第五章 表面现象与胶体分散体系

Click here to load reader

download 第五章 表面现象与胶体分散体系

of 260

description

第五章 表面现象与胶体分散体系. 表面现象与我们生活密切相关. 举例:. 油在水中分散成液滴,液体在毛细管中的升降,固体表面对气体或液体的吸附,气敏、湿敏、液体的过冷、沸腾. 应用举例 :食品的乳化,油污的去除,机械的润滑. 固体材料的晶体缺陷、半导体材料的纯化、金属的防腐、高分子材料的粘结与染色、复合材料增强纤维的表面处理都与材料的表面现象研究有关。. § 5.1 表面现象热力学. 定义:表面现象. 表面相的分子所处的境遇与体相分子有很大不同,因此它的性质与相邻的两个体相的性质也不同,这就是表面现象。. ( surface and interface). - PowerPoint PPT Presentation

Transcript of 第五章 表面现象与胶体分散体系

  • 5.1

  • (surface and interface) -----

  • 1.-

  • 2.-

  • 3.-

  • 4.-

  • 5.-

  • :1.

  • dA

  • Jm-2

  • (-) Nm-1surface tension

  • W2W1FF=W1+W2g F=2l

  • (a

  • 1) :2) Tp

  • 1. P1175-1

  • 2. 5-2 P118

  • 3.

  • GTP

  • TPGGG dA
  • 3A

  • 5.2 AAA=A/V A/m

  • 1cm1cm3

  • 10-2m10-9m nm

  • 3.H

  • 4. 100KPaCaCO3 CaCO3(s)=CaO(s)+CO2(g)

  • MT Kelvin>0

  • ----T0

  • T=T0-T1 T

  • B0 B0

  • B0OC1O B0OC2O

  • 1C1TT0C

  • a -Fe b

  • 5.3

  • 1. 1 Ps = P - P =0

  • 2 AB Ps P+ PsP Ps

  • 3 AB Ps P-Ps

  • 4Psr a. P=P+Ps b. dVdA c. PsdV dA.PsdV =dAdV=d4/3 r3=4r2dr dA=d4r2=8rdrPs=2/rLaplacePsr

  • 1 rPs Ps=2/r2 r>0Ps>0 r
  • 3 Ps=4/r4 rPs ps

  • P126

  • 2. P PP+P+Ps=P+gh+2/r rPs PPP+gh+ 2/r

  • PP+gh+2/r T 1.250 Nm-1r = 510-8 mps= 2/r = 5107Nm-1

  • 1. T S G G-T1T=T0G=G T0 2T>T0G>G G=G-G>0, T>T0

  • 3T
  • VAln G G=n V GG=nA V l3A l2 V =kl3A =kl2G=nk Gl3+ nkl2

  • G-l lc : l< lc l> lc

  • 3 G=nk Gl3+ nkl2 , Gl :d (G)/dl=0 lc=2/3 k/k(- G) 1 GTT G lc

  • 2Gc Gc G Gc G-lT1 > T2 > T3l1 > l2 > l3

  • 4 G>0 lc=2/3 k/k(- G) G=nk Gl3+ nkl2G=nA/3=G/32/31/3

  • 5.4 GG Ol s g

  • O s-g s-l l-g >90
  • s-g = s-l + l-g cos(Young) cos = (s-g -s-l) / l-g

  • 1) s-g > s-lcos>0,
  • G G 1. s-ls-gl-g.

  • AG:G=[Gs-l-(Gs-g+Gl-g)] =[s-l- (s-g+l-g)]A G=[(s-g+l-g) -s-l]A:W= G/A=(s-g+l-g) -s-ls-g= s-l +l-gcosW= l-g(1+cos)(Young)

  • 1l-g WG 2 l-g 30

  • 2. s-ll-gs-g GG=Gs-l+ Gl-g - Gs-g = [ s-l+ l-g - s-g ]A G= [ s-g - s-l - l-g ]A W= G/A = s-g- s-l - l-g=

  • = s-g - s-l - l-g >0 G
  • 2072.7510-3Nm-1471.610-3Nm-1-37510-3Nm-1 = - - - 5-1 p134

  • 5.5 .1.T
  • 3. dA dnB

  • CB=1moldm-3CB

  • >0,
  • .cNaClNa2SO4 c c c

  • . 1. -OH-COOH-NH2

  • 2. c 3. c 4.

  • R-OSO3NaR-SO3NaR-OPO3Na2

  • CH3 |R-N-HCl | H CH3 |R-N-HCl | CH3 CH3 |R-N+-CH3Cl- | CH3

  • CH3 |R-N+-CH2COO- | CH3

  • R-(C6H4)-O(C2H4O)nHR2N-(C2H4O)nHR-CONH(C2H4O)nHR-COOCH2(CHOH)3H

  • (micelle)

  • (critical micelle concentration) CMC

  • (critical micelle concentration)

  • (hydrophile-lipophile balance) GriffinHLBHLBHLB=0 HLB=20HLB020

  • (hydrophile-lipophile balance) HLBHLB268101218HLB 0 2 4 6 8 10 12 14 16 18 20 | || || || || | W/O | || O/W

  • 1. 90

  • 2.

  • 3. X

  • 4. 10-7m (O/W)(W/O)

  • 5. A.

  • B.C.

  • 5%

  • 1.O/W2.W/O

  • 5.6

  • . 1. A

  • 2.HAuCuG
  • 5-6P138

  • .1. V=V m(1)

  • 2.q, T, p.(2)

  • :pq-Tqp-T adsH

  • Tq-p 5(p/pspsp)

  • ()2.5nm78KN2.

  • ()S1. S

  • ()352KBr2

  • ()323K.

  • ()373K

  • R' R'Kelvin(a) AB (b)

  • Kelvin (b)bCD

  • . Langmuir1-=k1p(1-) 1-=k2

  • qLangmuir

  • q p

  • 1.pbp1q =1q p3.q pmm01

  • VVpp/VpbVq =V/VLangmuir Langmuir

  • 1.2.3.q LangmuirLangmuir

  • Brunauer-Emmett-TellerBET Langmuir.BET

  • 1.-2. Vmc

  • .FreundlichFreundlichqcm3/ganFreundlichq Langmuir

  • 1. 2. kJ/mol3.

  • 4.5.6.

  • H2 NiH eaQp H2Nia

  • aNiac

  • 1. 2.40kJ/mol 3.

  • 4.5.6.-

  • 5.7

    -

    1.

  • CTAB\SDBS

  • ZnO

  • 2.-COOH -OH 3.SrTiO3H2C2O4ZnO

  • -1.2. 3.T10-2~10-4Pa + N2

  • H2O2N2 H2 ArH2 O2 H2OH2O

  • . 1.

  • 2. ZnO PTCBaTiO3 PTC

  • 5.8.1.

  • 2. 3.1 d>0.1m

  • 2 sol d1 nm~100 nm 1 nm ~ 1000 nm

    3 d

  • 1 .- AgI.- .-

  • 2 .- .- .-

  • 3 ---..- .-

  • 2sollyophilic:. 1d1nm~0.1m(10-9~10-7m)

  • 1 nm~100 nm lyophobic

  • 1 10-9~10-7 m 2 3

  • 5.9. 400~700 nm 1

  • 1.1 2 3

  • Tyndall

  • 2AgClAgBr3da. d>b. d
  • 4 A V n1n2d
  • Rayleigh1. 2. 3.

  • cd
  • cr

  • turbidity It I0l d>

  • 200 nm2. 5~150 nm

  • 5~150nmNcsolVr

  • sol

  • 1827 Brown) .sol

  • 1. 1903

  • 19051906Einstein)Smoluchowski)BrownBrown5 mBrown

  • xtxrL

  • dm/dtdc/dx

  • CDFEABC1>C2 C1C2

  • a Ficks first law

  • D

  • b Ficks second law

  • -Einstein-Brown t AB AB

  • ABt

  • r r :

  • AB c c

  • c sedimentation equilibrium

  • dxN

  • 1 2 AgIAg+I- AgIAgNO3Ag+KII -

  • 3 pHPCOO-pHP-NH3+ pH-COO--NH3+pH

  • pH 1. electrophoresis

  • 2. electro-osmosis) 1~10 nm

  • U1,25,6 4 3AgI

  • 3. streaming potential)

  • 4. (sedimentation potential)

  • double layer) 1879Helmholz 19101913SternStern

  • 0 0

  • GouyChapman

  • AB

  • Stern Stern Stern Stern Stern

  • SternStern0 Stern

  • 0

  • electrokinetic potential

  • d

  • 0

  • 1. r10-9~10-7mG2.

  • AgNO3 + KIKNO3 + AgI KI AgIKI

  • 2AgNO3 + KIKNO3 + AgI AgNO3

  • 12 V2O5 3 Fe(OH)3

  • . r r

  • sol

  • 112113mVsol

  • sol1.solsolTc csolcsol

  • 1moldm-3-

  • 2solH+>Cs+>Rb+>K+>Na+>Li+Fe 3+ >Al 3+ >Ba 2+ >Sr 2+ >Ca 2+ >Mg 2+solF- > IO3- > H2PO4- >BrO3- > Cl- > Br- >NO3- >I- >CNSlyotropic series)

  • 3sol4

  • 2sol2.

  • NaClLi+>K+>Na+>NH4+>Mg 2+>>SO42->CH3COO->Cl->NO3->ClO3->I-

  • 3.sol10-6sol

  • sol SiO2SiO2SiO2

  • sol

  • 5.10

  • .1.

  • 12 ACB ACB1000 nm

  • 2.sol

  • Fe(OH)3() Fe(OH)3(sol)SnCl4SnO2() SnO2(sol)sol3.16000Hz

  • 4

  • ,NaOH 100V 4.

  • . sol1.sol

  • A. 2H3AsO3+ 3H2S As2S3+6H2OB. FeCl3 +3H2O Fe(OH)3 +3HCl C. 2H2S(+ SO2(g) 2H2O +3S ( Na2S2O3 +2HCl 2NaCl +H2O +SO2 +S (

  • 2.solE. AgNO3+ KCl AgCl ( +KNO3A.

  • 1. 2.90

  • 42,5 B. 245 53

  • Fe(OH)3HCl . sol

  • 1

  • 2 10-8~310-7m

  • 2

  • 5.11 sol-gel. sol-gelsol10-9~10-7mgelsolgel.-

  • sol-gel-

  • 1.sol

  • 2. Al(OC3H7)3

  • a.-M-OH + HO-M -M-O-M- + H2Ob.-M-OH + RO-M -M-O-M- + ROH

  • sol-gel H3O+-OROH--OR

  • solgel B(OR)3Al(OR)3B2O3Al(OH)3

  • -a.b.c.-OH-OR

  • +

  • a./b.c.gelpHTsol

  • 5.12 sol-gelsol-gel. 1.2.3.

  • . sol-gel

  • sol-gelBaTiO31.Ba + 2C3H7OH Ba(OC3H7)2 + H2TiCl4 + 4C3H7OH + 4NH3 Ti(OC3H7)4 + 4NH4ClTi(OC3H7)4 + 4C5H11OH Ti(OC5H11)4 + 4C3H7OH2.

  • 2h12h5-15nmBaTO3