9-26GHz Wideband CMOS LNA Design thesis-9367519 · 9−25GHz寬頻COMS LNA 9−25GHz Wideband CMOS...

69
電機學院 電子與光電學程 925GHz 寬頻 COMS LNA 設計 925GHz Wideband CMOS LNA Design 研 究 生:洪祺源 指導教授:胡樹一 教授 中 華 民 國 九 十 七 年 八 月

Transcript of 9-26GHz Wideband CMOS LNA Design thesis-9367519 · 9−25GHz寬頻COMS LNA 9−25GHz Wideband CMOS...

  • 925GHz COMS LNA

    925GHz Wideband CMOS LNA Design

  • 925GHz COMS LNA

    925GHz Wideband CMOS LNA Design

    StudentDarren (Qi-Yuan) Horng

    AdvisorRobert (Shu-I) Hu

    A Thesis

    Submitted to College of Electrical and Computer Engineering

    National Chiao Tung University

    in partial Fulfillment of the Requirements

    for the Degree of

    Master of Science in

    Electronics and Electro-Optical Engineering

    August 2008

    Hsinchu, Taiwan, Republic of China

  • i

    925GHz CMOS LNA

    0.18um RF-CMOS

    9 25GHz LNA 0.18um CMOS LNA 3 10GHz 0.18um LNA 24GHz 0.18um CMOS Ka LNA

    L R-C nMOS 0.18um CIC S21 10-16dB GHz 4.5dB Vdd 1.2 2.0 58111mW 0.945 x 1.295 mm

  • ii

    925GHz Wideband CMOS LNA Design

    StudentQi-Yuan Horng

    AdvisorsDr. Shu-I Hu

    Degree Program of Electrical and Computer Engineering National Chiao Tung University

    ABSTRACT

    A procedure is to introduce a 925GHz wide band LAN design which uses

    0.18um RF-CMOS technology. In general, the 0.18um CMOS LNA usually be designed for 310GHz operating range. Otherwise, the narrowband LNA design already is proved that it could work at 24GHz. So, we would like to design a LNA and it can work at Ka band.

    The CIC measured result shows LNA S21 has 10-16dB gain and it has 4.5dB noise figure when operate at 9GHz, with 58111mW power consumption for Vdd ranging from 1.22.0V. The chip size is 0.945 x 1.295mm.

  • iii

    LNA

    -

  • iv

    925GHz CMOS LNA i

    925GHz Wideband CMOS LNA Design ii

    iii

    iv

    1~ 12 v

    1 80 vi

    1

    8

    52

    55

    57

    59

  • v

    1 6 2 17 3 31 4 41 5 43 6 45 7 47 8 48 9 49 10 VDD 49 11 (1.4V) 50 12 (2.0V) 51

  • vi

    1 Arecibo radio telescope 1 2 Arecibo radio telescope 1 3 SKA 2 4 6 5 LFB RFB CFB 8 6 Output loading circuit9 7 The circuits input impedance10 8 First stage circuit11 9 .11 10 12 11 14 12 ..14 13 15 14 S11 .15 15 S22 16 16 S21 16 17 S12 16 18 Smith chart17 19 Noise Figure 17 20 Layout 18 21 Momentum S 19 22 Y Deembedding19 23 Deembedding 20 24 layout 20 25 S 21 26 Layout grounding 22 27 Vd power trace 23 28 23 29 S11 24 30 S22 24 31 S21 25 32 S12 25 33 Smith chart 25 34 Noise Figure 26 35 S11 26

  • vii

    36 S22 26 37 S21 27 38 S12 27 39 Smith chart 27 40 Noise Figure 28 41 28 42 Inter-stage stability analysis 29 43 Inter-stage stability analysis 29 44 Inter-stage stability analysis 30 45 Inter-stage stability analysis 30 46 Inter-stage stability analysis 30 47 layout 31 48 S11 32 49 S22 32 50 S21 33 51 S12 33 52 Smith chart 34 53 Noise Figure 34 54 S11 35 55 S22 35 56 S21 36 57 S12 36 58 Smith chart 37 59 Noise Figure 37 60 F/F38 61 S/S39 62 F/S39 63 S/F40 64 F/F41 65 S/S42 66 F/S42 67 S/F43 68 F/F 44 69 S/S 45 70 F/F 46 71 S/F 46 72 47 73 48

  • viii

    74 52 75 Circuit Layout and Photo53 76 S 53 77 IP1dB 54 78 Noise Figure 54 79 Revision on Drain Bias Isolation 55 80 Revision on Circuit Layout 56

  • 1

    ContactGoldeneyeArecibo radio telescope 1 2 305 7 pulsar

    ALMA Atacama Large Millimeter Array NSF 5 Square Kilometre ArraySKA 10

    1 Arecibo radio telescope 2 Arecibo radio telescope

    SKA

  • 2

    (The Canberra Time) SKA (Earth-like planets)(pulsars)

    ESA

    -- Square Kilometer ArraySKA 3 (SKA ) 200

    3 SKA

    SKA 10 SKA pulsars -- 100

  • 3

    SKA 100 MHz 25 GHz 1997 MAC 2.4GHz ISM 2Mbit/s

    1999 : 802.11a 802.11b

    5GHz 54Mbit/s 2.4GHz 11Mbit/s 2003 802.11g 2.4GHz 54Mbit/s 2004 1 IEEE 802.11 540Mbit/s 802.11b 50 802.11g 10 802.11n 802.11n 2006

    2002 Federal

    Communications Commission (FCC) 3.1 GHz 10.6 GHz

  • 4

    10Mbps 1Gbps 10Gbps

    Ka (18GHz)

    Ka 17.7G~21.2GHz

    3G~4GHz C Ku Ka

    Ka VSAT

  • 5

    Ka QV

    Space Communication Architecture

    Working Group (SCAWG) NASA Space Communication and Navigation Architecture Recommendations for 2005-2030 4[1]

    SCA 4 1). Earth, 2). Moon, 3).

    Mars vicinity and 4). Deep Space UHFSLKKu Ka Ground-based Earth Element Near-Earth Relay Element 13GHz ~ 15GHz Ground-based Earth Element Launch VehiclesEarth Orbital UserLunar Surface Orbital User 22GHz ~ 27GHz 9G-25GHz

  • 6

    4

    1

    1). MOS 3G~10GHzMOS Ka

    SKA 100 MHz 25 GHz

    EW/ECM 9G~26GHz

    Ka 17.7G~21.2GHz

    13G ~ 15GHz

    22G ~ 27GHz

  • 7

    2). SKA IC MOS MOS

    3). Ultra Wideband LNA Noise Figure Noise Figure L-C nMOS 0.18um 9G~25GHz

  • 8

    1). nMOS RC

    nMOS [2] 5 1 50 Sin 2 LFBRFB CFB

    5 LFB RFB CFB

    5(a) Yin(=1/Zin) Yin = j Cgs + j Cgd { 1 [(j Cgd Gm)/j (Cgd + CFB)]} j (Cgs + Cgd) + [Cgd Gm/(Cgd + CFB)] (1)

    Yin LC

  • 9

    [3]~[10]

    RFB(a) CFB(a)LFB

    6 (a) The resistive-loading circuit with R as its output loading. (b) The

    capacitive-loading circuit with C as its output loading.

    : Zin = (1/jCgs) + [ LFB( Gm + jCgs)/Cgs] (1/jCgs) + (LFB Gm/Cgs) (2) Rds Gm Cgd

    LFB :

    Zin (1/jCgs) + (LFB Gm/Cgs) [ 1 + Cgd ( 1 + Gm RFB )/Cgs]-1 (3) = Rds/(Rds + RFB + j LFB) (4) LFB

  • 10

    7 (a) To find out the circuits input impedance, values of Y and Z , which are indicated by the arrows, need to be derived first. (b) The equivalent circuit from the input impedances point-of-view where R , C , L come from Y ,

    while R , C , L are from Z . Zin Y Z Zin = ( Y + 1/Z )-1 (5) Y = jCgd + ( R + 1/ jC + jL )-1 (6) With R = CFB/GmCgd (7) C = GmRdsCgd (8) L = ( LFBCFB/Gm Rds Cgd ) ( 1 + Gm Rds ) (9) Z = 1/jCgs + ( 1/R + jC + 1/jL )-1 (10) With R = GmLFB/Cgs (11) C = Cgs/GmRds (12) L = ( LFBGm Rds CFB )/Cgs (13)

    2).

    DC 8

  • 11

    8 First stage circuit

    3). : L-C

    M2~M5 nMOS S21 8 :

    9

  • 12

    10 (1) LNA (2) LNA (3) ADS (4) 3inter-stage stability (5) 5inter-stage stability (6) (7) Cadence DRCLVS (8) LayoutMomentumSADS (9) IC

    10

  • 13

    : 1). nMOS nr

    S22 nMOS nr M1 32 M2=M3=16M4=M5=8

    2).

    3). Current Density

    Current Density M1 23mA M2 M3 13mAM4 M5 8mA M1 3 , 3um 9um 9um M1 70 31mA

    M2 M5 2

    70 Current Density

    4).

    1 M1 M2 Current Density L13 15um M2~M5 11

  • 14

    11

    5). Vd

    CHOKE ADS

    0~40GHz Mu 1

    K 1>0 12

    12

  • 15

    6). First version circuit: 13

    13

    7).

    a) S11 under -11dB 14

    14 S11

  • 16

    b) S22 under -11dB 15

    15 S22

    c) S21Gain 21dB 0.7dB

    16

    16 S21

    d) S12 under -60dB 17

    17 S12

  • 17

    e) S11 S22 smith chart 18

    18 Smith chart

    f) NFNoise Figure

    2.747~5.679. 19

    19 Noise Figure

    Tech. BW

    (GHz)S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    Simulate Result

    0.18 mCMOS 9-25 < -11 < -11 210.7 < -60 2.84-5.4

    3

    2

  • 18

    8). Layout 20

    1.36 x 1.36 (mm2)

    20 Layout

  • 19

    9). Momentum S layout Momentum

    layoutSADS ADS 21

    21 Momentum S

    S 22 23

    [11][12]

    22 Y Deembedding

  • 20

    23 Deembedding

    10). layout Momentum S

    Layout Momentum S ADS Layout

    11). Layout S ADS

    ( 24)

    24 layout

  • 21

    25 S21 S11

    M1 L3L3 GND M3 C4 Layout

    25 S

    12). CIC

    a). layout Pad size 75mm X 75mm Pad 50mm X 50 mm

    b). M3 L3 GND layout

    c). 1.36 X 1.36 (mm2)

    die size die

  • 22

    layout 0.945 X 1.295 (mm2) 33%

    d). e). inter-stage stability analysis f).

    Grounding 26

    26 Layout grounding

    g). L13

    die size L13 layout layer2 layer3 ground Vd power

  • 23

    27

    27 Vd power trace

    13). 28

    28

  • 24

    ADS2005 Vg 0.8V Vd 1.4V 2.0V

    ). : Vg = 0.8V and Vd = 1.4V

    a) S11-11dB 29

    29 S11

    b) S22 under -12dB 30

    30 S22

    c) S21Gain 19.5dB 1 dB

    31

  • 25

    31 S21

    d) S12 under -62dB 32

    32 S12

    e) S11 S22 smith chartS11 S22

    33

    33 Smith chart

  • 26

    f) NFNoise Figure 3.337~5.843.

    34

    34 Noise Figure

    LNA Vd 1.4V

    ). : Vg = 0.8V and Vd = 2V a) S11-11dB 35

    35 S11

    b) S22 under -11dB 36

  • 27

    36 S22

    c) S21Gain 22dB 1 dB 37

    37 S21

    d) S12 under -60dB

    38

    38 S12

  • 28

    e) S11 S22 smith chart 39

    39 Smith chart

    f) NFNoise Figure

    2.897~5.454. 40

    40 Noise Figure

    g)

    0~40GHz Mu 1

    K 1>0

  • 29

    41

    41

    h) Inter-stage stability analysis

    MOS, M1 Mu 1 K 1B>0 42

    42 Inter-stage stability analysis

    MOS, M2 Mu 1 K 1B>0 43

    43 Inter-stage stability analysis

  • 30

    MOS, M3 Mu 1 K 1B>0 44

    44 Inter-stage stability analysis

    MOS, M4 Mu 1 K 1B>0 45

    45 Inter-stage stability analysis

    MOS, M5 Mu 1 K 1B>0 46

    46 Inter-stage stability analysis

  • 31

    42 46 Inter-stage stability analysis 9~25GHz S11 -11dB S22 -11dB 19.5 dB LNA NF

    Tech.

    BW (GHz)

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Simulate Result

    0.18 mCMOS 9-25 < -11 < -12 19.51 < -62 3.33-5.8

    4 1.4

    Simulate Result

    0.18 mCMOS 9-25 < -11 < -11 221 < -60 2.89-5.4

    5 2.0

    3

    14). layout Layout S ADS ( 47)

    47 layout

  • 32

    [8] Momentum S Layout Vd 1.4V 2.0V : 9G ~ 25GHz : Vg = 0.8V and Vd = 1.4V

    1 S11 9G ~ 25GHz S11 under -10dB 48

    4 S11

    2 S22 49 LNA under -14dB -14.264dB LNA S22 49

    49 S22

  • 33

    3 S21S21 Gain 20.5 dB 1 dB 50

    50 S21

    4 S1212 S12 -60dB S12 27.2GHz under -58dB 12 51

    51 S12

  • 34

    5 52 S11 S22 smith chart MOS S11

    52 Smith chart

    6 NF: Noise Figure

    2.840~5.431 53

    53 Noise Figure

    Vd = 1.4V

  • 35

    : 9G ~ 25GHz : Vg = 0.8V and Vd = 2V

    7 S11 Vd 2V 55 9G ~ 25GHz under -10dB

    54 S11

    8 S22 Vd 2V under -13dB 15.8GHz -13.497dB 55

    55 S22

  • 36

    9 S21Gain 20.5 dB 1 dB 56

    56 S21

    10 S12 under -60dB 57

    57 S12

    S LNA

    layout

  • 37

    11 S11 S22 smith chart 58S22 smith chart S11 S11 S22

    58 Smith chart

    12 NF Noise Figure

    2.840~5.431. 59

    59 Noise Figure

  • 38

    13

    MOS , MOS Fast/FastSlow/SlowFast/SlowSlow/Fast Resistance Worst case Vd = 1.4V Vd = 2.0V 60~67

    MOS

    : Vg = 0.8V and Vd = 1.4V

    a. Fast/FastResistance=Worst 60

    60 F/F

    S11 9GHz~25GHz -10dB S22 -15.535 dB S12 60 dB21 19.6 dB

  • 39

    b. Slow/SlowResistance=Worst 61

    61 S/S

    S11 9GHz~25GHz -10dB S22 -13.253 dB S12 60 dB21 12.204 dB c. Fast/SlowResistance=Worst 62

    62 F/S

  • 40

    S11 9GHz~25GHz -10dB S22 -15.047 dB S12 60 dB21 18.9 dB

    d. Slow/FastResistance=Worst 63

    63 S/F

    S11 9GHz~25GHz -10dB S22 -13.635 dB S12 60 dB21 13.638 dB

  • 41

    4 MOS Vdd 1.4V Slow/Slow S21

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Stable

    Fast/Fast < -9.5 < -15 20.61 < -60 3.27-5.6

    9 1.4

    Slow/Slow < -10 < -1313.1

    0.9 < -57

    3.62-6.22

    1.4

    Fast/Slow < -9.8 < -15 19.71 < -59 3.32-5.8

    2 1.4

    Slow/Fast < -10 < -13 14.61 < -57 3.44-5.9

    3 1.4

    4

    : Vg = 0.8V and Vd = 2V e. Fast/FastResistance=Worst 64

    64 F/F

    S11 9GHz~25GHz -10dB S22 -14.459 dB S12 61 dB21 22.3 dB

  • 42

    f. Slow/SlowResistance=Worst 65

    65 S/S

    S11 9GHz~25GHz -11dB S22 -14.459 dB S12 61 dB21 22.3 dB

    g. Fast/SlowResistance=Worst 66

    66 F/S

    S11 9GHz~25GHz -10dB S22 -14.087 dB S12 61 dB21 21.5 dB

  • 43

    h. Slow/FastResistance=Worst 67

    67 S/F

    S11 9GHz~25GHz -11dB S22 -13.031 dB S12 60 dB21 16.5 dB

    MOS Vdd 2.0V

    Slow/Slow S21

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Stable

    Fast/Fast < -10 < -14 23.31 < -61 2.81-5.3

    6 2.0

    Slow/Slow < -11 < -1215.1

    0.8 < -59

    3.12-5.81

    2.0

    Fast/Slow < -10 < -14 22.31 < -61 2.86-5.5

    0 2.0

    Slow/Fast < -11 < -1317.4

    0.8 < -59

    2.96-5.54

    2.0

    5

  • 44

    , Fast/FastSlow/Slow Resistance Worst case Vd = 1.4V Vd = 2.0V 68~ 71

    : Vg = 0.8V and Vd = 1.4V

    i. RFCAP=Fast/FastResistance=Worst 68

    68 F/F

    S11 9GHz~25GHz -9.65dB S22 -15.213 dB S12 60 dB21 15.4 dB

  • 45

    j. RFCAP= Slow/SlowResistance=Worst 69

    69 S/S

    S11 9GHz~25GHz -10dB S22 -13.725 dB

    S12 58 dB21 17.5 dB

    6 Vdd 1.4V S21

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Stable

    Fast/Fast < -10 < -15 16.51.1 < -59 3.49-5.8

    8 1.4

    Slow/Slow < -10 < -13.7 18.11 < -58.7 3.16-5.7

    1 1.4

    6

  • 46

    : Vg = 0.8V and Vd = 2.0V k. RFCAP=Fast/FastResistance=Worst 70

    70 F/F

    S11 9GHz~25GHz -10dB S22 -14.3 dB

    S12 60 dB21 18.5 dB

    l. RFCAP= Slow/SlowResistance=Worst 71

    71 S/S

  • 47

    S11 9GHz~25GHz -10dB S22 -12.993 dB S12 60 dB21 19.5 dB

    7 Vdd 2.0V

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Stable

    Fast/Fast < -10.2 < -13.9 19.51 < -60.8 2.98-5.5

    3 2.0

    Slow/Slow < -10 < -12.9 20.61.1 < -60.5 2.74-5.3

    7 2.0

    7

    70.0 C Vd = 1.4V Vd = 2.0V 72~ 73

    : Vg = 0.8V and Vd = 1.4V m. Temperature=70.0 C 72

    72

  • 48

    S11 9GHz~25GHz -10dB S22 -15.1 dB S12 59 dB21 13.8 dB

    : Vg = 0.8V and Vd = 2.0V

    n. Temperature=70.0 C 73

    73

    S11 9GHz~25GHz -11dB S22 -14.2 dB S12 60 dB21 16.8 dB

    S11 (dB)

    S22 (dB)

    S21 (dB)

    S12 (dB)

    NF (dB)

    VDD (V)

    Stable

    Fast/Fast < -10 < -15.1 14.60.8 < -59 3.96-6.5

    7 1.4

    Slow/Slow < -11 < -14.2 17.50.8 < -60 3.35-6.1

    4 2.0

    8

  • 49

    14 0.18um

    21 9

    Tech. BW

    (GHz)

    S11

    (dB)

    S22

    (dB)

    S21

    (dB)

    NF

    (dB)

    VDD

    (V)

    This work 0.18 mCMO

    S 9-25

  • 50

    VDD NF 5 die size * [1][2][13][14]

    S11 [dB]. < -10

    S22 [dB]. < -14

    S21 [dB]. 17.6 0.7

    S12 [dB]. < -58

    BW [GHz]. 9 ~ 25

    NF [dB @9GHz]. 3.2

    NF [dB @26GHz]. 5.7

    Power Consumption Vd = 1.4V, 80 mW

    11 (1.4V)

    S11 [dB]. < -10

    S22 [dB]. < -13

    S21 [dB]. 22.5 1.0

    S12 [dB]. < -60

    BW [GHz]. 9 ~ 25

    NF [dB @9GHz]. 2.8

  • 51

    NF [dB @25GHz]. 5.4

    Power Consumption Vd = 2.0V, 130 mW

    12 (2.0V)

  • 52

    CIC On Wafer S N.F

    Vg 0.8V Vd 1.4V~2V .

    S11S22S21S12

    Noise Figure Analyzer Noise Figure

    74 ( pitch 100um 3 Pin RF pitch 100um 3 Pin DC )

    74

  • 53

    Circuit Layout and Photo

    75 Circuit Layout and Photo

    S Parameter Measured Results

    76 S

  • 54

    IP1dB Measured Results

    77 IP1dB

    Noise Figure Measured Results

    78 Noise Figure

    S11 9GHz~20.5GHz -10dB20.5GHz~ 25GHz -7dB S22 -10dB Vd=2.0V ,S21 2.0V 10 dB

  • 55

    S11 TSMC 0.18um RF-CMOS technology , Ka LNA S21 , tsmc model 20GHz MOS Pad

    Noise Figure Ground

    79 Revision on Drain Bias Isolation

  • 56

    80 Revision on Circuit Layout

    Add more GND Pads

    Add more by-pass capacitors on

    drain bias

  • 57

    [1] NASA Space Communication and Navigation Architecture Recommendations for 2005-2030 Space Communication Architecture Working Group (SCAWG)

    [2] Wide-Band Matched LNA Design Using Transistor s Intrinsic Gate-Drain Capacitor Robert Hu

    [3] A GaAs monolithic 6 GHz low-noise amplifier for satellite receivers R. C. Mott, IEEE Trans. Microw. Theory Tech., vol. 37, no. 3, pp. 565 570, Mar. 1989. [4] A CMOS Low-Noise Amplifier for UltraWidebandWireless Applications M.F. CHOU, W.S. WUEN, C.C. WU, K.A. WEN, and C.Y. CHANG, Nonmembers IEICE TRANS. FUNDAMENTALS, VOL.E88 A, NO.11 NOVEMBER 2005 [5] A gain-controllable wide-band low-noise amplifier in low-cost 0.8-_m Si BiCMOS technology F. Seguin, B. Godara, F. Alicalapa, and A. Fabre, IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 154 160, Jan. 2004. [6] A low supply voltage SiGe LNA for ultra-wideband front ends D. Barras, F. Ellinger, H. Jackel, and W. Hirt IEEE Microw. Wireless Compon. Lett., vol. 14, no. 10, pp. 469 471, Oct. 2004. [7] Ultra-low-noise 1.2 1.7-GHz cooled GaAsFET amplifiers S. Weinreb, D. L. Fenstermacher, and R. W. Harris, IEEE Trans. Microw. Theory Tech., vol. MTT-82, no. 6, pp. 849 853, Jun. 1982. [8] Cryogenic wide-band ultra-lownoise IF amplifiers operating at ultra-low DC power

  • 58

    N.Wadefalk, A. Melberg, I. Angelov, M. E. Barsky, S. Bui, E. Choumas, R. W. Grundbacher, E. L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D. C. Streit, and H. Zirath IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1705 1711, Jun. 2003. [9] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design Englewood Cliffs, NJ: Prentice-Hall, 1984. [10] R. Goyal, High-Frequency Analog Integrated Circuit Design New York: Wiley, 1995.

    [11] Modeling toolkits 0_DEEMB.WPS | 18.03.02, De-embedding Agilent Technologies, dept.: EEsof, D-82024 Taufkirchen (Munich), Germany [12] IC Application & Design magazine 2005 May

    [13] A 3 10-GHz low-noise amplifier with LC-ladder matching network A. Ismail and A.A. Abidi, IEEE J. Solid-State Circuits, vol.39, no.12, pp.2269 2277, 2004. [14] 0.18 um 3 6 GHz CMOS broad-band LNA for UWB radio C. P. Chang and H. R. Chuang, Electron. Lett., vol. 41, pp. 696 697, Jun. 2005.

  • 59

    Takau, 1976