665 LNA-Design-2006

download 665 LNA-Design-2006

of 79

Transcript of 665 LNA-Design-2006

  • 8/7/2019 665 LNA-Design-2006

    1/79

    Low Noise Amplifier

    LNA

    Part of the material here provided is based on Dr. Chunyu Xins dissertation

    ECEN 665Edgar Snchez-Sinencio

  • 8/7/2019 665 LNA-Design-2006

    2/79

    Analog and Mixed-Signal Center, TAMU 2

    Ideal characteristics of LNA in Receivers

    min F

    Large voltage gain to reduce Ftot

    Handling large signals without significant distortion

    must present 50 ohms to the input source

    Real characteristics of LNA in Receivers

    F and power consumption trade-offs

    Gain and input matching trade-offs Zin

    P

    F

    G

  • 8/7/2019 665 LNA-Design-2006

    3/79

    Analog and Mixed-Signal Center, TAMU 3

    Practical Requirements of LNA in Receivers

    Signal coming from antenna is very small: -100dBm(3.2uV)~-70dBm(0.1mV), amplification is needed forthe following stage (mixer) to handle a reasonable signal

    magnitude. (Gain requirement)The received signal should have certain SNR to be reliabledetected. Noise comes from the environment and the circuititself. Noise floor is determined by thermal noise and systembandwidth (KTB). Noise added by the LNA circuit should be

    as small as possible. (Noise requirement).

    Large signal or blocker can occur at the input of LNA. Large

    signal performance of LNA should be good enough. (Linearityrequirement)

    Reasonable ( or minimum) power consuming (Power constrain)

  • 8/7/2019 665 LNA-Design-2006

    4/79

    Analog and Mixed-Signal Center, TAMU 4

    A Conceptual LNA Structure

    LNA consists of:

    Input/output match network

    Amplifier transistor (s)

    Power source

    Load

    [ ]

    =

    2212

    2111

    ss

    ssS

    Amplifier S matrix:Source reflection coefficient:

    s

    Load reflection coefficient: L

    L

    Lin

    s

    sss

    +=22

    211211

    1

    Input reflection coefficient:

    s

    sout

    s

    sss

    +=11

    211222

    1

    Output reflection coefficient:

    Important terms:

  • 8/7/2019 665 LNA-Design-2006

    5/79

    Analog and Mixed-Signal Center, TAMU 5

    Remarks on LNAs:

    Narrow band (NB) LNA are typically used in Wireless CommercialCommunications, i.e. Bluetooth, Wi-Fi, GSM.

    For wide band LNA the input matching stage and load areoptimized for a frequency band, thus the input matching and loadimpedance behave as low-Q ( wide bandwidth) filters

    For NB the impedance matching and power gain are usually optimized

    at one frequency. The output load stage and the input matching usuallyinvolve LC networks.

    NFrec-front = (1/GLNA) (NF subsequent -1) + NFLNA

  • 8/7/2019 665 LNA-Design-2006

    6/79

    Analog and Mixed-Signal Center, TAMU 6

    LNA Metrics: Gain Gain is the ratio of output signal and input signal. It defines andsmall signal amplification capability of LNA.

    Transducer power gain: Power delivered to the load divided by poweravailable from source.

    For IC implementation, LNA input is interfaced off-chip and usuallymatched to specific impedance (50ohm or 75ohm). Its output is not necessary

    matched if directly drive the on-chip block such as mixer. This is characterizedby voltage gain or transducer power gain by knowing the load impedance level.

    2

    22

    2

    2

    212

    11

    2

    11

    11

    L

    L

    s

    s

    T

    ss

    sG

    = For unilateral device

    i.e. S12~0

  • 8/7/2019 665 LNA-Design-2006

    7/79

    Analog and Mixed-Signal Center, TAMU 7

    LNA Metrics:Two-Port Noise Figure Noise factor (NF) is defined by the ratio of output SNR and inputSNR. Noise figure (F) is the dB form of noise factor.

    Noise figure shows the degradation of signals SNR due to thecircuits that the signal passes.

    2

    min opts

    s

    n

    o

    i

    YYG

    RFF

    SNR

    SNRF

    +=

    =

    LNA noise matching:

    The source impedance 1/Ys of the LNA can be transformed toan optimal value such that the noise figure is minimum.

    FdBNF log10)( =

    Rn is a fictitious resistance called optimum noise resistance

  • 8/7/2019 665 LNA-Design-2006

    8/79

    Analog and Mixed-Signal Center, TAMU 8

    Notation for the Noise Figure

    Gs is the source conductance,

    Rn is a fictitious noise resistance ,

    Gu is the equivalent ( fictitious) uncorrelated noise conductance

    Thus one can write the noise factor as:

    F= 1+ (Gu/Gs) +(Rn/Gs)[ (Gs+Gc)2 +(Bs+Bc)2 ]

    Note that Gs and Bs can be changed independently. i.e.Bs= -Bc = Bopt

  • 8/7/2019 665 LNA-Design-2006

    9/79

    Analog and Mixed-Signal Center, TAMU 9

    Minimum Noise Figure

    ][21min

    2

    Coptn

    optC

    n

    uS

    optcS

    GGRF

    GGG

    GG

    BBB

    ++=

    =+=

    ==

    Detail NF expressions are given in the next pages.

  • 8/7/2019 665 LNA-Design-2006

    10/79

    Analog and Mixed-Signal Center, TAMU 10

    LNA Metrics: Why are gain and low noise critical?

    totNFSNRdBmNoisefloorySensitivit ++= )(

    -174dBm+10logBW

    System SNR is determined byBER requirement of a specific

    modulation scheme, for example:

    16dB12dB16QAM21dB17dB64QAM

    11dB7dBQPSK

    1e-61e-3

    LNA

    afterLNA

    LNAtot G

    F

    FF

    1

    +=

    LNAs noise factor directly appears inthe total noise factor of the system.

    LNAs gain suppress the noise comingfrom following stages

    Noise factor of cascaded system:

  • 8/7/2019 665 LNA-Design-2006

    11/79

  • 8/7/2019 665 LNA-Design-2006

    12/79

    Analog and Mixed-Signal Center, TAMU 12

    kTB

    vR

    kTB

    iG,

    kTB

    vR

    kTB

    vR,

    kTB

    iG

    G

    RYYG

    G

    YRRYYGF

    kTB

    i

    YkTB

    v

    kTB

    vYY

    kTB

    i

    F

    i

    vYYi

    i

    YvvYYiF

    nn

    ns

    s

    u

    u

    cc

    uu

    s

    nscu

    s

    sucscu

    ns

    suc

    scn

    ns

    nscu

    ns

    sucscu

    4

    and44

    44

    where

    11

    4

    444

    1

    11

    Then

    2

    22

    22

    222

    2

    222

    22

    2

    222

    2

    22222

    =

    ==

    ==

    +++=

    ++++=

    +++

    +=

    +++=

    ++++=

  • 8/7/2019 665 LNA-Design-2006

    13/79

    Analog and Mixed-Signal Center, TAMU 13

    ( ) ( )[ ] ( )

    [ ]

    +

    ++=++=

    +==

    ==

    =

    =

    +++++++=

    +=

    cc

    n

    uncoptnmin

    c

    n

    usopt

    scopt

    s

    s

    uSscscscu

    s,cs,cs,c

    GGR

    GRGGRF

    GR

    GGG

    BBB

    G

    G

    RBGRBBGGGF

    ,jBGY

    21

    2

    2

    s

    2222

    2121

    then

    0B

    Fand0

    F

    ifNow

    :admittancesourceOptimal

    1

    then

  • 8/7/2019 665 LNA-Design-2006

    14/79

    Analog and Mixed-Signal Center, TAMU 14

    ( ) ( )[ ]

    [ ]2122

    22

    2

    22

    22

    tcoefficiennCorrelatio

    54

    channelslongandsaturationfor324

    4

    sources.oaccount twintotaketohavewemodel,noiseMOSFETFor the

    ndng

    *

    ndng

    do

    gs

    ggng

    m

    donddond

    optsopts

    s

    nmin

    ii

    ii

    c

    g

    Cg;BgkTi

    ;g

    BgkTv;BgkTi

    BBGGG

    RFF

    =

    ==

    =

    ==

    ++=

    2

    2

    4 m

    donn

    g

    g

    kTB

    vR

    ==

  • 8/7/2019 665 LNA-Design-2006

    15/79

  • 8/7/2019 665 LNA-Design-2006

    16/79

    Analog and Mixed-Signal Center, TAMU 16

    LNA Metrics: Non-linearity model

    Wanted Signal-102dBm

    IM3

    f=2f1-f2

    In-band blocker

    -23dBm

    f1 f2

    f1 f2f1 f2

    f2-f1 2f2-f12f1-f2f1+f2

    2f1 2f2

    Output spectrum with two tone input

    Usually distortion term: 2f1-f2, 2f2-f1fall in band. This is characterized by 3rd

    order non-linearity.

    Large in-band blocker can desensitizethe circuit. It is measured by 1-dBcompression point.

  • 8/7/2019 665 LNA-Design-2006

    17/79

    Analog and Mixed-Signal Center, TAMU 17

    LNA Metrics: Linearity measurement

    P1dB@input

    P1dB@output1dB

    Pout (dB)

    Pin (dB)

    1dB compression:

    Measure gain compression for large input signal IIP3/IIP2:

    Measure inter-modulation behavior

    Relationship between IIP3 and P1dB

    For one tone test: IIP3-P1dB=10dB

    For two tone test: IIP3-P1dB=15dB

    Fund

    amental

    IM3 IM2

    IIP2

    OIP2

    OIP3

    IIP3

    Pout(dBm)

    Pin(dBm)

    IIP3~ -10dBm~8dBm

  • 8/7/2019 665 LNA-Design-2006

    18/79

    Analog and Mixed-Signal Center, TAMU 18

    CMOS LNA Topologies

    M1

    M2

    Rs

    VBB

    INPUT

    ZLOUTPUT

    VDD

    M1

    Rf

    INPUT

    RL

    OUTPUT

    VDD

    R1

    11 R

    R

    RZ

    L

    f

    in

    +

    sin RZ =

    1

    1

    m

    ing

    Z =

    M1INPUT

    RL

    OUTPUT

    VDD

    VBB

    INPUT

    VBB

    C1

    Lg

    ZL

    OUTPUT

    VDD

    Ls

    ( )s

    gs

    m

    gs

    sgin L

    C

    g

    Cj

    LLjZ +++=

    1

    sm RgF

    1

    142

    +

    +1F

    4.8dB < 2dBModerate

    Resistive Termination CommonGate

    Shunt-seriesFeedback

    SourceDegeneration

    > 6dBNF:

  • 8/7/2019 665 LNA-Design-2006

    19/79

    Analog and Mixed-Signal Center, TAMU 19

    LNA Topologies (contd)

    Narrowband LNA: inductive degenerated Broadband LNA: common-gate and series-shunt feedback

    Bipolar LNAs also have corresponding configurations

    Focusing on inductive degenerated LNA

    Input match

    Noise match

    Linearity

  • 8/7/2019 665 LNA-Design-2006

    20/79

    Analog and Mixed-Signal Center, TAMU 20

    A Popular Narrow Band LNA:

    Inductive Source Degenerated LNA

  • 8/7/2019 665 LNA-Design-2006

    21/79

    Analog and Mixed-Signal Center, TAMU 21

    Source Degenerated LNA

    ( )s

    gs

    m

    gs

    sgin LC

    g

    CjLLjZ +++=

    1

    Input impedance

    INPUT

    VBB

    Cgs

    Lg

    ZL

    OUTPUT

    VDD

    Ls

    ( ) gssgo

    CLL +

    =1

    gs

    mT

    C

    g=

    sTo LZ =

    Zo: 50Ohm, 75OhmWo: 900MHz, 1.9GHz, 2.4GHz, 5GHz

  • 8/7/2019 665 LNA-Design-2006

    22/79

    Analog and Mixed-Signal Center, TAMU 22

    SOURCE DEGENERATED LNA ANALYSIS

    LgIo

    s

    Ls

    IinZin

    Vin Lg

    Cgs

    Ls

    Io

    gmVgs

    LG

    +Ls

    Cgs

    gs

    sm

    C

    LgZin

    Writing KCL and KVL

    ( ) (2)1

    (1)1

    soin

    gs

    sgin

    in

    gs

    mm

    gs

    ingsmo

    sLIIsC

    LLsV

    IsC

    gg

    sCIVgI

    +

    ++=

    ===

    Solving (1) and (2)

    ( )gs

    sm

    gs

    SG

    in

    inin

    CLg

    sCLLs

    IVZ +++== 1

    ( ) ( )gs

    Sm

    gs

    SGinC

    Lg

    CLLjjZ +

    +=

    1

  • 8/7/2019 665 LNA-Design-2006

    23/79

    Analog and Mixed-Signal Center, TAMU 23

    Matching occurs when Z(jo)=Rs , Rs is the resistor associated in the inputvoltage source. That is

    ( )( )

    S

    gso

    G

    gs

    Sms

    gsSG

    o

    gso

    oSG

    LC

    L

    C

    Lg

    R

    CLL;

    CLL

    =

    =

    +=

    =+

    2

    2

    1

    :thatimplieswhich

    and

    11

  • 8/7/2019 665 LNA-Design-2006

    24/79

    Analog and Mixed-Signal Center, TAMU 24

    Source Degenerated LNA (contd)

    ( ) NQSgLsgLgsT

    LsT

    gs

    sgin RRRRL

    Rj

    CjLLjZ,1

    11

    ++++++++=

    Input impedance-non-idealities

    ( )

    +

    =

    LsT

    gssg

    o

    R

    CLL

    1

    //

    1

    gs

    mT

    C

    g=

    Inductance loss: RLg: offset Zin

    RLs: offset Zin and w0Gate resistance Rg: offset Zin

    Ln

    WR

    R

    shpoly

    g 2

    ,

    12=

    NQS gate resistance: Rnqs: offset Zinm

    NQSgg

    R5

    1, =

    Cgs

    Lg

    Ls

    RLg

    RLsZIN

    NQSgLsgLgsTin RRRRLZ ,++++=

  • 8/7/2019 665 LNA-Design-2006

    25/79

    Analog and Mixed-Signal Center, TAMU 25

    Source Degenerated LNA (contd)

    +++=

    T

    o

    Ls

    g

    s

    L

    QR

    R

    R

    RF

    1

    Noise factor

    Cgs

    Lg

    Ls

    RLg

    RLsZIN

    gssos

    gso

    L

    CRR

    LLQ

    1=

    +=

    ( )222

    155

    21 LL QQc +++=

    D.K. Shaeffer, T.H. Lee, A 1.5V 1.5GHz CMOS Low Noise Amplifier, IEEE JSSC, Vol. 32, No. 5. May 1997

    There is a optimal QL to minimize FIs this F the minimum achievable one?

  • 8/7/2019 665 LNA-Design-2006

    26/79

    Analog and Mixed-Signal Center, TAMU 26

    Inductive Source degeneration:The degeneration inductance modifies the input reflection coefficientwithout affecting the optimal input reflection coefficient for minimumnoise figure.

    Achieve minimum noise figure: trading input match

    2

    min opts

    s

    n YYG

    RFF +=

    Source Degenerated LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    27/79

    Analog and Mixed-Signal Center, TAMU 27

    Source Degenerated LNA (contd)

    ( )( )

    eff

    effeff

    eff

    MOSstrongIIP

    VVV

    VV

    3

    812

    3

    42,,3 >++=

    Linearity

    thGSeff VVV = LEsat

    1=

    -8

    -4

    0

    4

    8

    12

    16

    20

    0.4 0.5 0.6 0.7 0.8 0.9 1

    VGS

    IIP3 (dBm)

    ( )3

    22

    222

    ,3

    112

    3

    16)(

    ++=

    o

    DLNAIIP

    P

    PVV

    effV= DDso

    satsato VR

    EvP 2

    3

    =

    Esat ~ 1V/um L~0.35um-0.18umMOS transistors IIP3 v.s. gate drive voltage

    Different width of transistor

    IIP3 independent of W

  • 8/7/2019 665 LNA-Design-2006

    28/79

    Analog and Mixed-Signal Center, TAMU 28

    Source Degenerated LNA (contd)

    Differential v.s. Single-ended

    reject common mode noiseand interferer

    double area and current

    shield the bond wire

    need balun at input

    common-mode stability

    linearity limited by biascurrent

    Differential Single-ended

    compact layout size

    less power for same NFand linearity

    susceptive to bond wireand PCB trace

    drive single-balance

    mixer

    output balun drivedouble-balance mixer

  • 8/7/2019 665 LNA-Design-2006

    29/79

    Analog and Mixed-Signal Center, TAMU 29

    Differential LNA Common-mode Stability

    Issue

    VBB

    2C2

    C1C1

    Lg Lg

    LsLs

    M1 M1

    VBB

    C2

    C1

    Lg

    Ls

    M1

    Zin,com

    Typical differential LNA Common-mode half circuit

    ( )21

    2

    121

    21,

    CC

    gL

    C

    g

    CCj

    CCLLjZ ms

    msgcomin

    +

    +++=

  • 8/7/2019 665 LNA-Design-2006

    30/79

    Analog and Mixed-Signal Center, TAMU 30

    Differential LNA Common-mode Stability

    Issue (contd)

    ( )21

    2

    121

    21,

    CC

    gL

    C

    g

    CCj

    CCLLjZ ms

    msgcomin

    +

    +++=

    =

    2

    2

    1

    ,

    1

    CL

    C

    gR s

    mcomin

    Real part:

    For passive termination, the real part of the source impedance willalways be positive. IF Rin,com happens to be negative and cancel the real

    part of source impedance, oscillation MAYoccur.

    When design differential LNA, not only pay attention to differentialoperation, but also check common-mode stability!

  • 8/7/2019 665 LNA-Design-2006

    31/79

    Analog and Mixed-Signal Center, TAMU 31

    Variant of Inductive Degenerated LNA

    Vo

    VBB

    VIN

    LSN

    LSP LD

    nMOS-pMOS shunt input

    Current reuse to save power

    Larger area due to two degenerationinductor if implemented on chip

    NF: 2dB, Power gain: 17.5dB, IIP3: -6dBm, Id: 8mA from 2.7V power supply

    F. Gatta, E. Sacchi, et al, A 2-dB Noise Figure 900MHz Differential CMOS LNA, IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452

    Single-ended version of current-reuse LNA (bias not shown)

  • 8/7/2019 665 LNA-Design-2006

    32/79

    Analog and Mixed-Signal Center, TAMU 32

    Variant of Inductive Degenerated LNA

    (contd)

    Vo

    VBB

    VIN

    LSN

    LD

    InterstageInductor

    Inter-stage Inductor gain boost

    Inter-stage inductor withparasitic capacitance formimpedance match network between

    input stage and cascoded stage

    boost gain lower noise figure. Input match condition will be

    affected

  • 8/7/2019 665 LNA-Design-2006

    33/79

    Analog and Mixed-Signal Center, TAMU 33

    Design Procedure for Inductive

    Source Degenerated LNA

  • 8/7/2019 665 LNA-Design-2006

    34/79

    Analog and Mixed-Signal Center, TAMU 34

    Targeting Structure

    VIN

    VB

    Cgs

    Lg

    VDD

    Ls

    M1

    M2

    Rs

    RL

    Vo

    +=

    T

    nfF

    01

    ( )[ ]

    gss

    ddnf

    CR

    Q

    QcQ

    0

    22

    2

    1

    14212

    1

    =

    ++=

    5=

    d

    Noise factor equations:

    thgs VVIIP 3

    Linearity:

    s

    LTV

    RRjA

    =

    0

    Voltage Gain:

    Inductive degeneratedCMOS LNA

  • 8/7/2019 665 LNA-Design-2006

    35/79

    Analog and Mixed-Signal Center, TAMU 35

    Targeted Specifications

    < 10mA from 1.8VPower

    20 dBVoltage gain

    -8 dBmIIP3

    1.6 dBNoise Figure2.4 GHz ISM BandFrequency

  • 8/7/2019 665 LNA-Design-2006

    36/79

    Analog and Mixed-Signal Center, TAMU 36

    Step 1: Know your process

    A 0.18um CMOS Process:

    tox = 4.1e-9 m = 3.9*(8.85e-12)F/m = 3.274e-2 m^2/V.s Vth = 0.52 V

    = gm/gdo / ~ 2 ~ 3

    c = -j0.55

    Process related

    Noise related

    Important design guide plots obtained from simulation ormeasurements

  • 8/7/2019 665 LNA-Design-2006

    37/79

    Analog and Mixed-Signal Center, TAMU 37

    Step 2: Obtain design guide plots

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    0 60 120 180 240 300 360 420 480 540 600

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Current density (A/m)

    do

    m

    gg

    Wgm

    Wgdo

    thgs VV

    Gateoverdrivevoltage(V)and

    gm/Wa

    ndgd

    o/W(

    mS/m)

    gm, gdo, , Vgs-Vthvs. current density plot

  • 8/7/2019 665 LNA-Design-2006

    38/79

    Analog and Mixed-Signal Center, TAMU 38

    Step 2: Obtain design guide plots (contd)

    gdo increases all the way with current density Iden

    gm saturates when Iden larger than 120A/m

    Velocity saturation, mobility degradation ---- short channel effects Low gm/current efficiency

    High linearity

    deviates from long channel value (1) with large Iden

    Insights:

  • 8/7/2019 665 LNA-Design-2006

    39/79

    Analog and Mixed-Signal Center, TAMU 39

    Step 2: Obtain design guide plots (contd)

    10

    15

    20

    2530

    35

    40

    4550

    0.0 0.2 0.4 0.6 0.8 1.0 1.20.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.41.5

    Gate overdrive voltage (V)

    Cut-offfrequency(GHz)

    Capacitanced

    ensity(fF/m)Tf

    WCgs

    fT and Cgsvs. gate overdrive voltage

  • 8/7/2019 665 LNA-Design-2006

    40/79

  • 8/7/2019 665 LNA-Design-2006

    41/79

    Analog and Mixed-Signal Center, TAMU 41

    Step 2: Obtain design guide plots (contd)

    3

    4

    5

    6

    7

    89

    10

    11

    12

    13

    14

    15

    1 2 3 4 5 6 7 8

    47A/m

    88A/m

    135A/m

    184A/m

    300A/m

    Quality factor

    Noisefactorsc

    alingcoefficient

    Current density

    nfvs input Q and current density

    +=

    T

    nfF

    01

    gss CRQ

    021

    =

    2-D plots fordesign reference

    3-D plot for visualinspection

  • 8/7/2019 665 LNA-Design-2006

    42/79

    Analog and Mixed-Signal Center, TAMU 42

    Step 2: Obtain design guide plots (contd)

    Insights:

    Iden

    - F

    Q- F

    For large Iden ( 300 A/m) there is an optimal value

    of Q --- maybe too large for a practical design

    For fixed Iden, increasing Q will reduce the sizeof transistor thus reduce total power ---- noisefigure will become larger

    Design trade-offs

  • 8/7/2019 665 LNA-Design-2006

    43/79

    Analog and Mixed-Signal Center, TAMU 43

    Step 2: Obtain design guide plots (contd)

    Linearity plots :IIP3 vs. gate overdrive and transistor size

    -2

    0

    2

    4

    68

    10

    12

    14

    1618

    0 0.1 0.2 0.3 0.4 0.5

    20x2.5m 30x2.5m 40x2.5m

    Gate overdrive voltage (V)

    IIP3(d

    Bm)

  • 8/7/2019 665 LNA-Design-2006

    44/79

  • 8/7/2019 665 LNA-Design-2006

    45/79

    Analog and Mixed-Signal Center, TAMU 45

    Step 3: Estimate fT

    and calculate nf

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    Gate overdrive voltage (V)

    Cut-offfrequ

    ency(GHz)

    Capacitanced

    ensity(fF/m)Tf

    WCgs fo = 2.4 GHz F = 1.45

    Small current budget ( < 10mA )does not allow large gate over drive :

    0.2 V ~ 0.4 V

    fT ~ 40 GHz

    ( ) 5.71 == To

    nf f

    f

    F

    mfFWCgs /3.1=

  • 8/7/2019 665 LNA-Design-2006

    46/79

    Analog and Mixed-Signal Center, TAMU 46

    Step 4: Determine Iden, Q and Calculate

    Device Size

    -2

    0

    2

    4

    6

    8

    1012

    14

    16

    18

    0 0.1 0.2 0.3 0.4 0.5

    20x2.5m 30x2.5m 40x2.5m

    Gate overdrive voltage (V)

    IIP3(dBm)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    0 60 120 180 240 300 360 420 480 540 6000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Current density (A/m)

    do

    m

    gg

    Wgm

    Wgdo

    thgs VV

    Gateoverdrivevoltage(V)and

    gm/Wa

    ndgdo/W(m

    S/m)

    Select Iden = 70 A/m If Q = 4, IIP3 will have enough margin:

    Estimated IIP3:IIP3( read from curve ) 20log(Q)~ -4dBm

    Specs require: -8 dBm

  • 8/7/2019 665 LNA-Design-2006

    47/79

    Analog and Mixed-Signal Center, TAMU 47

    Step 4: Determine Iden, Q and Calculate

    Device Size (contd)

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    1 2 3 4 5 6 7 8

    47A/m

    88A/m

    135A/m

    184A/m

    300A/m

    Quality factor

    Noisefactorscalingcoefficient

    Current density

    Q=4 and Iden = 70A/m meet thenoise factor requirement

    fFQR

    Cos

    gs 166~2

    1

    =

    mmfF

    fFW

    128

    /3.1

    166==

    mAmAmIDS 9.8)/(70128 ==

    Now we can do calculations:

  • 8/7/2019 665 LNA-Design-2006

    48/79

    Analog and Mixed-Signal Center, TAMU 48

    Step 5: Calculate Lg, LS and Required Load

    Verify cut-off frequency

    gm is about 50mA/V for the determined

    current density and device size

    fT = gm/(Cgs*2pi) = 48 GHz ---Verified !

    nHR

    LT

    ss 2.0=

    nHLC

    L sgso

    g 2612 =

    s

    L

    o

    TV

    R

    RjA

    =

    = 30sVT

    oL RAR

    l f

  • 8/7/2019 665 LNA-Design-2006

    49/79

    Analog and Mixed-Signal Center, TAMU 49

    Step 6: Simulation Verification

    Usually simulation-hand calculation iterations arenecessary to obtain satisfactory design

    40 Ohm30 OhmRL16nH26nHLg

    0.2nH0.2nHLs

    151fF166fFCgs50.7mA/V50mA/Vgm

    8mA8.9mAIds

    127.5um128umWSimulationCalculationParameters

    Deviate fromhand-calculationmost

    Possiblereason:

    Cgd isnot

    consideredfor

    handcalculation

    S 6 Si l i V ifi i ( d)

  • 8/7/2019 665 LNA-Design-2006

    50/79

    Analog and Mixed-Signal Center, TAMU 50

    Step 6: Simulation Verification (contd)

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60

    0.78

    0.80

    0.82

    0.84

    0.86

    0.88

    Input Frequency (GHz)

    Noise

    Figure(dB)

    S11andAV(dB)

    -100

    -80

    -60

    -40

    -20

    0

    20

    -40 -35 -30 -25 -20 -15 -10 -5 0

    Input Power (dBm)

    Output

    Voltage(dBV)

    P1dB=-20 dBm

    IIP3=-6.4 dBm

    S11

    AV

    NF

    Simulation plots for IIP3, Av, NF and S11

    S 6 Si l i V ifi i ( d)

  • 8/7/2019 665 LNA-Design-2006

    51/79

    Analog and Mixed-Signal Center, TAMU 51

    Step 6: Simulation Verification (contd)

    -20dbm---P1dB

    1.8V1.8VPower Supply

    -17 dB---S11

    -6.4 dBm-8 dBmIIP3

    21 dB20 dBVoltage gain

    8 mA< 10mACurrent drain

    0.8 dB1.6 dBNoise FigureSimulatedTargetParameter

    Comparison between targeted specs and simulation results

  • 8/7/2019 665 LNA-Design-2006

    52/79

    Analog and Mixed-Signal Center, TAMU 52

    Summary for LNA Design Procedure

    Design mixed with simplified equations andsimulation plots normalized to unity device size help to

    gain insights and consider all the important designspecification at the same time.

    Several iterations is generally required from hand

    calculation to simulation to arrive at satisfactory oroptimal design.

    Secondary effects such as gate poly resistance can be

    considered during simulation and can also be consideredby add more margin in the design specifications.

  • 8/7/2019 665 LNA-Design-2006

    53/79

    Analog and Mixed-Signal Center, TAMU 53

    LNA in BiCMOS Technology

  • 8/7/2019 665 LNA-Design-2006

    54/79

    V i ti f Bip l LNA

  • 8/7/2019 665 LNA-Design-2006

    55/79

    Analog and Mixed-Signal Center, TAMU 55

    Variations of Bipolar LNAs

    Cascode LNA Increased Gain Potentially Unstable Lowered Headroom

    Matched LNA Increased Gain Potentially Very Unstable Lowered Headroom Complexity

    Transformer Feedback Lower Gain Improved Linearity Excellent Headroom

    P i i l f O t f b d T i ti

  • 8/7/2019 665 LNA-Design-2006

    56/79

    Analog and Mixed-Signal Center, TAMU 56

    Principle of Out-of-band Termination

    ( )[ ] ( ) ( ) ( ) 2,Re61

    33

    11 =

    AHZIIP

    ( ) ( ) ( )[ ] 223

    22,

    22

    3 kkg

    g +=

    For BJT g3 is positive, by tuning out-of-band termination impedance

    at 2 and , can be made small thus increase IIP3.( ) 2,

    Volterra Analysis gives:

    In-band property, determinedby LNA specs

    Out-of-band parameters, can

    be modified w/o affecting in-band property

    Input Termination Techniques

  • 8/7/2019 665 LNA-Design-2006

    57/79

    Analog and Mixed-Signal Center, TAMU 57

    Input Termination Techniques

    IIP3 improves for a

    narrow range of

    Slow gain switchingExtra externalcomponents

    Stability issues High NF Lower gain

    Extra externalcomponent

    Extra pin

    Example: Cellular Band LNA Design

  • 8/7/2019 665 LNA-Design-2006

    58/79

    Analog and Mixed-Signal Center, TAMU 58

    Example: Cellular-Band LNA Design

    V. Aparin, P. Gazzerro, Z. Jianjun, S. Bo, S. Szabo, E. Zeisel, T. Segoria, S. Ciccarelli, C. Persico, C. Narathong, R. Sridhara, Ahighly-integrated tri-band/quadmode SiGe BiCMOS RF-to-baseband receiver for wireless CDMA/WCDMA/AMPS applicationswith GPS capability, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp.234-5

    Two gain modes

    Out-of-band termination improvelinearity: IIP3=+11.7dBm/+23.0dBm

    Power gain: 15.7dB/-3.1dB

    Noise figure: 1.4dB/3.2dB

    Current: 5.4mA/0

  • 8/7/2019 665 LNA-Design-2006

    59/79

    Analog and Mixed-Signal Center, TAMU 59

    Wide Band LNA

    Design considerations

  • 8/7/2019 665 LNA-Design-2006

    60/79

    Analog and Mixed-Signal Center, TAMU 60

    Design considerations

    Broadband impedance match: resistive termination,common gate, feedback

    Noise figure is usually high

    Broad gain flatness requires resistive load

    M1

    M2

    Rs

    VBB

    INPUT

    ZLOUTPUT

    VDD

    M1

    Rf

    INPUT

    RL

    OUTPUT

    VDD

    R1

    M1

    INPUT

    RL

    OUTPUT

    VDD

    VBB

    Resistive Termination Common Gate Shunt-series Feedback

  • 8/7/2019 665 LNA-Design-2006

    61/79

    Distributed Amplifier as LNA

  • 8/7/2019 665 LNA-Design-2006

    62/79

    Analog and Mixed-Signal Center, TAMU 62

    Distributed Amplifier as LNA

    Why distributed?

    GBW Limits for traditional amplifier: gm/C

    In distributed circuits the parasitic cap C is absorbedinto the distributed structure, So breaking the gain-bandwidth relationship.

    Ideally bandwidth should be infinity

    In practice bandwidth will be limited by the loadingcharacter of the transmission line.

    Distributed Amplifier as LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    63/79

    Analog and Mixed-Signal Center, TAMU 63

    Distributed Amplifier as LNA (cont d)Transmission line modeling on Silicon

    Coplanar Strip line

    Micro strip line

    Shrinking of feather size make dielectricmaterial thicker.

    Top metal far away from lossy siliconsubstrate.

    Tline loss is reduced

    Distributed Amplifier as LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    64/79

    Analog and Mixed-Signal Center, TAMU 64

    Distributed Amplifier as LNA (cont d)

    Characteristic Impedance of Coplanar Stripline

    60

    70

    80

    90

    100

    110

    120

    130

    4 8 12 16 20 24 28

    Line spacing (m)

    Zo(Ohms)

    5

    8

    11

    14

    20

    30

    40

    50

    60

    70

    4 9 14 19 24 29

    Width of signal line (M1)

    Zo

    (O

    hm

    s)

    Transmission line modeling on Silicon

    Characteristic Impedance of Micro Stripline

    Loss: 0.8dB/mm at 30GHz

    Distributed Amplifier as LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    65/79

    Analog and Mixed-Signal Center, TAMU 65

    Distributed Amplifier as LNA (cont d)

    Artificial or real T-line?

    Artificial line uses lumped inductors and capacitors: havegood model from foundry.

    Real T-line uses metal lines to form energy transmissionpath: currently no models from foundry, has to be modeled bydesigners.

    The quality of lumped on-chip inductors limits thefrequency operation: low Q and low self-resonate frequency.

    For higher and higher frequency, spiral inductor structurecan not be modeled use lumped inductance any more.

    Artificial line: low frequency operation ( 10GHz)

    Distributed Amplifier as LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    66/79

    Analog and Mixed-Signal Center, TAMU 66

    Distributed Amplifier as LNA (cont d)

    Distributed LNA

    Cgs and Cds absorbed into the T-line

    Under phase sync condition, maximum gain obtained :

    Optimal number of sections (loss line) :

    Input

    Output

    T

    dZL

    dZ

    T

    gZsZ g

    x0

    dx0

    2dl 2dl

    2gl

    2gl

    dl

    gl

    4

    22 g

    c

    d

    cm ZZgNG =

    ( )

    ggdd

    ggdd

    ll

    llN

    =

    lnln

    Distributed Amplifier as LNA (contd)

  • 8/7/2019 665 LNA-Design-2006

    67/79

    Analog and Mixed-Signal Center, TAMU 67

    Distributed Amplifier as LNA (cont d)

    Distributed LNA

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    1 3 5 7 9 11 13 15 17 19 21 23 25 27

    S21

    S11

    S22

    Frequency (GHz)

    S21,

    S11,andS22(d

    B)

    3

    5

    7

    9

    11

    13

    15

    17

    2 4 6 8 10 12 14 16 18 20 22 24 26

    Frequency (GHz)

    NoiseFigure(dB)

    Extremely wide band and gain flatness (1 20 GHz)

    Good matching over wide band (1 15 GHz)

    High noise figure at lower portion of frequency

  • 8/7/2019 665 LNA-Design-2006

    68/79

    Insight of LC Lumped Matching Network

  • 8/7/2019 665 LNA-Design-2006

    69/79

    Analog and Mixed-Signal Center, TAMU 69

    Insight of LC Lumped Matching Network

    --An Alternative Implementation Method

    Impedance match based on LC ladder network An alternative method: using the well-known Smith Chart

    More straight forward and have well defined performance

    Required VSWR can be drawn on Smith Chart

    Visualize the matching goal

    Wide-band Match Procedure Using

  • 8/7/2019 665 LNA-Design-2006

    70/79

    Analog and Mixed-Signal Center, TAMU 70

    g

    Smith Chart

    VB

    RB

    TLine

    L1C1

    L2Cc

    M1

    VB

    RB

    Cc

    M1

    S11

    VB

    RB

    L2Cc

    M1

    S11

    VB

    RBL1

    C1

    L2Cc

    M1

    S11

    S11

    VB

    RBL1

    C1

    L2Cc

    M1

    S11

    Start

    Step1

    Step2

    Step3

    Finish

    Step 1: Series inductance makes theconductance at the frequency edge

    has the same real part

    Step 2: Parallel inductor and

    capacitor brings the frequency edgeS11 close together (forms a circle)

    Step 3: Series inductance againbrings the circle center to pureresistance point

    Step4: A quarter-wave transmission

    line is used to rotate the circle tothe center of the smith chart.

    Implementation of Lumped Matched

  • 8/7/2019 665 LNA-Design-2006

    71/79

    Analog and Mixed-Signal Center, TAMU 71

    LNA

    VB

    RB

    RFIN

    Quarter wave

    transmission line

    Bondwire

    L1C1

    L2

    CcM1

    M2

    Ld

    Rd

    VDD

    Cc RFOUT

    L3

    C2

    Current drain: 5mA from 1.8V power supply

    Simulation Results of the Lumped

  • 8/7/2019 665 LNA-Design-2006

    72/79

    Analog and Mixed-Signal Center, TAMU 72

    Matched LNA

  • 8/7/2019 665 LNA-Design-2006

    73/79

    Analog and Mixed-Signal Center, TAMU 73

    Design Examples

    BT/WiFi Receiver Block Diagram

  • 8/7/2019 665 LNA-Design-2006

    74/79

    Analog and Mixed-Signal Center, TAMU 74

    Bandwidth compatible (2.4GHz)

    Sharing Front-end is possible (save power)

    Multi-standard system delivers flexibility

    15dB

    Attenuator(-15dB)

    RFFilter

    Q Mixer

    LNA

    I Mixer

    Synthesizer

    & VCO

    090

    LPF

    LPF

    ADC

    ADC

    18dB

    Signal LevelMeasurement

    GainControl

    Pmin -20dBm

    LNA switch gain at -40dBm

    Differential LNA using BJT cascode

  • 8/7/2019 665 LNA-Design-2006

    75/79

    Analog and Mixed-Signal Center, TAMU 75

    Proposed LNA

    Inductor degeneration

    Cascoded BJT: better matching

    On-chip input matching

    Noise figure: 1.6dB

    Power/Voltage gain: 15dB

    Power consumption: 16mW

    NMOS attenuator for low gain(-15dB)

    Differential structure

    MOS transistor is more linear

    LNA_cas_bias

    Vo+

    Vo-

    VDD

    LNA_bypass

    Ls Ls

    LdLd

    LNA bypass switches and attenuator

    LNA_rf_bias

    i_tail

    Cm

    Vin+

    Vin-M1 M2

    M5

    M6

    M7

    M8

    M9

    M3 M4

    Q1 Q2

    Rb Rb

    Bond wire

    Cd Cd

    Vbb

    Rb Rb

    Differential LNA using BJT cascode (contd)

  • 8/7/2019 665 LNA-Design-2006

    76/79

    Analog and Mixed-Signal Center, TAMU 76

    1nH

    3nH

    570um

    58

    0um

    LNA Layout

    Symmetrical layout

    Deep trench lattice under spiralinductor

    Inductors are placed far apart

    to avoid coupling (~200um) Differential inputs aredecoupled by GSGSG pattern

    M1, M2Q1, Q2

    Gain S.W.

    G G GSS

    Testing Setup

  • 8/7/2019 665 LNA-Design-2006

    77/79

    Analog and Mixed-Signal Center, TAMU 77

    Input matching (S11)

    S-parameter networkanalyzer (HP 8719ES)

    Testing board

    High gain mode Low gain mode

    S11 better than -11dB

    * LNA is tested together with mixer

  • 8/7/2019 665 LNA-Design-2006

    78/79

    Testing Setup (contd)

  • 8/7/2019 665 LNA-Design-2006

    79/79

    Analog and Mixed-Signal Center, TAMU 79

    IIP3/IIP2

    Signal generator

    Testing board

    * LNA is tested together with mixer

    Spectrum

    Analyzer

    RF IN

    IF OUT I&Q

    Powercombiner

    -50 -45 -40 -35 -30 -25 -20 -15 -10-80

    -60

    -40

    -20

    0

    20

    40

    60

    2-Tone Input Power (dBm)

    Output(dBm)

    IIP3=-13dBm

    -60 -50 -40 -30 -20 -10 0 10 20

    -60

    -40

    -20

    0

    20

    40

    60

    80

    2-Tone Input Power [dBm]

    Output(dBm)

    IIP2=10dBm