers have been designed to encounter the instability of systems in both industry and academic like adaptive control, fuzzy control, etc. To design an effective and authentic controller, the dynamic of the system should be identified exactly and it is an important step. In large-scale systems, it is almost impossible to identify the dynamic of the system accurately. Hence, the well-known method, fuzzy logic is used. Also, it is confirmed that the Takagi- Sugeno (T-S) model is a powerful tool to approximate any nonlinear systems with arbitrarily high accuracy. The Takagi-Sugeno fuzzy system shows the dynamic behavior of the nonlinear system with the weighted sum of local linear systems, which are determined by the membership functions. Todays, many systems in both industry and academic are large-scale, and have been popular for years [1] and [2]. Besides, many systems specially control systems have become large in scope and complex in computation [3]. These type of the systems are modeled by a number of independent subsystems which work independently with some interactions [4]. Since years ago, lots of researches have been done in large-scale systems and gain many attentions [5], [6], and [7]. Recently, fuzzy systems with IF-THEN rules have become more broad appeal and most of the nonlinear and complex systems are estimated by fuzzy logic [8]. One of the powerful tools, which can fill the gap between linear and severe nonlinear systems is Takagi-Sugeno fuzzy model. Many investigations have been done based on the T-S fuzzy model [9] and [10]. [11] and [12] propose a type of fuzzy inference system popular Takagi- Sugeno, fuzzy model. In [13], Takagi-Sugeno fuzzy model is selected to represent the dynamic of the unknown nonlinear system. In [14], the stability of the fuzzy time-varying fuzzy large-scale system based on the piecewise continuous Lyapunov function investigate. Since systems always have uncertainty or perturbation parameters, several papers, including [15] and [16] have studied the robust control criterion such as ∞ control criterion for large-scale systems. [17] and [18] design a nonlinear state feedback controller for each subsystem. In [15], the stability and stabilization conditions of large-scale fuzzy systems obtained through Lyapunov functions and also by using the continuous piecewise Lyapunov functions, they have performed stability analysis and ∞ based controller design for large-scale fuzzy systems. The author in [19] design an approach for stability analysis of T-S fuzzy systems via piecewise quadratic stability. The design of robust fuzzy control for exposure to nonlinear time-delay system modeling error also presented in [20]. Also, in [16], the reference tracking problem using decentralized fuzzy ∞ control is

Transcript of A Novel Robust Extended Dissipativity State Feedback ...

A Novel Robust Extended Dissipativity State Feedback Control system design

for Interval Type-2 Fuzzy Takagi-Sugeno Large-Scale Systems

Mojtaba Asadi Jokar, Iman Zamani, Mohamad Manthouri*, Mohammad Sarbaz

Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran * Corresponding author. Tel.: +98 21 51212029.

E-mail addresses: [email protected], [email protected], [email protected],

[email protected]

Abstract: In this paper, we use the advantage of large-scale systems modeling based on the type-2 fuzzy Takagi

Sugeno model to cover the uncertainties caused by large-scale systems modeling. The advantage of using membership

function information is the reduction of conservatism resulting from stability analysis. Also, this paper uses the

extended dissipativity robust control performance index to reduce the effect of external perturbations on the large-

scale system, which is a generalization of 𝐻∞, 𝐿2 βˆ’ 𝐿∞, passive, and dissipativity performance indexes and control

gains can be achieved through solving linear matrix inequalities (LMIs), so the whole closed-loop fuzzy large-scale

system is asymptotically stable.. Finally, the effectiveness of the proposed method is demonstrated by a numerical

example of a double inverted pendulum system.

Keywords: membership function dependent, type-2 fuzzy, large-scale system, extended dissipativity, state

feedback.

I. Introduction

Since years ago, with the expansion and complexity of industries, a challenge in the engineering has been control

of processes like mechanical engineering, electrical engineering, chemical engineering, or so. Many algorithms and

approaches have proposed in dealing with the instability of systems. But since decades ago, systems have been turned

to large in scope and dynamic. Consequently, control of the process has become an essential task and the main problem

facing such systems is the complexity of mathematical relationships that make it hard to solve in practice. Various

controllers have been designed to encounter the instability of systems in both industry and academic like adaptive

control, fuzzy control, etc. To design an effective and authentic controller, the dynamic of the system should be

identified exactly and it is an important step. In large-scale systems, it is almost impossible to identify the dynamic of

the system accurately. Hence, the well-known method, fuzzy logic is used. Also, it is confirmed that the Takagi-

Sugeno (T-S) model is a powerful tool to approximate any nonlinear systems with arbitrarily high accuracy. The

Takagi-Sugeno fuzzy system shows the dynamic behavior of the nonlinear system with the weighted sum of local

linear systems, which are determined by the membership functions.

Todays, many systems in both industry and academic are large-scale, and have been popular for years [1] and [2].

Besides, many systems specially control systems have become large in scope and complex in computation [3]. These

type of the systems are modeled by a number of independent subsystems which work independently with some

interactions [4]. Since years ago, lots of researches have been done in large-scale systems and gain many attentions

[5], [6], and [7]. Recently, fuzzy systems with IF-THEN rules have become more broad appeal and most of the

nonlinear and complex systems are estimated by fuzzy logic [8]. One of the powerful tools, which can fill the gap

between linear and severe nonlinear systems is Takagi-Sugeno fuzzy model. Many investigations have been done

based on the T-S fuzzy model [9] and [10]. [11] and [12] propose a type of fuzzy inference system popular Takagi-

Sugeno, fuzzy model. In [13], Takagi-Sugeno fuzzy model is selected to represent the dynamic of the unknown

nonlinear system. In [14], the stability of the fuzzy time-varying fuzzy large-scale system based on the piecewise

continuous Lyapunov function investigate. Since systems always have uncertainty or perturbation parameters, several

papers, including [15] and [16] have studied the robust control criterion such as 𝐻∞ control criterion for large-scale

systems. [17] and [18] design a nonlinear state feedback controller for each subsystem. In [15], the stability and

stabilization conditions of large-scale fuzzy systems obtained through Lyapunov functions and also by using the

continuous piecewise Lyapunov functions, they have performed stability analysis and 𝐻∞ based controller design for

large-scale fuzzy systems. The author in [19] design an approach for stability analysis of T-S fuzzy systems via

piecewise quadratic stability. The design of robust fuzzy control for exposure to nonlinear time-delay system modeling

error also presented in [20]. Also, in [16], the reference tracking problem using decentralized fuzzy 𝐻∞ control is

investigated. [5] Designed decentralized linear controllers to stabilize the large-scale system using the Riccati equation

basis, which increases the local state feedback gain if the number of subsystems is large.

Obviously it seems that taking the advantage of modeling systems based on type-2 fuzzy Takagi-Sugeno model to

cover the uncertainties caused by large-scale systems modeling has not been studied yet and several problems remind

unsolved. So the contribution of this paper can be summarized as: In the first step, we analyze the stability of the large-

scale system by using a fuzzy type-2 model based on membership functions, and by using the fuzzy model type-2

decentralized state feedback controller, we stabilize the large-scale system. The advantage of using membership

functions in the stability analysis is the reduction of conservatism in the stability analysis. Also, under the imperfect

premise matching, the type-2 fuzzy controller can choose the premise membership functions and the number of rules

different from the type-2 fuzzy model freely. Next, to reduce the effect of external perturbations on the large-scale

system, we apply the robustness control criterion to the stability analysis, which can guarantee the extended

dissipativity index that describes in definition1 in the appendix. Finally, a large-scale system was given to illustrate

the effectiveness of the proposed method.

The rest of this paper is: Section II formulates the problem. In section III, stability conditions are given. In section

IV, the numerical example presented, and section V, demonstrate the effectiveness of the proposed methods.

II. Problem Formulation

Consider a large-scale nonlinear system with uncertainty parameters that have 𝑁 subsystem and in a closed-loop

system with a state feedback controller. The mathematical representation of this closed-loop system is based on the

Takagi-Sugeno type-2 fuzzy model. Equation (1) shows a 𝑝-rule of the Takagi-Sugeno type-2 fuzzy model for the 𝑖th

subsystem in the large-scale system:

𝑷𝒍𝒂𝒏𝒕 𝒐𝒇 π‘Ίπ’–π’ƒβˆ’ π‘Ίπ’šπ’”π’•π’†π’Ž π’Š:

𝑰𝑭 πœπ‘–1(𝑑)𝑖𝑠 𝐹𝑖1, πœπ‘–2(𝑑)𝑖𝑠 𝐹𝑖2𝑙 π‘Žπ‘›π‘‘β€¦π‘Žπ‘›π‘‘ πœπ‘–πœ“(𝑑)𝑖𝑠 πΉπ‘–πœ“

𝑙

𝑻𝑯𝑬𝑡

{

�̇�𝑖(𝑑) =βˆ‘οΏ½ΜƒοΏ½π‘–π‘™(π‘₯𝑖(𝑑))

(

(𝐴𝑖𝑙π‘₯𝑖(𝑑) + 𝐡𝑖𝑙𝑒𝑖(𝑑)) + 𝐷1π‘–π‘™πœ”π‘–(𝑑) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

)

π‘Ÿ

𝑙=1

(1)

where πΉπ‘–πœ™π‘™ (πœ™ = 1.2… .πœ“) is a fuzzy set, and πœπ‘–πœ™(𝑑) is a measurable variable. π‘Ÿ is the number of rules in the subsystem

𝑖th. π‘₯𝑖(𝑑) ∈ 𝑹𝒏 is the state vector of the 𝑖th subsystem. The pairs 𝐴𝑖𝑙 ∈ 𝑹

𝒏×𝒏, 𝐡𝑖𝑙 ∈ π‘Ήπ’Γ—π’Ž and 𝐷1𝑖𝑙are matrices of the

𝑙th model of the 𝑖th subsystem. 𝑒(𝑑) ∈ π‘Ήπ’Ždenotes the input vector. οΏ½Μ…οΏ½π‘–π‘˜π‘™is the vector of the interactions between the 𝑖th

subsystem and π‘˜th at the 𝑙th rule, and π‘₯π‘˜(𝑑) ∈ 𝑹𝒏 is the state vector of the π‘˜th subsystem. 𝑁 represents the total

number of subsystems. πœ”π‘–(𝑑) ∈ π‘Ήπ‘š is the disturbance input belonging to 𝑳2[0,∞); �̃�𝑖𝑙(π‘₯𝑖(𝑑)) is a membership

function of the 𝑙th rule of the 𝑖th subsystem, which is represented by (2).

�̃�𝑖𝑙(π‘₯𝑖(𝑑)) = 𝛼𝑖𝑙(π‘₯𝑖(𝑑))𝑀𝑖𝑙(π‘₯𝑖(𝑑)) + 𝛼𝑖𝑙(π‘₯𝑖(𝑑))𝑀𝑖𝑙(π‘₯𝑖(𝑑)) (2)

Equation (2) is a type reduction in the type-2 fuzzy structure in which 𝛼𝑖𝑙 and 𝛼𝑖𝑙 are nonlinear functions. As the

nonlinear plant is subject to parameter uncertainties �̃�𝑖𝑙(π‘₯𝑖(𝑑)) will depend on the parameter uncertainties and thus

leads to the value of 𝛼𝑖𝑙 and 𝛼𝑖𝑙 uncertain. 𝑀𝑖𝑙and 𝑀𝑖𝑙 are lower membership and upper membership degrees,

respectively that characterized by the LMFs and UMFs. Since �̃�𝑖𝑙(π‘₯𝑖(𝑑)) is a type-2 membership function, it has the

following properties:

βˆ‘οΏ½ΜƒοΏ½π‘–π‘™(π‘₯𝑖(𝑑))

𝑝

𝑙=1

= 1; 0 ≀ 𝛼𝑖𝑙(π‘₯𝑖(𝑑)) ≀ 1, 0 ≀ 𝛼𝑖𝑙(π‘₯𝑖(𝑑)) ≀ 1, βˆ€π‘–

𝛼𝑖𝑙(π‘₯𝑖(𝑑)) + 𝛼𝑖𝑙(π‘₯𝑖(𝑑)) = 1, βˆ€π‘–

𝑀𝑖𝑙(π‘₯𝑖(𝑑)) =βˆπœ‡πΉπ‘–π›Όπ‘™ (πœπ‘–π›Ό(π‘₯𝑖(𝑑)))

πœ“

𝛼=1

; 𝑀𝑖𝑙(π‘₯𝑖(𝑑)) =βˆπœ‡πΉπ‘–π›Όπ‘™ (πœπ‘–π›Ό(π‘₯𝑖(𝑑)))

πœ“

𝛼=1

πœ‡πΉπ‘–π›Όπ‘™ (πœπ‘–π›Ό(π‘₯𝑖(𝑑))) > πœ‡πΉπ‘–π›Ό

𝑙 (πœπ‘–π›Ό(π‘₯𝑖(𝑑))) β‰₯ 0; 𝑀𝑖𝑙(π‘₯𝑖(𝑑)) β‰₯ 𝑀𝑖𝑙(π‘₯𝑖(𝑑)) β‰₯ 0, βˆ€π‘–

πœ‡πΉπ‘–π›Όπ‘™ and πœ‡

𝐹𝑖𝛼𝑙 are the lower membership functions (LMF) and the upper membership functions (UMF), respectively. πœ“

is the number of fuzzy sets of the 𝑙th model of the 𝑖th subsystem. Thus �̃�𝑖𝑙(π‘₯𝑖(𝑑)) is a linear combination of 𝑀𝑖𝑙 and

𝑀𝑖𝑙 denoted by LMFs and UMFs.

Equation (3) is the Takagi-Sugeno type-2 fuzzy representation for state feedback controller. Unlike the PDC control

method, the membership functions and the number of rules of the fuzzy system model and the controller need not be

the same here. Thus, the membership functions and the number of controller rules relative to the plant model can be

freely chosen. For the 𝑖th subsystem controller we have:

π‘ͺ𝒐𝒏𝒕𝒓𝒐𝒍𝒆𝒓 𝒇𝒐𝒓 𝑺𝒖𝒃 βˆ’ π‘Ίπ’šπ’”π’•π’†π’Ž π’Š:

𝑰𝑭 𝑔𝑖1(𝑑)𝑖𝑠 𝑁𝑖1𝑗, 𝑔𝑖2(𝑑)𝑖𝑠 𝑁𝑖2

𝑗 π‘Žπ‘›π‘‘β€¦π‘Žπ‘›π‘‘ 𝑔𝑖Ω(𝑑)𝑖𝑠 𝑁𝑖Ω

𝑗

𝑻𝑯𝑬𝑡 𝑒𝑖(𝑑) =βˆ‘οΏ½ΜƒοΏ½π‘–π‘—(π‘₯𝑖(𝑑))𝐺𝑖𝑗π‘₯𝑖(𝑑)

𝑐

𝑗=1

(3)

where 𝑁𝑖𝛽𝑗

is the fuzzy set of 𝑗th rules of the 𝑖th subsystem, corresponding to the function 𝑔𝛽(𝑑) . The state vector is

π‘₯𝑖(𝑑) ∈ 𝑹𝒏 where 𝑐 is the number of control rules of the 𝑖th subsystem. 𝐺𝑖𝑗 ∈ 𝑹

π’ŽΓ—π’ is the control gain and �̃�𝑖𝑗(π‘₯𝑖(𝑑))

is the membership function of 𝑗th rules of the 𝑖th subsystem with these properties:

�̃�𝑖𝑗(π‘₯𝑖(𝑑)) =𝛽𝑖𝑗(π‘₯𝑖(𝑑))π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) + 𝛽𝑖𝑗(π‘₯𝑖(𝑑))π‘šπ‘–π‘—(π‘₯𝑖(𝑑))

βˆ‘ (𝑐𝑗=1 𝛽𝑖𝑗(π‘₯𝑖(𝑑))π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) + 𝛽𝑖𝑗(π‘₯𝑖(𝑑))π‘šπ‘–π‘—(π‘₯𝑖(𝑑))

(4)

where

βˆ‘οΏ½ΜƒοΏ½π‘–π‘—(π‘₯𝑖(𝑑))

𝑐

𝑗=1

= 1, 0 ≀ 𝛽𝑖𝑗(π‘₯𝑖(𝑑)) ≀ 1, 0 ≀ 𝛽𝑖𝑗(π‘₯𝑖(𝑑)) ≀ 1, βˆ€π‘—

𝛽𝑖𝑗(π‘₯𝑖(𝑑)) + 𝛽𝑖𝑗(π‘₯𝑖(𝑑)) = 1, βˆ€π‘—

π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) =βˆπœ‡π‘π‘–π›½π‘— (𝑔𝑖𝛽(π‘₯𝑖(𝑑)))

Ξ©

𝛽=1

, π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) =βˆπœ‡π‘π‘–π›½π‘— (𝑔𝑖𝛽(π‘₯𝑖(𝑑)))

Ξ©

𝛽=1

πœ‡π‘π‘–π›½π‘— (𝑔𝑖𝛽(π‘₯𝑖(𝑑))) > πœ‡π‘π‘–π›½

𝑗 (𝑔𝑖𝛽(π‘₯𝑖(𝑑))) β‰₯ 0, π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) > π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) β‰₯ 0

where π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) and π‘šπ‘–π‘—(π‘₯𝑖(𝑑)) denote the lower and the upper membership degree. 𝛽𝑖𝑗(π‘₯𝑖(𝑑)) and 𝛽𝑖𝑗(π‘₯𝑖(𝑑)) are

two nonlinear functions. Relation (4) illustrates the part of the type reduction in type-2 fuzzy structure. Ξ© is the total

number of fuzzy rules for 𝑗th controller rules of the 𝑖th subsystem. πœ‡π‘π‘–π›½π‘— (𝑔𝑖𝛽(π‘₯𝑖(𝑑)))and πœ‡

𝑁𝑖𝛽𝑗 (𝑔𝑖𝛽(π‘₯𝑖(𝑑))) represent

LMF and UMF, respectively. Finally, the type-2 fuzzy model for 𝑖th sub-system will be:

�̇�𝑖(𝑑) =βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘— {(𝐴𝑖𝑙 +𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) + 𝐷1π‘–π‘™πœ”π‘–(𝑑) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

π‘Ÿ

𝑗=1

π‘Ÿ

𝑙=1

(5)

where β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑)) from (4) and (4) equals the following relation:

β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑)) = �̃�𝑖𝑙(π‘₯𝑖(𝑑))�̃�𝑖𝑗(π‘₯𝑖(𝑑)) (6)

has the following properties:

βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑))

𝑐

𝑗=1

𝑝

𝑙=1

= 1, βˆ€π‘–, 𝑗, 𝑙

To facilitate the stability analysis of the large-scale type-2 fuzzy control system, we divide the state space πœ™ into π‘ž

subspace, i.e., state-space equals πœ™ = ⋃ πœ™π‘˜π‘žπ‘˜=1 . Also, to use the information of type-2 membership functions, LMFs

and UMFs are described with uncertainty coverage space or briefly FOUs. Now consider dividing FOUs by 𝜏 + 1

sub-FOU. In the 𝑧th sub-FOU, LMFs and UMFs define as follows:

β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) =βˆ‘βˆ‘ β€¦βˆ‘βˆπœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘§(π‘₯π‘Ÿ(𝑑))𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§

𝑛

π‘Ÿ=1

2

𝑖𝑛=1

2

𝑖1=1

π‘ž

π‘˜=1

,

β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) =βˆ‘βˆ‘ β€¦βˆ‘βˆπœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘§(π‘₯π‘Ÿ(𝑑))𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§

𝑛

π‘Ÿ=1

2

𝑖𝑛=1

2

𝑖1=1

π‘ž

π‘˜=1

(7)

with these properties:

0 ≀ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ ≀ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ ≀ 1, 0 ≀ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) ≀ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) ≀ 1, 0 ≀ πœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘–π‘§(π‘₯π‘Ÿ(𝑑)) ≀ 1

πœˆπ‘Ÿ1π‘–π‘Ÿπ‘˜π‘–π‘§(π‘₯π‘Ÿ(𝑑)) + πœˆπ‘Ÿ2π‘–π‘Ÿπ‘˜π‘–π‘§(π‘₯π‘Ÿ(𝑑)) = 1

βˆ‘βˆ‘β€¦βˆ‘βˆπœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘§(π‘₯π‘Ÿ(𝑑))

𝑛

π‘Ÿ=1

2

𝑖𝑛=1

2

𝑖1=1

π‘ž

π‘˜=1

= 1, π‘Ÿ, 𝑠 = 1,2… , 𝑛; 𝑧 = 1,2… , 𝜏 + 1; π‘–π‘Ÿ = 1,2;

π‘₯(𝑑)πœ–βˆ…π‘˜ ; π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ , πœˆπ‘Ÿπ‘–π‘ π‘˜π‘™(π‘₯π‘Ÿ(𝑑)) = 0 ;

where 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ and 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ are scalar that must be specified. πœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘–π‘§ are functions that specified by the method

intended to approximate membership functions. Finally, in order to show the sub-FOUs in β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑)) we have:

β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑)) = �̃�𝑖𝑙(π‘₯𝑖(𝑑))�̃�𝑖𝑗(π‘₯𝑖(𝑑))

=βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) [𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) + 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))]

𝜏+1

𝑧=1

(8)

where for the membership function β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑)) with 𝑖, 𝑗, 𝑙 at any one time, among 𝜏 + 1 sub-FOU is only once

πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) = 1 and the remainder are zero. 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) and 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) are two functions that have the following

properties:

0 ≀ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) ≀ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) ≀ 1, 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) + 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) = 1, βˆ€π‘™, 𝑗, 𝑧

III. Main Result

In this section, we will obtain the stability of the closed-loop large-scale system using the type-2 Takagi-Sugeno

model. In [11], the authors introduced a new performance index, referred to extended dissipativity performance index

that holds 𝐻∞, 𝐿2-𝐿∞, passive, and dissipativity performance indexes. This performance indexes describe in definition

1 in the appendix. Therefore, the primary purpose of this section is to design the type-2 Takagi-Sugeno fuzzy state-

feedback controller for the large-scale system such that the closed-loop system is asymptotically stable with the 𝐻∞,

𝐿2-𝐿∞, passive, and dissipativity performance indexes such that:

1- The closed-loop system with πœ”(𝑑) = 0 is asymptotically stable.

2- The closed-loop system holds extended dissipativity performance index.

Theorem1. For given matrices πœ™, πœ“1 , πœ“2 , and πœ“3 satisfying in assumption 1 in the appendix, the system in (5) is

asymptotically stable and satisfies the extended dissipativity performance indexes, if there exist matrices 𝑋𝑖 = 𝑋𝑖𝑇 >

0 , 𝐾𝑖 = 𝐾𝑖𝑇 > 0, 𝑀𝑖 = 𝑀𝑖

𝑇 ∈ 𝑹𝑛×𝑛 , 𝑁𝑖𝑗 ∈ π‘Ήπ‘šΓ—π‘› ,π‘Šπ‘–π‘™π‘—π‘§ = π‘Šπ‘–π‘™π‘—π‘§

𝑇 ∈ 𝑹𝑛×𝑛 , (𝑖 = 1,2,… ,𝑁; 𝑙 = 1,2,… , 𝑝; 𝑗 =

1,2,… , 𝑐; 𝑧 = 1,2,… , 𝜏 + 1)such that the following LMIs hold:

π‘Šπ‘–π‘™π‘—π‘§ > 0 βˆ€π‘–, 𝑗, 𝑙, 𝑧 (9)

Ω𝑖𝑙𝑗 +π‘Šπ‘–π‘™π‘—π‘§ +𝑀𝑖 > 0 βˆ€π‘–, 𝑗, 𝑙, 𝑧 (10)

βˆ‘βˆ‘(𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§Ξ©π‘–π‘™π‘— βˆ’ (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ βˆ’ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§)π‘Šπ‘–π‘™π‘—π‘§ + 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§π‘€π‘–) βˆ’ 𝑀𝑖

𝑐

𝑗=1

𝑝

𝑙=1

< 0 βˆ€π‘–1, 𝑖2, … , 𝑖𝑛 , π‘˜, 𝑖, 𝑧 (11)

Θ2𝑖 = [βˆ’πΎπ‘– �̃�𝑖𝑙

π‘‡πœ™π‘–π‘‡

βˆ— βˆ’πΌ] < 0

(12)

Θ1𝑖 = [βˆ’π‘‹π‘– π‘‹π‘–βˆ— 𝐾𝑖 βˆ’ 2𝐼

] < 0 (13)

where

Ω̃𝑖𝑙𝑗 = [Ξ©Μƒ1𝑖𝑙𝑗 Ξ©Μƒ2𝑖𝑙

βˆ— Ξ©Μƒ3𝑖𝑙], Ξ©Μƒ1𝑖𝑙𝑗 = 𝑯𝒆(𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0

βˆ’1(𝑁 βˆ’ 1) [βˆ‘ (π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)

π‘π‘˜=1π‘˜β‰ π‘–

] + πœπ‘– βˆ’ οΏ½ΜƒοΏ½π‘–π‘™π‘‡πœ“1𝑖�̃�𝑖𝑙

Ξ©Μƒ2𝑖𝑙 = βˆ’π·2𝑖𝑙𝑇 πœ“1𝑖𝐷2𝑖𝑙 βˆ’ 𝐻𝑒(𝐷2π‘–π‘™πœ“2𝑖) βˆ’ πœ“3𝑖, Ξ©Μƒ3𝑖𝑙 = 𝐷1𝑖𝑙 βˆ’ �̃�𝑖𝑙

π‘‡πœ“1𝑖�̃�𝑖𝑙 βˆ’ οΏ½ΜƒοΏ½π‘–π‘™πœ“2𝑖

for all 𝑖, 𝑙, 𝑗; and the feedback gain define as 𝐺𝑖𝑗 = π‘π‘–π‘—π‘‹π‘–βˆ’1 for all 𝑖, 𝑗. Remember that 𝑯𝒆(𝐴) = 𝐴 + 𝐴𝑇. Also

οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ define as οΏ½ΜƒοΏ½π‘˜π‘–

𝑇 β‰₯ β€–βˆ‘ βˆ‘ β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑))οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘π‘—=1

𝑝𝑙=1 β€–.

Proof. Consider the quadratic Lyapunov function as follows:

𝑉(𝑑) = βˆ‘ π‘₯𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑)

𝑁𝑖=1 , 0 < 𝑃𝑖 = 𝑃𝑖

𝑇 ∈ 𝑹𝑛×𝑛 , βˆ€π‘– (14)

The main objective is to develop a condition guaranteeing that 𝑉(𝑑) > 0and οΏ½Μ‡οΏ½(𝑑) < 0 for all π‘₯𝑖(𝑑) β‰  0, the type-2

fuzzy large-scale control system is guaranteed to be asymptotically stable, implying that π‘₯𝑖(𝑑) β†’ 0 as 𝑑 β†’ ∞. To

ensure that οΏ½Μ‡οΏ½(𝑑) < 0 for all π‘₯𝑖(𝑑) β‰  0 we have:

οΏ½Μ‡οΏ½(𝑑) =βˆ‘{�̇�𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑) + π‘₯𝑖

𝑇(𝑑)𝑃𝑖�̇�𝑖(𝑑)}

𝑁

𝑖=1

=βˆ‘2{(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{(𝐴𝑖𝑙 + 𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) + 𝐷1π‘–π‘™πœ”π‘–(𝑑)}

𝑐

𝑗=1

𝑝

𝑙=1

)

𝑇

𝑃𝑖π‘₯𝑖(𝑑)}

𝑁

𝑖=1

+βˆ‘2{βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘— {βˆ‘οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

𝑐

𝑗=1

𝑝

𝑙=1

}𝑃𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

(15)

Same as [21] for interconnections terms by using Lemma1 in the appendix and noting that οΏ½ΜƒοΏ½π‘–π‘˜ β‰₯β€–βˆ‘ βˆ‘ β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑))οΏ½Μ…οΏ½π‘–π‘˜π‘™

𝑐𝑗=1

𝑝𝑙=1 β€– we have

βˆ‘{[βˆ‘οΏ½ΜƒοΏ½π‘–π‘˜π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]

𝑇

[βˆ‘οΏ½ΜƒοΏ½π‘–π‘˜π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]}

𝑁

𝑖=1

β‰€βˆ‘{[βˆ‘οΏ½ΜƒοΏ½π‘–π‘˜π‘₯𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]

𝑇

[βˆ‘οΏ½ΜƒοΏ½π‘–π‘˜π‘₯𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]}

𝑁

𝑖=1

β‰€βˆ‘{(𝑁 βˆ’ 1) [βˆ‘π‘₯𝑖𝑇(𝑑)οΏ½ΜƒοΏ½π‘˜π‘–

𝑇 οΏ½ΜƒοΏ½π‘˜π‘–π‘₯𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]}

𝑁

𝑖=1

(16)

and by using Lemma2 in the appendix we have and by considering 0 < 𝜏0 < πœπ‘–π‘™π‘—we have

οΏ½Μ‡οΏ½(𝑑)

β‰€βˆ‘2{(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{(𝐴𝑖𝑙 + 𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) + 𝐷1π‘–π‘™πœ”π‘–(𝑑)}

𝑐

𝑗=1

𝑝

𝑙=1

)

𝑇

𝑃𝑖π‘₯𝑖(𝑑)}

𝑁

𝑖=1

+βˆ‘{𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘π‘₯𝑖

𝑇(𝑑)οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘₯𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]}

𝑁

𝑖=1

+βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—πœπ‘–

𝑐

𝑗=1

𝑝

𝑙=1

(π‘₯𝑖(𝑑)𝑇𝑃𝑖𝑃𝑖π‘₯𝑖(𝑑)))

𝑁

𝑖=1

(17)

let 𝑋𝑖 = π‘ƒπ‘–βˆ’1, 𝑔𝑖(𝑑) = 𝑋𝑖

βˆ’1π‘₯𝑖(𝑑) , 𝑁𝑖𝑗 = 𝐺𝑖𝑗𝑋𝑖, �̃�𝑖𝑙 = 𝐢𝑖𝑙𝑋𝑖, then we have

οΏ½Μ‡οΏ½(𝑑)

β‰€βˆ‘

{

βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—

(

𝑔𝑖𝑇(𝑑)(𝑋𝑖𝐴𝑖𝑙

𝑇 + 𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 + 𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗)𝑔𝑖(𝑑)

𝑐

𝑗=1

𝑝

𝑙=1

𝑁

𝑖=1

+ 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘π‘”π‘–

𝑇(𝑑)(π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)𝑔𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

] + πœπ‘–(𝑔𝑖𝑇(𝑑)𝑔𝑖(𝑑))

)

}

(18)

𝑧𝑖(𝑑) =βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{�̃�𝑖𝑙𝑔𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

(19)

now by consider the following performance index we have

οΏ½Μ‡οΏ½(𝑑) βˆ’ 𝐽(𝑑) β‰€βˆ‘πœπ‘–π‘‡ {βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—Ξ©Μƒπ‘–π‘™π‘—

𝑐

𝑗=1

𝑝

𝑙=1

}πœπ‘–

𝑁

𝑖=1

(20)

𝐽(𝑑) =βˆ‘(π‘§π‘–π‘‡πœ“1𝑖𝑧𝑖 + 2𝑧𝑖

π‘‡πœ“2π‘–πœ”π‘–(𝑑) + πœ”π‘–π‘‡(𝑑)πœ“3π‘–πœ”π‘–(𝑑))

𝑁

𝑖=1

=βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{�̃�𝑖𝑙𝑔𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}𝑇

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

πœ“1𝑖{�̃�𝑖𝑙𝑔𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}

𝑁

𝑖=1

+ 2{�̃�𝑖𝑙𝑔𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}π‘‡πœ“2π‘–πœ”π‘–(𝑑) + πœ”π‘–

𝑇(𝑑)πœ“3π‘–πœ”π‘–(𝑑) (21)

where

πœπ‘–(𝑑) = [𝑔𝑖(𝑑)πœ”π‘–(𝑑)

], Ω̃𝑖𝑙𝑗 = [Ξ©Μƒ1𝑖𝑙𝑗 Ξ©Μƒ2𝑖𝑙

βˆ— Ξ©Μƒ3𝑖𝑙], Ξ©Μƒ1𝑖𝑙𝑗 = 𝑯𝒆(𝐴𝑖𝑙𝑋𝑖 + 𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0

βˆ’1(𝑁 βˆ’ 1) [βˆ‘ (π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)

π‘π‘˜=1π‘˜β‰ π‘–

] + πœπ‘– βˆ’

οΏ½ΜƒοΏ½π‘–π‘™π‘‡πœ“1𝑖�̃�𝑖𝑙, Ξ©Μƒ2𝑖𝑙 = βˆ’π·2𝑖𝑙

𝑇 πœ“1𝑖𝐷2𝑖𝑙 βˆ’π»π‘’(𝐷2π‘–π‘™πœ“2𝑖) βˆ’ πœ“3𝑖, Ξ©Μƒ3𝑖𝑙 = 𝐷1𝑖𝑙 βˆ’ οΏ½ΜƒοΏ½π‘–π‘™π‘‡πœ“1𝑖�̃�𝑖𝑙 βˆ’ οΏ½ΜƒοΏ½π‘–π‘™πœ“2𝑖.

by using Schur complement we have

Ω𝑖𝑙𝑗 = [Ξ©11𝑖𝑙𝑗 Ξ©12𝑖𝑙 Ξ©13π‘–π‘™βˆ— Ξ©22𝑖𝑙 Ξ©23π‘–π‘™βˆ— βˆ— βˆ’I

], Ξ©11𝑖𝑙𝑗 = 𝑯𝒆(𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘ (π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–

𝑇 οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)π‘π‘˜=1π‘˜β‰ π‘–

] + πœπ‘–, Ξ©12𝑖𝑙 =

𝐷1𝑖𝑙 βˆ’ οΏ½ΜƒοΏ½π‘–π‘™πœ“2𝑖, Ξ©13𝑖𝑙 = οΏ½ΜƒοΏ½π‘–π‘™π‘‡πœ“1𝑖

𝑇 , Ξ©22𝑖𝑙 = βˆ’π»π‘’(𝐷2π‘–π‘™πœ“2𝑖) βˆ’ πœ“3𝑖, Ξ©23𝑖𝑙 = 𝐷2𝑖𝑙𝑇 πœ“1𝑖

𝑇 .

if we can prove βˆ‘ βˆ‘ β„ŽΜƒπ‘–π‘™π‘—Ξ©π‘–π‘™π‘—π‘Ÿπ‘—=1

π‘Ÿπ‘™=1 < 0 then we have:

οΏ½Μ‡οΏ½(𝑑) βˆ’ 𝐽(𝑑) β‰€βˆ‘πœπ‘–π‘‡ {βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—Ξ©Μƒπ‘–π‘™π‘—

𝑐

𝑗=1

𝑝

𝑙=1

}πœπ‘–

𝑁

𝑖=1

< 0 (22)

now by using (8) considering the information of the sub-FOUs is brought to the stability analysis with the introduction

of some slack matrices through the following inequalities using the S-procedure:

let 𝑀𝑖 = 𝑀𝑖𝑇is an arbitrary matrix with appropriate dimensions. Then

{βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) [(𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) + 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))) βˆ’ 1]𝑀𝑖

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

} = 0 (23)

also, consider 0 ≀ π‘Šπ‘–π‘™π‘—π‘§ =π‘Šπ‘–π‘™π‘—π‘§π‘‡

βˆ’βˆ‘βˆ‘(1βˆ’ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)))

𝑐

𝑗=1

𝑝

𝑙=1

(β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§ β‰₯ 0 (24)

by using (23) and (24) for βˆ‘ βˆ‘ β„ŽΜƒπ‘–π‘™π‘—Ξ©π‘–π‘™π‘—π‘Ÿπ‘—=1

π‘Ÿπ‘™=1 < 0 we have

βˆ‘{βˆ‘βˆ‘βˆ‘(πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) [𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) + (1 βˆ’ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))])

𝜏+1

𝑧=1

Ω𝑖𝑙𝑗

𝑐

𝑗=1

𝑝

𝑙=1

}

𝑁

𝑖=1

βˆ’βˆ‘βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))

𝜏+1

𝑧=1

(1 βˆ’ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)))

𝑐

𝑗=1

𝑝

𝑙=1

(β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§

𝑁

𝑖=1

+βˆ‘{βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) [(𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) + (1 βˆ’ 𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)))β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

𝑁

𝑖=1

βˆ’ 1]𝑀𝑖}

=βˆ‘{[βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))Ω𝑖𝑙𝑗 βˆ’ (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

𝑁

𝑖=1

+ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝑀𝑖)βˆ’ 𝑀𝑖]}

+βˆ‘βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

𝑁

𝑖=1

𝛾𝑖𝑙𝑗𝑧(π‘₯𝑖(𝑑)) (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))) (Ω𝑖𝑙𝑗 +π‘Šπ‘–π‘™π‘—π‘§ +𝑀𝑖) < 0 (25)

also, the following equation must be checked

[βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))Ω𝑖𝑙𝑗 βˆ’ (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§ + β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝑀𝑖)

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

βˆ’π‘€π‘–] < 0 βˆ€π‘– (26)

and Ω̃𝑖𝑙𝑗 +π‘Šπ‘–π‘™π‘—π‘§ +𝑀𝑖 > 0 for all 𝑖, 𝑗, 𝑙, 𝑧 due to (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))) ≀ 0. Recalling that only one

πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) = 1 for each fixed value of 𝑖, 𝑙, 𝑗 at any time instant such that βˆ‘ πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝜏+1𝑧=1 = 1, the first set of

inequality is satisfied by

[βˆ‘βˆ‘(β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))Ω𝑖𝑙𝑗 βˆ’ (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§ + β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝑀𝑖) βˆ’π‘€π‘–

𝑐

𝑗=1

𝑝

𝑙=1

]

< 0 βˆ€π‘–, 𝑙, 𝑗, 𝑧 (27)

Expressing β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) and β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))with (7) and recalling that

βˆ‘ βˆ‘ β€¦βˆ‘ ∏ πœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘–π‘§(π‘₯π‘Ÿ(𝑑))π‘›π‘Ÿ=1

2𝑖𝑛=1

2𝑖1=1

π‘žπ‘˜=1 = 1, for all z and πœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘–π‘§ β‰₯ 0 for all π‘Ÿ, π‘–π‘Ÿ , π‘˜, 𝑖 π‘Žπ‘›π‘‘ 𝑧 the first set of

inequalities will be satisfied if the following inequalities hold

[βˆ‘βˆ‘ β€¦βˆ‘βˆπœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘§(π‘₯π‘Ÿ(𝑑))

𝑛

π‘Ÿ=1

2

𝑖𝑛=1

2

𝑖1=1

π‘ž

π‘˜=1

βˆ‘βˆ‘(𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§Ξ©π‘–π‘™π‘— βˆ’ (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ βˆ’ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§)π‘Šπ‘–π‘™π‘—π‘§

𝑐

𝑗=1

𝑝

𝑙=1

+ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§π‘€π‘–) βˆ’π‘€π‘–] < 0 βˆ€π‘–1, 𝑖2, … , 𝑖𝑛 , π‘˜, 𝑖, 𝑧 (28)

consequently (27) can be guaranteed by

βˆ‘βˆ‘(𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§Ξ©π‘–π‘™π‘— βˆ’ (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ βˆ’ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§)π‘Šπ‘–π‘™π‘—π‘§ + 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§π‘€π‘–) βˆ’ 𝑀𝑖

𝑐

𝑗=1

𝑝

𝑙=1

< 0 βˆ€π‘–1, 𝑖2, … , 𝑖𝑛 , π‘˜, 𝑖, 𝑧 (29)

therefore, there is always a sufficiently small scalar 𝑐 > 0 such that Ω̃𝑖𝑙𝑗 ≀ βˆ’π‘πΌ. This means that

οΏ½Μ‡οΏ½(𝑑) βˆ’ 𝐽(𝑑) ≀ βˆ’π‘ |βˆ‘πœπ‘–

𝑁

𝑖=1

|

2

(30)

thus 𝐽(𝑑) β‰₯ οΏ½Μ‡οΏ½(t) hold for any 𝑑 β‰₯ 0, which means

∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 β‰₯ 𝑉(π‘₯(𝑑)) βˆ’ 𝑉(π‘₯(0)) (31)

then by considering 𝜌 = βˆ’π‘‰(π‘₯(0))in (31) we have:

∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 β‰₯ 𝑉(π‘₯(𝑑)) + 𝜌, βˆ€π‘‘ β‰₯ 0 (32)

According to Definition 1 in the appendix, if we want to design a controller with a robust 𝐻∞ performance, then we

must set the 𝜌 value to zero. For substitution 𝑉(π‘₯(𝑑)) in (32) considering 𝐾𝑖 > 0 by Characteristic (𝐾𝑖 βˆ’ 𝐼)πΎπ‘–βˆ’1(𝐾𝑖 βˆ’

𝐼) β‰₯ 0 where βˆ’πΎπ‘–βˆ’1 ≀ 𝐾𝑖 βˆ’ 2𝐼 then we have:

Θ1𝑖 = [βˆ’π‘‹π‘– π‘‹π‘–βˆ— 𝐾𝑖 βˆ’ 2𝐼

] < 0 (33)

Finally 𝑃𝑖 > 𝐾𝑖 and (14) proved if :

𝑉(π‘₯(𝑑)) =βˆ‘π‘₯𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

β‰₯βˆ‘π‘₯𝑖𝑇(𝑑)𝐾𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

β‰₯ 0 (34)

Also

𝑉(π‘₯(𝑑)) =βˆ‘π‘₯𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

β‰₯βˆ‘π‘₯𝑖𝑇(𝑑)𝐾𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

β‰₯ 0 (35)

According to Definition 1, we need to prove that the following inequality holds for any matrices ϕ𝑖 , πœ“1𝑖 ,πœ“2π‘–π‘Žπ‘›π‘‘ πœ“3𝑖 satisfying assumption 1 in the appendix:

∫ 𝐽(𝑑)𝑑

0

𝑑𝑑 βˆ’ 𝑧𝑇(𝑑)πœ™π‘§(𝑑) β‰₯ 𝜌 (36)

To this end, we consider the two cases of β€–πœ™β€– = 0 and β€–πœ™β€– β‰  0, respectively. Firstly, we consider the case

whenβ€–πœ™β€– = 0. Also in this case by considering πœ“1 = βˆ’πΌ , πœ“2 = 0 , πœ“3 = 𝛾2𝐼 and 𝜌 = 0 the 𝐻∞ performance

index will be hold.

∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 =βˆ‘π‘₯𝑖𝑇(𝑑)𝐾𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

+ 𝜌 β‰₯ 𝜌, βˆ€π‘‘ β‰₯ 0 (37)

By using (37) and considering 𝑧𝑇(𝑑)πœ™π‘§(𝑑) ≑ 0 the (36) hold. Secondly, we consider the case of β€–πœ™β€– β‰  0. In this case,

it is required under Assumption1 in the appendix that β€–πœ“1β€– + β€–πœ“2β€– = 0 and ‖𝐷2𝑖𝑙‖ = 0, which implies that πœ“1 =0, πœ“2 = 0 π‘Žπ‘›π‘‘ πœ“3 > 0. Then:

𝐽(𝑠) =βˆ‘πœ”π‘–π‘‡(𝑠)πœ“3π‘–πœ”π‘–

𝑇(𝑠)

𝑁

𝑖=1

β‰₯ 0

now by considering οΏ½ΜƒοΏ½π‘–π‘™π‘‡πœ™π‘–οΏ½ΜƒοΏ½π‘–π‘™ ≀ 𝐾𝑖 due to

Θ2𝑖 = [βˆ’πΎπ‘– �̃�𝑖𝑙

π‘‡πœ™π‘–π‘‡

βˆ— βˆ’πΌ] < 0 (38)

and ‖𝐷2𝑖𝑙‖ = 0 satisfy in assumption1 for any 𝑑 β‰₯ 0, the following inequalities hold

∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 βˆ’ 𝑧𝑇(𝑑)πœ™π‘§(𝑑)

β‰₯ ∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 βˆ’βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{𝐢𝑖𝑙π‘₯𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}𝑻

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

πœ™π‘–{𝐢𝑖𝑙π‘₯𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}

𝑁

𝑖=1

= ∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 βˆ’βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

(𝑔𝑖𝑇(𝑑)�̃�𝑖𝑙

π‘‡πœ™π‘–οΏ½ΜƒοΏ½π‘–π‘™π‘”π‘–(𝑑))

𝑁

𝑖=1

β‰₯ ∫ 𝐽(𝑠)𝑑

0

𝑑𝑠 βˆ’βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

(π‘₯𝑖𝑇(𝑑)𝐾𝑖π‘₯𝑖(𝑑))

𝑁

𝑖=1

β‰₯ 𝜌 (39)

Finally by Ο‰(𝑑) ≑ 0 we have:

οΏ½Μ‡οΏ½(𝑑) ≀ 𝑧𝑇(𝑑)(βˆ‘βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—

𝒄

𝒋=𝟏

𝒑

𝒍=𝟏

(πœ“1𝑖𝑙)

𝑁

𝑖=1

)𝑧(𝑑) βˆ’ 𝑐 |βˆ‘πœπ‘–

𝑁

𝑖=1

|

2

(40)

According to assumption1 in the appendix πœ“1𝑖𝑙 < 0 for any 𝑖, 𝑙, then we have

οΏ½Μ‡οΏ½(𝑑) ≀ βˆ’π‘ |βˆ‘πœπ‘–

𝑁

𝑖=1

|

2

(41)

thus the closed-loop system asymptotically stable by Ο‰(𝑑) ≑ 0. This completes the proof.

Remark1: It can be seen from (8) that if more sub-FOUs are considered the more information about the FOU is

contained in the local LMFs and UMFs. Thus, using the information of membership functions into the stability

condition is resulting in a more relaxed stability analysis result.

Remark2: From (28), the advantage of using the type-2 fuzzy system in the form of (5) can be seen that local LMFs

and UMFs determine the stability condition.

Remark3: By expressing β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) and β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) in the form of (7), they are characterized by the constant

scalers𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ and 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§. Also, noting that the cross terms ∏ πœˆπ‘Ÿπ‘–π‘Ÿπ‘˜π‘§(π‘₯π‘Ÿ(𝑑))π‘›π‘Ÿ=1 are independent of 𝑖 and 𝑙.

By these favorable properties we need only to check (28) at some discrete points (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ and 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§) instead

of every single point of the local LMFs and UMFs.

Remark4: Under the imperfect premise matching, the type-2 fuzzy controller can choose the premise membership

functions and the number of rules different from the type-2 fuzzy model freely.

Corollary: In the particular case, if we do not consider disturbance, then we have the following result. First, we

consider a large-scale nonlinear system that is composed of 𝑁 nonlinear subsystems with interconnections. A p-rule

type-2 fuzzy T-S model is employed to describe the dynamics of the 𝑖th nonlinear subsystem as follows:

𝑷𝒍𝒂𝒏𝒕 𝑹𝒖𝒍𝒆 𝒍: 𝑰𝑭 πœπ‘–1(𝑑)𝑖𝑠 𝐹𝑖1, πœπ‘–2(𝑑)𝑖𝑠 𝐹𝑖2

𝑙 π‘Žπ‘›π‘‘β€¦ π‘Žπ‘›π‘‘ πœπ‘–πœ“(𝑑)𝑖𝑠 πΉπ‘–πœ“π‘™

𝑻𝑯𝑬𝑡

�̇�𝑖(𝑑) =βˆ‘οΏ½ΜƒοΏ½π‘–π‘™(π‘₯𝑖(𝑑))

(

(𝐴𝑖𝑙π‘₯𝑖(𝑑) + 𝐡𝑖𝑙𝑒𝑖(𝑑)) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

)

π‘Ÿ

𝑙=1

(42)

where 𝐹𝑖𝛼𝑙 is a type-2 fuzzy set of rule 𝑙 corresponding to the function πœπ‘–π›Ό(𝑑),𝑖 = 1,2, … ,𝑁; 𝛼 = 1,2,… , πœ“; 𝑙 =

1,2,… , 𝑝; πœ“ is a positive integer; π‘₯𝑖(𝑑) ∈ 𝑹𝑛 is the 𝑖th subsystem state vector; the 𝐴𝑖𝑙 ∈ 𝑹

𝑛×𝑛 and 𝐡𝑖𝑙 ∈ π‘Ήπ‘›Γ—π‘šare the

known system and input matrices, respectively; 𝑒𝑖 ∈ π‘Ήπ‘š is the input vector. οΏ½Μ…οΏ½π‘–π‘˜π‘™ denotes the interconnection matrix

between the 𝑖th and π‘˜th subsystems; (𝐴𝑖𝑙 , 𝐡𝑖𝑙) are the 𝑙th local model; The firing strength of the 𝑝th rule of 𝑖th

subsystem is of the form (2). Like controller in (3) the membership functions and the number of rules of the fuzzy

system model and the controller need not be the same here. Thus, the membership functions and the number of

controller rules relative to the plant model can be freely chosen. For the 𝑖th subsystem controller we have:

π‘ͺ𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓 𝑹𝒖𝒍𝒆 𝒍:

𝑰𝑭 𝑔1(π‘₯(𝑑))𝑖𝑠 𝑁𝑖1𝑗, 𝑔𝑖2(π‘₯(𝑑))𝑖𝑠 𝑁𝑖2

𝑗 π‘Žπ‘›π‘‘β€¦π‘Žπ‘›π‘‘ 𝑔𝑖Ω(π‘₯(𝑑)) 𝑖𝑠 𝑁𝑖Ω

𝑗

𝑻𝑯𝑬𝑡 𝑒𝑖(𝑑) =βˆ‘οΏ½ΜƒοΏ½π‘–π‘—(π‘₯𝑖(𝑑))𝐺𝑖𝑗π‘₯𝑖(𝑑)

π‘Ÿ

𝑗=1

(43)

where 𝑁𝑖β𝑗

is a type-2 fuzzy set of rule 𝑗th corresponding to the function𝑔𝑖𝛽(π‘₯(𝑑)), 𝛽 = 1,2,… ,Ξ©; 𝑗 = 1,2, … , 𝑐; Ξ© is

a positive integer; 𝐺𝑗 ∈ π‘Ήπ‘šΓ—π‘› are the constant feedback gains to be determined. The firing strength of the 𝑗th rule is

the form of (4). Finally, we have the following type-2 fuzzy T-S large-scale control system:

�̇�𝑖(𝑑) =βˆ‘βˆ‘οΏ½ΜƒοΏ½π‘–π‘™οΏ½ΜƒοΏ½π‘–π‘— {(𝐴𝑖𝑙 +𝐡𝑖𝑙𝐺𝑗)π‘₯𝑖(𝑑) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

π‘Ÿ

𝑗=1

π‘Ÿ

𝑙=1

(44)

Now, decentralized state feedback type-2 fuzzy T-S controller design presented for the continuous-time large-scale

type-2 fuzzy T-S model system in (55).

Theorem2. Consider a large-scale type-2 fuzzy T-S system model in (42). Decentralized state feedback type-2

fuzzy controller in the form of (43) exist, and can guarantee the asymptotic stability of the closed-loop type-2 fuzzy

control system (44) if there exist 𝑋𝑖 = 𝑋𝑖𝑇 > 0, 𝐺𝑖 = 𝐺𝑖

𝑇 > 0, 𝑀𝑖 = 𝑀𝑖𝑇 ∈ 𝑹𝑛×𝑛, 𝑁𝑖𝑗 ∈ 𝑹

π‘šΓ—π‘› , π‘Šπ‘–π‘™π‘—π‘§ = π‘Šπ‘–π‘™π‘—π‘§π‘‡ ∈

𝑹𝑛×𝑛 ,(𝑖 = 1,2,… , 𝑁; 𝑙 = 1,2,… , 𝑝; 𝑗 = 1,2,… , 𝑐; 𝑧 = 1,2,… , 𝜏 + 1) such that the following LMIs hold:

π‘Šπ‘–π‘™π‘—π‘§ > 0 βˆ€π‘–, 𝑗, 𝑙, 𝑧 (45)

(

(

(𝑋𝑖𝐴𝑖𝑙

𝑇 +𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 +𝐴𝑖𝑙𝑋𝑖 + 𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘(π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–

𝑇 οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)

𝑁

π‘˜=1π‘˜β‰ π‘–

] + πœπ‘–πΌ

)

+π‘Šπ‘–π‘™π‘—π‘§ +𝑀𝑖

)

> 0 βˆ€π‘–, 𝑗, 𝑙, 𝑧 (46)

βˆ‘βˆ‘

(

𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§

(

(𝑋𝑖𝐴𝑖𝑙

𝑇 +𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 +𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘(π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–

𝑇 οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)

𝑁

π‘˜=1π‘˜β‰ π‘–

]

𝑐

𝑗=1

𝑝

𝑙=1

+ πœπ‘–πΌ

)

βˆ’ (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ βˆ’ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§)π‘Šπ‘–π‘™π‘—π‘§ + 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§π‘€π‘–

)

βˆ’π‘€π‘– < 0 βˆ€π‘–1, 𝑖2, … , 𝑖𝑛 , π‘˜, 𝑖, 𝑧

(47)

where 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ and 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§, 𝑖 = 1,2, … ,𝑁; 𝑙 = 1,2,… , 𝑝; 𝑗 = 1,2,… , 𝑐; 𝑧 = 1,2,… , 𝜏 + 1; 𝑖𝑛 = 1,2; π‘˜ =

1,2,… , π‘ž are predefine constant scalers satisfying (7).

Proof. We consider the following quadratic Lyapunov function candidate to investigate the stability of the type-

2 fuzzy T-S large-scale control system

𝑉(𝑑) =βˆ‘π‘₯𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

(48)

where 0 < 𝑃𝑖 = 𝑃𝑖𝑇 ∈ 𝑹𝑛×𝑛.

The main objective is to develop a condition guaranteeing that 𝑉(𝑑) > 0and οΏ½Μ‡οΏ½(𝑑) < 0 for all π‘₯𝑖(𝑑) β‰  0, the type-2

fuzzy T-S large-scale control system is guaranteed to be asymptotically stable, implying that π‘₯𝑖(𝑑) β†’ 0 as 𝑑 β†’ ∞. We

have:

οΏ½Μ‡οΏ½(𝑑) =βˆ‘{�̇�𝑖𝑇(𝑑)𝑃𝑖π‘₯𝑖(𝑑) + π‘₯𝑖

𝑇(𝑑)𝑃𝑖�̇�𝑖(𝑑)}

𝑁

𝑖=1

=βˆ‘

{

(βˆ‘βˆ‘οΏ½ΜƒοΏ½π‘–π‘™οΏ½ΜƒοΏ½π‘–π‘— {(𝐴𝑖𝑙 +𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) +βˆ‘οΏ½Μ…οΏ½π‘–π‘˜π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

𝑐

𝑗=1

𝑝

𝑙=1

)

𝑇

𝑃𝑖π‘₯𝑖(𝑑)

𝑁

𝑖=1

+ π‘₯𝑖𝑇(𝑑)𝑃𝑖 (βˆ‘βˆ‘οΏ½ΜƒοΏ½π‘–π‘™οΏ½ΜƒοΏ½π‘–π‘— {(𝐴𝑖𝑙 +𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

𝑐

𝑗=1

𝑝

𝑙=1

)

}

(49)

Such as proof of Theorem1 for interconnection term by considering οΏ½ΜƒοΏ½π‘˜π‘– β‰₯ β€–βˆ‘ βˆ‘ β„ŽΜƒπ‘–π‘™π‘—οΏ½Μ…οΏ½π‘–π‘˜π‘™π‘π‘—=1

𝑝𝑙=1 β€–. we have:

οΏ½Μ‡οΏ½(𝑑)

β‰€βˆ‘2{(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—{(𝐴𝑖𝑙 + 𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑)}

𝑐

𝑗=1

𝑝

𝑙=1

)

𝑇

𝑃𝑖π‘₯𝑖(𝑑)}

𝑁

𝑖=1

+βˆ‘{𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘π‘₯𝑖

𝑇(𝑑)οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘₯𝑖(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

]}

𝑁

𝑖=1

+βˆ‘(βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—πœπ‘–

𝑐

𝑗=1

𝑝

𝑙=1

(π‘₯𝑖(𝑑)𝑇𝑃𝑖𝑃𝑖π‘₯𝑖(𝑑)))

𝑁

𝑖=1

(50)

let 𝑋𝑖 = π‘ƒπ‘–βˆ’1, πœ™π‘–(𝑑) = 𝑋𝑖

βˆ’1π‘₯𝑖(𝑑) , 𝑁𝑖𝑗 = 𝐺𝑖𝑗𝑋𝑖, then we have

οΏ½Μ‡οΏ½(t)

=βˆ‘

{

βˆ‘βˆ‘β„ŽΜƒπ‘–π‘™π‘—(π‘₯𝑖(𝑑))

(

πœ™π‘–π‘‡(𝑑)(𝑋𝑖𝐴𝑖𝑙

𝑇 + 𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 +𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗)πœ™π‘–(𝑑)

𝑐

𝑗=1

𝑝

𝑙=1

𝑁

𝑖=1

+ 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘πœ™π‘–

𝑇(𝑑)(π‘‹π‘–οΏ½ΜƒοΏ½π‘˜π‘–π‘‡ οΏ½ΜƒοΏ½π‘˜π‘–π‘‹π‘–)πœ™π‘–(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

] + πœπ‘–(πœ™π‘–π‘‡(𝑑)πœ™π‘–(𝑑))

)

}

(51)

we then express the type-2 membership function in the form of (8) and by considering the information of the sub-

FOUs brought to stability analysis with the introduction of some slack matrices as in (23) and (24). Then we have

οΏ½Μ‡οΏ½(𝑑) < 0for all π‘₯𝑖(𝑑) β‰  0 from:

[

βˆ‘βˆ‘βˆ‘πœ‰π‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))

(

β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))

(

(𝑋𝑖𝐴𝑖𝑙

𝑇 +𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 +𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗)

𝜏+1

𝑧=1

𝑐

𝑗=1

𝑝

𝑙=1

+ 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘(π‘‹π‘–οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—

π‘‡οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—π‘‹π‘–)

𝑁

π‘˜=1π‘˜β‰ π‘–

] + πœπ‘–π‘™π‘—πΌ

)

βˆ’ (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§

+ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝑀𝑖

)

βˆ’π‘€π‘–

]

< 0 βˆ€π‘– (52)

(52) satisfied if the following inequality hold:

[

βˆ‘βˆ‘

(

β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))

(

(𝑋𝑖𝐴𝑖𝑙

𝑇 +𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 +𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘(π‘‹π‘–οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—

π‘‡οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—π‘‹π‘–)

𝑁

π‘˜=1π‘˜β‰ π‘–

]

𝑐

𝑗=1

𝑝

𝑙=1

+ πœπ‘–π‘™π‘—πΌ

)

βˆ’ (β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)) βˆ’ β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑)))π‘Šπ‘–π‘™π‘—π‘§ + β„Žπ‘–π‘™π‘—π‘§(π‘₯𝑖(𝑑))𝑀𝑖

)

βˆ’π‘€π‘–

]

< 0 βˆ€π‘–, 𝑙, 𝑗, 𝑧

(53)

also, the second set of inequalities will be satisfied if the following inequalities hold:

βˆ‘βˆ‘

(

𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§

(

(𝑋𝑖𝐴𝑖𝑙

𝑇 + 𝑁𝑖𝑗𝑇𝐡𝑖𝑙

𝑇 + 𝐴𝑖𝑙𝑋𝑖 +𝐡𝑖𝑙𝑁𝑖𝑗) + 𝜏0βˆ’1(𝑁 βˆ’ 1) [βˆ‘(π‘‹π‘–οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—

π‘‡οΏ½Μ…οΏ½π‘˜π‘–π‘™π‘—π‘‹π‘–)

𝑁

π‘˜=1π‘˜β‰ π‘–

]

𝑐

𝑗=1

𝑝

𝑙=1

+ πœπ‘–π‘™π‘—πΌ

)

βˆ’ (𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§ βˆ’ 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§)π‘Šπ‘–π‘™π‘—π‘§ + 𝛿𝑖𝑙𝑗𝑖1𝑖2β€¦π‘–π‘›π‘˜π‘§π‘€π‘–

)

βˆ’π‘€π‘– < 0 βˆ€π‘–1, 𝑖2, … , 𝑖𝑛 , π‘˜, 𝑖, 𝑧

(54)

This completes the proof.

IV. Simulation

Consider a double-inverted pendulum system connected by a spring, the modified equations of the motion for the

interconnected pendulum are given by [21].

{

�̇�𝑖1 = π‘₯𝑖2

�̇�𝑖2 = βˆ’π‘˜π‘Ÿ2

4𝐽𝑖π‘₯𝑖1 +

π‘˜π‘Ÿ2

4𝐽𝑖sin(π‘₯𝑖1) π‘₯𝑖2 +

2

𝐽𝑖π‘₯𝑖2 +

1

𝐽𝑖𝑒𝑖 +βˆ‘

π‘˜π‘Ÿ2

8𝐽𝑖π‘₯𝑗1

2

𝑗=1𝑗≠𝑖

, 𝑖 = {1,2} (55)

where π‘₯𝑖1denotes the angle of the 𝑖th pendulum from the vertical; π‘₯𝑖2is the angular velocity of the 𝑖th pendulum. The

objective here is to design robust decentralized state feedback 𝐻∞ fuzzy type-2 controller for the T-S fuzzy type-2

large-scale in the form of such that the resulting closed-loop system is asymptotically stable with an 𝐻∞ disturbance

attenuation level 𝛾. A concise framework on the decentralized state feedback control shown in Fig. 1. A concise

framework on the decentralized State Feedback control.

Fig. 1. A concise framework on the decentralized State Feedback control.

In this simulation, the masses of two pendulums chosen as π‘š1 = 2π‘˜π‘” and π‘š2 = 2.5π‘˜π‘”; the moments of inertia are𝐽1 =2π‘˜π‘”.π‘š2 and 𝐽2 = 2.5π‘˜π‘”.π‘š

2; the constant of the connecting torsional spring is π‘˜ = 8𝑁/π‘š; the length of the pendulum

is π‘Ÿ = 1π‘š; the gravity constant is 𝑔 = 9.8π‘š/𝑠2 . We choose two local models, i.e., by linearizing the interconnected

pendulum around the origin and π‘₯𝑖1 = (Β±88Β°, 0), respectively, each pendulum can be represented by the following

IT2 T-S fuzzy model with two fuzzy rules.

𝑅𝑒𝑙𝑒 𝑙: 𝐼𝐹 𝐴𝑖𝑙π‘₯𝑖(𝑑)𝑖𝑠 𝐹𝑖𝑙 𝑇𝐻𝐸𝑁

�̇�𝑖(𝑑) =βˆ‘βˆ‘οΏ½ΜƒοΏ½π‘–π‘™οΏ½ΜƒοΏ½π‘–π‘— {(𝐴𝑖𝑙 +𝐡𝑖𝑙𝐺𝑖𝑗)π‘₯𝑖(𝑑) + 𝐷1π‘–π‘™πœ”π‘–(𝑑) +βˆ‘ οΏ½Μ…οΏ½π‘–π‘˜π‘₯π‘˜(𝑑)

𝑁

π‘˜=1π‘˜β‰ π‘–

}

π‘Ÿ

𝑗=1

π‘Ÿ

𝑙=1

𝑧𝑖(𝑑) =βˆ‘βˆ‘οΏ½ΜƒοΏ½π‘–π‘™οΏ½ΜƒοΏ½π‘–π‘—{𝐢𝑖𝑙π‘₯𝑖(𝑑) + 𝐷2π‘–π‘™πœ”π‘–(𝑑)}

𝑐

𝑗=1

𝑝

𝑙=1

(56)

where

𝐴11 = [0 18.81 0

] , 𝐴12 = [0 15.38 0

] , οΏ½Μ…οΏ½12 = [00.25

] , 𝐡1𝑙 = [00.5] , 𝐷1𝑙 = [

00.5] , 𝐢1𝑙 = [1 1]

(57)

for the first subsystem, and

𝐴21 = [0 19.01 0

] , 𝐴22 = [0 15.58 0

] , οΏ½Μ…οΏ½21 = [00.20

] , 𝐡2𝑙 = [00.5] , 𝐷2𝑙 = [

00.5] , 𝐢2𝑙 = [1 1]

(58)

for the second subsystem.

The normalized type-2 membership functions shown in Fig. 2 where π‘Ÿπ‘– = 88Β°.

Fig. 2. IT2 Membership function in Example.

Given the initial conditions π‘₯1(0) = [1.2,0]𝑇 , π‘₯2(0) = [0.8,0]

𝑇 Fig. 3 shows that the double-inverted pendulum

system is not stable in the open-loop case.

Fig. 3 State responses for open-loop double-inverted pendulums system.

Taken the controller gains solved by Theorem1, Fig. 4 shows the state responses for the closed-loop large-scale system

by considering the external disturbances πœ”1(𝑑) = 0.8π‘’βˆ’0.2𝑑 sin(0.2𝑑) and πœ”2(𝑑) = 0.6𝑒

βˆ’0.2𝑑 sin(0.2𝑑)it can be seen

that minimum of 𝐻∞ disturbance attenuation level π›Ύπ‘šπ‘–π‘› = 0.333 and the desired controller gains obtained in Table

1.

Fig. 4. State responses for closed-loop double-inverted pendulums system based on Theorem1.

0

0.2

0.4

0.6

0.8

1

1.2

- 8 8 0 8 8

DEG

REE

OF

MEM

BER

SHIP

X(TIME)

Rule1(LMF) Rule1(UMF) Rule2(LMF) Rule2(UMF)

Table 1

𝛾 [𝐺11 𝐺12 𝐺21 𝐺22] 0.333 [

βˆ’34.3381 βˆ’60.0235 βˆ’174.0191 βˆ’485.0611βˆ’16.2743 βˆ’31.7905 βˆ’93.5045 βˆ’268.4191

]

V. Conclusion

In this paper, the robust decentralized state feedback 𝐻∞ type-2 fuzzy controller design has been investigated for

continuous-time large-scale type-2 Takagi-Sugeno fuzzy systems. Through some linear matrix inequality techniques,

it has been shown that the state fuzzy controller gain can be calculated by solving a set of LMIs. Then the resulting

closed-loop fuzzy control system is asymptotically stable under extended dissipativity performance indexes.

Uncertainty in the model of large-scale systems is the result of the use of the type-1 fuzzy Takagi-Sugeno model.

Therefore, in this paper, the type-2 fuzzy model is used to cover modeling uncertainty for large scale systems. We

also stabilize the large-scale system by using the type-2 fuzzy state feedback controller model with imperfect premise

membership functions. The advantage of using membership function information in sustainability analysis is to reduce

the conservatism of the obtained conditions. Then, in order to reduce the effect of external perturbations on the large-

scale system, we applied the robustness control criterion name as extended dissipativity performance indexes to

stability analysis, which was able to guarantee the 𝐻∞ criterion, the 𝐿2 βˆ’ 𝐿∞, passive, and dissipativity performances.

Finally, a numerical example of a double-inverted pendulum system has been concerned to verify the effectiveness of

the developed methods. The result of this simulation is to improve the control characteristics and make the conditions

relax, as well as more complete coverage of the uncertainties in the system. An interesting problem for future research

is to deal with the robust decentralized static output feedback 𝐻∞ type-2 fuzzy control design for large-scale systems.

VI. Appendix

Assumption 1. ([22]) Let πœ™,πœ“1, πœ“2and πœ“3be matrices such that the following conditions hold:

(1) πœ™ = πœ™π‘‡, πœ“1 = πœ“1𝑇 π‘Žπ‘›π‘‘ πœ“3 = πœ“3

𝑇;

(2) πœ™ β‰₯ 0 and πœ“1 ≀ 0;

(3) ‖𝐷2𝑖‖. β€–πœ™β€– = 0;

(4) (β€– πœ“1β€– + β€– πœ“2β€–). β€–πœ™β€– = 0;

(5) 𝐷2π‘–π‘‡πœ“1𝐷2𝑖 + 𝐷2𝑖

π‘‡πœ“2 +πœ“2𝑇𝐷2𝑖 + πœ“3 > 0.

Definition 1. ([22]) For given matrices πœ™, πœ“1 , πœ“2and πœ“3 satisfying Assumption 1, system (5) is said to be extended

dissipative if there exists a scalar 𝜌 such that the following inequality holds for any 𝑑 > 0 and all πœ”(𝑑) ∈ β„’2[0,∞):

∫ 𝐽(𝑠)𝑑

0

𝑑𝑑 βˆ’ 𝑧𝑇(𝑑)πœ™π‘§(𝑑) β‰₯ 𝜌, (59)

where 𝐽(𝑑) = 𝑧𝑇(𝑑)πœ“1𝑧(𝑑) + 2𝑧𝑇(𝑑)πœ“2𝑀(𝑑) + 𝑀

𝑇(𝑑)πœ“3𝑀(𝑑).

It can be seen from Definition 1 that the following performance indexes hold.

(1) Choosing πœ™ = 0,πœ“1 = βˆ’π‘°,πœ“2 = 0,πœ“3 = 𝛾2𝑰 and 𝜌 = 0 the inequality (59) reduces to the 𝐻∞ performance

[13].

(2) Let πœ™ = 𝑰,πœ“1 = 0,πœ“2 = 0, πœ“3 = 𝛾2𝑰 and 𝜌 = 0 the inequality (59) becomes the 𝐿2 βˆ’ 𝐿∞(energy-to-peak)

performance [14].

(3) If the dimension of output 𝑧(𝑑) is the same as that of disturbance 𝑀(𝑑), then the inequality (59) with πœ™ =

0, πœ“1 = 0,πœ“2 = 𝑰,πœ“3 = 𝛾𝑰 and 𝜌 = 0 becomes the passivity performance [15].

(4) Let πœ™ = 0,πœ“1 = βˆ’πœ–π‘°,πœ“2 = 𝑰,πœ“3 = βˆ’πœŽπ‘° with πœ– > 0 and 𝜎 > 0, inequality (59) becomes the very-strict

passivity performance [16].

(5) Let πœ™ = 0,πœ“1 = 𝑄,πœ“2 = 𝑆, πœ“3 = 𝑅 βˆ’ 𝛼𝑰 and 𝜌 = 0, inequality (59) reduces to the strict (𝑄, 𝑆, 𝑅)-

dissipativity [17].

Lemma 1. [23] (Jensen’s inequality) For any constant positive semidefinite symmetric matrix W ∈ 𝐑𝐧×𝐧, WT = W β‰₯

0 two positive integers d2 and d1satisfy d2 β‰₯ d1 β‰₯ 1 then the following inequality holds

(βˆ‘ π‘₯(π‘˜)

𝑑2

π‘˜=𝑑1

)

𝑇

π‘Š(βˆ‘ π‘₯(π‘˜)

𝑑2

π‘˜=𝑑1

) ≀ οΏ½Μ…οΏ½ βˆ‘ π‘₯𝑇(π‘˜)π‘Šπ‘₯(π‘˜)

𝑑2

π‘˜=𝑑1

where οΏ½Μ…οΏ½ = 𝑑2 βˆ’ 𝑑1 + 1.

Lemma 2. for given matrices xΜ… ∈ Rn, yΜ… and scaler ΞΊ > 0 we have

2�̅�𝑇�̅� ≀ πœ…βˆ’1�̅�𝑇�̅� + πœ…οΏ½Μ…οΏ½π‘‡οΏ½Μ…οΏ½

VII. Reference

1. Liu Y, Liu X, Jing Y, Wang H, Li X (2020) Annular domain finite-time connective control for large-scale systems with expanding construction. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2. Cao L, Ren H, Li H, Lu R (2020) Event-Triggered Output-Feedback Control for Large-Scale Systems With Unknown Hysteresis. IEEE Transactions on Cybernetics 3. Mair J, Huang Z, Eyers D (2019) Manila: Using a densely populated pmc-space for power modelling within large-scale systems. Parallel Computing 82:37-56

4. Benmessahel B, Touahria M, Nouioua F, Gaber J, Lorenz P (2019) Decentralized prognosis of fuzzy discrete-event systems. Iranian Journal of Fuzzy Systems 16 (3):127-143 5. Wang W-J, Lin W-W (2005) Decentralized PDC for large-scale TS fuzzy systems. IEEE Transactions on Fuzzy systems 13 (6):779-786 6. Wei C, Luo J, Yin Z, Wei X, Yuan J (2018) Robust estimation‐free decentralized prescribed performance control of nonaffine

nonlinear large‐scale systems. International Journal of Robust and Nonlinear Control 28 (1):174-196

7. Zhai D, An L, Dong J, Zhang Q (2018) Decentralized adaptive fuzzy control for nonlinear large-scale systems with random packet dropouts, sensor delays and nonlinearities. Fuzzy Sets and Systems 344:90-107 8. Tanveer WH, Rezk H, Nassef A, Abdelkareem MA, Kolosz B, Karuppasamy K, Aslam J, Gilani SO (2020) Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization. Energy 204:117976 9. Lian Z, He Y, Zhang C-K, Wu M (2019) Stability and stabilization of TS fuzzy systems with time-varying delays via delay-

product-type functional method. IEEE transactions on cybernetics 10. Chaouech L, Soltani M, Chaari A (2020) (1903-5049) Design of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function. Iranian Journal of Fuzzy Systems 11. Zamani I, Zarif MH (2011) On the continuous-time Takagi–Sugeno fuzzy systems stability analysis. Applied Soft Computing 11 (2):2102-2116 12. Bahrami V, Mansouri M, Teshnehlab M (2016) Designing robust model reference hybrid fuzzy controller based on LYAPUNOV for a class of nonlinear systems. Journal of Intelligent & Fuzzy Systems 31 (3):1545-1564 13. Wang G, Jia R, Song H, Liu J (2018) Stabilization of unknown nonlinear systems with TS fuzzy model and dynamic delay

partition. Journal of Intelligent & Fuzzy Systems (Preprint):1-12 14. Zhang H, Li C, Liao X (2006) CORRESPONDENCE-Stability Analysis and H (infinity) Controller Design of Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions. IEEE Transactions on Systems Man and Cybernetics-Part B-Cybernetics 36 (3):685-698 15. Zhang H, Feng G (2008) Stability Analysis and $ H_ {\infty} $ Controller Design of Discrete-Time Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38 (5):1390-1401 16. Tseng C-S, Chen B-S (2001) H/spl infin/decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Transactions on fuzzy systems 9 (6):795-809

17. Zamani I, Sadati N, Zarif MH (2011) On the stability issues for fuzzy large-scale systems. Fuzzy sets and systems 174 (1):31-49 18. Mir AS, Bhasin S, Senroy N (2019) Decentralized nonlinear adaptive optimal control scheme for enhancement of power system stability. IEEE Transactions on Power Systems 35 (2):1400-1410 19. Zamani I, Zarif MH (2010) An approach for stability analysis of TS fuzzy systems via piecewise quadratic stability. International Journal of Innovative Computing, Information and Control 6 (9):4041-4054 20. Zhang J, Chen W-H, Lu X (2020) Robust fuzzy stabilization of nonlinear time-delay systems subject to impulsive perturbations. Communications in Nonlinear Science and Numerical Simulation 80:104953

21. Zhong Z, Zhu Y, Yang T (2016) Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi-Sugeno fuzzy models. IEEE Access 4:8250-8263 22. Zhang B, Zheng WX, Xu S (2013) Filtering of Markovian jump delay systems based on a new performance index. IEEE Transactions on Circuits and Systems I: Regular Papers 60 (5):1250-1263 23. Jiang X, Han Q-L, Yu X Stability criteria for linear discrete-time systems with interval-like time-varying delay. In: Proceedings of the 2005, American Control Conference, 2005., 2005. IEEE, pp 2817-2822