第六章 炔烃和共轭烯烃

58
第第第 第第第第第第第 第第第 第第第第第第第 ex it

description

第六章 炔烃和共轭烯烃. exit. 本章提纲. 第一部分 炔烃 第二部分 共轭双烯. 第一部分 炔烃的提纲. 第一节 炔烃的异构和命名 第二节 炔烃的物理性质 第三节 炔烃的结构 第四节 炔烃的制备 第五节 炔烃的化学性质. 第一节 炔烃的异构和命名. 几个重要的炔基. HC C- CH 3 C C- HC CCH 2 - 乙炔基 1- 丙炔基 2- 丙炔基 - PowerPoint PPT Presentation

Transcript of 第六章 炔烃和共轭烯烃

Page 1: 第六章    炔烃和共轭烯烃

第六章 炔烃和共轭烯烃第六章 炔烃和共轭烯烃第六章 炔烃和共轭烯烃第六章 炔烃和共轭烯烃

exit

Page 2: 第六章    炔烃和共轭烯烃

第一部分 炔烃

第二部分 共轭双烯

本章提纲本章提纲

Page 3: 第六章    炔烃和共轭烯烃

第一节 炔烃的异构和命名

第二节 炔烃的物理性质

第三节 炔烃的结构

第四节 炔烃的制备

第五节 炔烃的化学性质

第一部分 炔烃的提纲第一部分 炔烃的提纲

Page 4: 第六章    炔烃和共轭烯烃

第一节 炔烃的异构和命名

几个重要的炔基

HC C- CH3C C- HC CCH2-

乙炔基 1- 丙炔基 2- 丙炔基

ethynyl 1-propynyl 2-propynyl

Page 5: 第六章    炔烃和共轭烯烃

几个实例

CH3CH=CHC CH

3- 戊烯 -1- 炔

3-penten-1-yne

CHCCH2CH=CH2

1- 戊烯 -4- 炔

1-penten-4-yne

CHCCH2CH=CHCH2CH2CH=CH2

4,8- 壬二烯 -1- 炔

4,8-nonadien-1-yne

H3C

H

1 2

3

4

567

8

(S)-7- 甲基环辛烯 -3- 炔

(S)-7-methylcycloocten-3-yne

* 若分子中同时含有双键和叁键,可用烯炔作词尾,给双键和叁键以尽可能小的编号,如果位号有选择时,使双键位号比叁键小。

Page 6: 第六章    炔烃和共轭烯烃

第二节 炔烃的物理性质

简单炔烃的沸点、熔点以及密度比碳原子数相同的烷烃和烯烃高一些。炔烃分子极性比烯烃稍强。炔烃不易溶于水,而易溶于石油醚、乙醚、苯和四氯化碳中。

Page 7: 第六章    炔烃和共轭烯烃

杂化方式: SP3 SP2 SP

键角: 109o28’ ~120o 180o

键长不同

碳碳键长 153.4pm 133.7pm 120.7pm

(Csp3-Csp3) (Csp2-Csp2) (Csp-Csp)

C-H: 110.2pm 108.6pm 105.9pm

(Csp3-Hs) (Csp2-Hs) (Csp-Hs)

轨道形状: 狭 长 逐 渐 变 成 宽 圆

碳的电负性: 随 S 成 份 的 增 大, 逐 渐 增 大。

pka: ~50 ~40 ~25

第三节 炔烃的结构

CC

H

H

HH

HH

HHH

H CC H HC C

Page 8: 第六章    炔烃和共轭烯烃

一、用邻二卤代烷和偕二卤代烷制备

CH3CHBr-CHBrCH3 KOH-C2H5OH or NaNH2 的矿物油 <100oC CH

3CH2-CBr2CH3

CH3CH=CCH3

Br

KOH-C2H5OH, >150oC

NaNH2 的矿物油 , 150-160o C

CH3CCCH3

NaNH2 KOH-C2H5OH

第四节 炔烃的制备

CH3CH2CCH

Page 9: 第六章    炔烃和共轭烯烃

二、 用末端炔烃直接氧化制备

三、 用金属有机化合物制备

CH3CH2CCH

空气, CuCl, NH3, CH3OH CH3CH2CC-CCCH2CH3

RMgX

NaNH2

RLi

CH3CH2C CMgX

R’XCH3CH2C CNa C2H5C CR’

R’X

R’XCH3CH2CCLi

* 叁键无法移位时,产物是唯一的。* 叁键无法移位时,产物是唯一的。

Page 10: 第六章    炔烃和共轭烯烃

一 末端炔烃的酸性、鉴别及其与醛、酮的加成

二 炔烃的加氢和还原

三 炔烃的亲电加成和自由基加成

四 炔烃的亲核加成

五 炔烃的氧化

一 末端炔烃的酸性、鉴别及其与醛、酮的加成

二 炔烃的加氢和还原

三 炔烃的亲电加成和自由基加成

四 炔烃的亲核加成

五 炔烃的氧化

第五节 炔烃的化学性质

Page 11: 第六章    炔烃和共轭烯烃

一 末端炔烃的酸性、鉴别及其与醛、酮的加成一 末端炔烃的酸性、鉴别及其与醛、酮的加成

R3C-H R3C- + H+

碳氢键的断裂也可以看作是一种酸性电离,所以将烃称为含碳酸碳氢键的断裂也可以看作是一种酸性电离,所以将烃称为含碳酸

含碳酸的酸性强弱可用 pka判别, pka越小,酸性越强。

烷烃 ( 乙烷 ) 〈 烯烃 ( 乙烯 ) 氨 〈 末端炔烃 ( 乙炔 ) 〈 乙醇 〈 水

pka ~50 ~40 35 25 16 15.7

酸 性 逐 渐 增 强 其 共 轭 碱 的 碱 性 逐 渐 减 弱

1 酸性1 酸性

Page 12: 第六章    炔烃和共轭烯烃

R-CCH

R-CCCu

R-CC Na

R-CC Ag

R-CC Cu

R-CCH + Ag(CN)-2 + HO-

R-CC Ag R-CCH + AgNO3

R-CCH + Cu2(NO3)2

NaNH2

Ag (NH3)+2NO3

Cu (NH3)+2Cl

HNO3

HNO3

-CN + H2O

纯化炔烃的方法

鉴别

2 鉴别方法2 鉴别方法

Page 13: 第六章    炔烃和共轭烯烃

RCCH + HOBr RC C-Br + H2O

3 末端炔烃的卤化3 末端炔烃的卤化

Page 14: 第六章    炔烃和共轭烯烃

4 末端炔烃与醛、酮的反应4 末端炔烃与醛、酮的反应

RCCH RCC- RCC-CH2O-

RCC-CH2OH + -OH

KOHCH2= O

H2O

RCCH RCC-Li+ n-C4H9Li, THF, -78oC

RCC-CHC5H11-n

n-C5H11CH

=O

RCC-CHC5H11-nO-Li+ OH

H2O

末端 H 被取代

的羟甲基取代

末端 H 被羟甲基取代

该反应主要用来制备炔醇、也可以用来接长碳链。该反应主要用来制备炔醇、也可以用来接长碳链。

Page 15: 第六章    炔烃和共轭烯烃

二 炔烃的加氢和还原

R-CC-R’

H2/Ni, or Pd, or Pt RCH2CH2R’

H2/ Pd-CaCO3 or Pd-BaSO4 orNiB

R'HR

H CC

R'

HRH CC

硼氢化 RCOOH ~0oC R'

HRH CC

Na, NH3

R'HR

H CCLiAlH4 (THF)

(>90%)

(90%)

(82%)

Page 16: 第六章    炔烃和共轭烯烃

1 催化加氢

*1 CH2=CH-CH2CH2-CCH + H2 (1mol)

CH3CH2CH2CH2-CCH

烯烃比炔烃更易氢化

*2 CH2=CH-CCH + H2 (1mol)

CH2=CH-CH=CH2

共轭双键较稳定

Ni

Ni

Page 17: 第六章    炔烃和共轭烯烃

2 用碱金属和液氨还原

反应式Na, NH3

R'HR

H CC

反应机理

R'R

CCH

e

R'R

CC

_

NH3

R'R

CCH

NH3

R'HR

H CC-

R-C C-R'

R-C C-R'

Page 18: 第六章    炔烃和共轭烯烃

*1 钠的液氨溶液的制备

Na + NH3(l) Na + + e- (NH3)

Li ,K C2H5NH2 蓝色溶液

*2 反应体系不能有水,因为钠与水会发生反应。

*3 与制 NaNH2 的区别

Na + NH3 ( 液 ) NaNH2

低温 蓝色是溶剂化电子引起的。蓝色是溶剂化电子引起的。

Fe3+

说 明说 明

Page 19: 第六章    炔烃和共轭烯烃

1 加卤素*1 CH2=CH-CH2-CCH + Br2 (1mol)

CH2BrCHBr-CH2-CCH碳 sp 杂化轨道的电负性大于碳 sp2 杂化轨道的电负性,所以炔中电子控制较牢。

*2 HCCHCl2Cl2

FeCl3FeCl3

CHCl2-CHCl2

H

HCC

Cl

Cl

反应能控制在这一步。

*3 加氯必须用催化剂,加溴不用。

三 炔烃的亲电加成和自由基加成

Page 20: 第六章    炔烃和共轭烯烃

2 加 HI 和 HCl

*1 与不对称炔烃加成时,符合马氏规则。

*2 与 HCl 加成,常用汞盐和铜盐做催化剂。

*3 由于卤素的吸电子作用,反应能控制在一元阶段。

*4 反式加成。

CH3CH2CCCH2CH3 + HCl

催化剂

97%

H

CH3CH2

CC

Cl

CH2CH3

Page 21: 第六章    炔烃和共轭烯烃

3 加 HBr

RCCH + HBr RCH=CHBr

RCHBrCH2Br HBr过氧化物

过氧化物

既能发生亲电加成,又能发生自由基加成。

Page 22: 第六章    炔烃和共轭烯烃

4 加 水

CHCHH2O, HgSO4-H2SO4 [ CH2=CH-OH ]

互变异构 CH3CH

=

O

RCCHH2O, HgSO4-H2SO4 [ CH2=CR-OH ]

互变异构 CH3C=O

R

RCCR’H2O, HgSO4-H2SO4 [ CHR’=CR-OH ] + [ CHR=CR’-OH ]

互变异构R’CH2CR + RCH2CR’

= =

O O

*1 Hg2+ 催化,酸性。

*2 符合马氏规则。

*3 乙炔乙醛, 末端炔烃甲基酮,非末端炔烃两种酮的混合物。

*1 Hg2+ 催化,酸性。

*2 符合马氏规则。

*3 乙炔乙醛, 末端炔烃甲基酮,非末端炔烃两种酮的混合物。

Page 23: 第六章    炔烃和共轭烯烃

官能团异构体:分子式相同、分子中官能团不同而产生的异构体。

互变异构体:分子中因某一原子的位置转移而产生的官能团异构体。

C2H6O: CH3CH2OH, CH3OCH3C2H6O: CH3CH2OH, CH3OCH3

H

CH3C CHCH3

O H

CH3C CHCH3

O互变异构

Page 24: 第六章    炔烃和共轭烯烃

定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。

定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。

常用的亲核试剂有: ROH( RO-)、 HCN( -CN)、 RCOOH( RCOO-)

1. CHCH + HOC2H5 CH2=CHOC2H5

碱, 150-180oC

聚合,催化剂[ CH2-CH ]n

OC2H5

粘合剂

炔烃亲核加成的区域选择性:优先生成稳定的碳负离子。炔烃亲核加成的区域选择性:优先生成稳定的碳负离子。

四 炔烃的亲核加成

Page 25: 第六章    炔烃和共轭烯烃

2. CHCH + CH3COOH

3. CHCH + HCN CH2=CH -CN

Zn (OAc)2 150-180oCCH2=CH-OOCCH3

聚合,催化剂 [ CH2-CH ]n[ CH2-CH ]n

OOCCH3

H2O[ CH2-CH ]n

OH

乳胶粘合剂 现代胶水

CuCl2H2O, 70oC

聚合,催化剂 [ CH2-CH ]n

CN人造羊毛

Page 26: 第六章    炔烃和共轭烯烃

RCCR’

KMnO4(冷,稀, H2O , PH7-5)

KMnO4( H2O , 100oC)KMnO4( HO- , 25oC)

RCOOH + R’COOH

(1) O3 (2) H2O, Zn

BH3 H2O2 , HO-

RCH2CR’

=O

五 炔烃的氧化

RC CR

O O

H CCR R'

3 B

OHH CCR R'

RCOOH + R’COOH

RCOOH + R’COOH

Page 27: 第六章    炔烃和共轭烯烃

RCCHBH3 0oC

H2O2 , HO -

RCH2CHO

BH2H CCR H '

R

O H

H

H CC

Page 28: 第六章    炔烃和共轭烯烃

第一节 双烯体的定义和分类

第二节 双烯体的命名和异构现象

第三节 共轭体系的特性

第四节 价键法和共振论的处理

第五节 分子轨道处理法

第六节 狄尔斯-阿尔德反应

第七节 橡胶

第二部分 共轭双烯提纲第二部分 共轭双烯提纲

Page 29: 第六章    炔烃和共轭烯烃

第一节 双烯体的定义和分类

含有两个双键的碳氢化合物称为双烯烃或二烯烃。

CH2=C=CH2 CH2=CHCH2CH2CH=CH2 CH2=CH-CH=CH2

丙二烯 1,5-己二烯 1,3-丁二烯

(累积二烯烃) (孤立二烯烃) (共轭二烯烃)

分子中单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。

Page 30: 第六章    炔烃和共轭烯烃

第二节 双烯体的命名和异构现象

S-顺 -1,3-丁二烯

S-(Z)-1,3 -丁二烯

S-cis-1,3-butadiene

S- 反 -1,3-丁二烯

S-(E)- 1,3-丁二烯

S-trans-1,3-butadiene

H

CH2 CH2C C

HH

H

CH2

CH2CC

Page 31: 第六章    炔烃和共轭烯烃

无法改变的S-顺构象无法改变的S-顺构象

无法改变的S- 反构象无法改变的S- 反构象

二环 [4.4.0]-1,9-癸二烯

Page 32: 第六章    炔烃和共轭烯烃

第三节 共轭体系的特性

一 键长平均化

二 吸收光谱向长波方向移动

三 易极化 -折射率增高

四 趋于稳定 - 氢化热降低

五 共轭体系可以发生共轭加成

一 键长平均化

二 吸收光谱向长波方向移动

三 易极化 -折射率增高

四 趋于稳定 - 氢化热降低

五 共轭体系可以发生共轭加成

Page 33: 第六章    炔烃和共轭烯烃

共轭体系发生共轭加成的实例 共轭体系发生共轭加成的实例

CH2=CH-CH=CH2

CH2=CH-CH=CH2

CH2=CH-CH=CH2

nCH2=CH-CH=CH2

CH2=CH-CH=CH2

CH2Br-CHBr-CH=CH2

CH3-CHCl-CH=CH2

CH2Br-CH=CH-CH2Br

Br2 , 冰醋酸 1 , 2- 加成1 , 4- 加成

CH3-CH=CH-CH2Cl

HCl1 , 2- 加成

1 , 4- 加成

聚合[CH2-CH=CH-CH2]n

电环合, h

CH2=CH-CH=CH2

+双烯加成

Page 34: 第六章    炔烃和共轭烯烃

第四节 价键法和共振论的处理一 价键法的核心一 价键法的核心

价键法强调电子运动的局部性,电子运动只与两个原子有关。共价键的实质就是活动在两个原子核之间的自旋相反的电子把两个原子结合在一起的作用力。

H Br对键长平均化的解释对键长平均化的解释

烷烃的单键: (Csp3-Csp3) 烷烃的单键: (Csp3-Csp3)

共轭烯烃的单键:(Csp2-Csp2)共轭烯烃的单键:(Csp2-Csp2)

S 成分增大,碳的电负性增大,核对电子云的吸引力增大,所以键长缩短。

S 成分增大,碳的电负性增大,核对电子云的吸引力增大,所以键长缩短。

Page 35: 第六章    炔烃和共轭烯烃

二 提出共振论的科学历史背景二 提出共振论的科学历史背景

( 1) 凯库勒结构理论学说( 1852年弗兰克提出原子价概念, 1957年提出碳原子为四价)

( 2) 布特列洛夫结构学说( 1861年提出性质对结构的依存、结构与结构式一一对应。)

( 3) 范霍夫和勒贝尔提出的碳原子的立体结构概念( 1874年提出 碳原子的四面体学说)

1 经典结构理论学说 有机结构理论1 经典结构理论学说 有机结构理论

Page 36: 第六章    炔烃和共轭烯烃

2 有机结构理论的电子学说2 有机结构理论的电子学说

( 1) Lewis Langmuir 于 1914-1916年创立了原子

价的电子理论 1897年汤姆逊发现了电子。

1913年玻尔提出了著名的原子结构学说:

*1 化学键是由电子组成的。

*2 化学反应是价电子的反应。

( 2) 英果尔徳于 1926年提出了中介论:

常态下,某些分子存在电子转移。R2N-CH=CH-CH=O

Page 37: 第六章    炔烃和共轭烯烃

三 共振论学习提纲1 共振论的基本思想: (鲍林, 1931-1933年)1 共振论的基本思想: (鲍林, 1931-1933年)

分子 结构式 共振式

甲烷

(非共轭分子)

H-C-H

H

H

1,3-丁二烯(共轭分子)

有,目前写不出来。

CH2=CH-CH=CH2 CH2-CH=CH-CH2

CH2-CH=CH-CH2 CH2-CH-CH=CH2

CH2-CH-CH=CH2 CH2=CH-CH-CH2

CH2=CH-CH-CH2

CH2=CH-CH=CH2 CH2-CH=CH-CH2

CH2-CH=CH-CH2 CH2-CH-CH=CH2

CH2-CH-CH=CH2 CH2=CH-CH-CH2

CH2=CH-CH-CH2

+

+ +

+ +

+真实分子是所有的极限结构杂化产生的,称为极限结构的杂化体。

用若干个经典结构式的共振来表达共轭分子的结构。

Page 38: 第六章    炔烃和共轭烯烃

2 写共振式的原则要求

3 共振结构稳定性的判别

4 共振结构对杂化体的贡献

5 共振论对 1,3-丁二烯某些特性的解释

6 共振论的缺陷

2 写共振式的原则要求

3 共振结构稳定性的判别

4 共振结构对杂化体的贡献

5 共振论对 1,3-丁二烯某些特性的解释

6 共振论的缺陷

Page 39: 第六章    炔烃和共轭烯烃

共振论对 1,3-丁二烯既能发生 1,2- 加成,又能发生 1,4- 加成的解释

共振论对 1,3-丁二烯既能发生 1,2- 加成,又能发生 1,4- 加成的解释

CH2=CH-CH=CH2

CH2=CH-CH-CH3 CH2-CH=CH-CH3

CH2=CH-CH-CH3

CH2=CH-CH2-CH2

+ +

Br-

Br

CH2-CH=CH-CH3

Br-

BrHBr

+

+

12

2

1

1,2- 加成物1,2- 加成物 1,4- 加成物1,4- 加成物

四 共振论对共轭体系特性的解释

Page 40: 第六章    炔烃和共轭烯烃

第五节 分子轨道处理法

电子不是属于某个原子的, 而是属于整个分子的。电子是围绕分子中所有原子在一定的轨道上运行的。因此,把电子的状态函数称为分子轨道。

分子轨道都有确定的能值,因此可以按照能量的高低来排列。

电子不是属于某个原子的, 而是属于整个分子的。电子是围绕分子中所有原子在一定的轨道上运行的。因此,把电子的状态函数称为分子轨道。

分子轨道都有确定的能值,因此可以按照能量的高低来排列。

一 分子轨道理论的核心

Page 41: 第六章    炔烃和共轭烯烃

二 直链共轭多烯的分子轨道及有关概念二 直链共轭多烯的分子轨道及有关概念

成键轨道 反键轨道 非键轨道(碳的 P 原子轨道的能量用表示。)

离域分子轨道 离域键 定域分子轨道 定域键

最高占有轨道( HOMO) 最低未占轨道( LUMO)单占轨道( SOMO)(电子在分子轨道中的排列遵循:能量最低原理、鲍里不相容原理、洪特规则。)

离域能( DE) = 离域的 E - 定域的 E(分子中所有电子能量之和称为E)节 ( 结 )面 对称性 对称 反对称 不对称 镜面 C2旋转轴

Page 42: 第六章    炔烃和共轭烯烃

CH2 CH CH CH21.894 1.447 1.894

1 对键长平均化的解释

三 分子轨道理论对共轭体系特性的解释

Page 43: 第六章    炔烃和共轭烯烃

-

+

-1.618

-0.618

+0.618

+1.618

E=h=h/

2 对吸收光谱向长波方向移动的解释

三个重要的物理量:电子密度,键级,自由价三个重要的物理量:电子密度,键级,自由价

Page 44: 第六章    炔烃和共轭烯烃

3 对易极化 -折射率增高的解释

4 对趋于稳定 - 氢化热降低的解释

电子离域,电子运动范围增大,易极化。

定域能: 4+4 离域能: 4+4.472

Page 45: 第六章    炔烃和共轭烯烃

5 对 1,3-丁二烯既能发生 1,2- 加成,又能发生 1,4- 加成的解释

CH2 CH CH CH2 = = q (2)=0.7236 0.2764 0.2764 0.7236

H+

CH2 CH CH CH3

+= CH2 CH CH CH3

…… ……

+

q (2)=0.5 1 0.5

Br-

CH2=CH-CH-CH3 CH2-CH=CH-CH3

Br Br

+

三个重要的物理量:电子密度,键级,自由价三个重要的物理量:电子密度,键级,自由价

Page 46: 第六章    炔烃和共轭烯烃

第六节 狄尔斯 --阿尔德反应

共轭双烯与含有烯键或炔键的化合物相互作用,生成六元 环状化合物的反应称为狄尔斯 --阿尔德反应。

+

双烯体 亲双烯体 环状过渡态 产物对双烯体的要求: ( 1)双烯体的两个双键必须取 S-顺式构象。 ( 2)双烯体 1 , 4 位取代基位阻较大时,不能发生该反应。

一 定义 :

二 反应机理

Page 47: 第六章    炔烃和共轭烯烃

三 分类 正常的 D-A 反应:电子从双烯体的 HOMO流入 亲双烯体的 LUMO 。 反常的 D-A 反应:电子从亲双烯体的 HOMO流 入双烯体的 LUMO 。 中间的 D-A 反应:电子双向流动。

Page 48: 第六章    炔烃和共轭烯烃

正常的 D-A 反应

1,3-丁二烯 乙烯

1.0 eV1.5 eV

-9.1 eV

-10.5 eV

LUMO LUMO

HOMO

HOMO

E 10. 6 eV

E 11. 5 eV

电离能的负值

电子亲和能的负值

反应时,电子要由能量低的 HOMO流向高能量的 LUMO 。所以,能差越小,越利于电子的流动。本反应为正常的D-A 反应。

反应时,电子要由能量低的 HOMO流向高能量的 LUMO 。所以,能差越小,越利于电子的流动。本反应为正常的D-A 反应。

Page 49: 第六章    炔烃和共轭烯烃

取代基对前线轨道能量的影响取代基对前线轨道能量的影响

吸电子基团,既降低 HOMO 能量,又降低 LUMO 的能量。

给电子基团,既增高 HOMO 能量,又增高 LUMO 的能量。

共轭碳链的增长,可以增高 HOMO 能量和降低 LUMO 的能量。

所以,具有给电子取代基的双烯体和吸电子取代基的亲双烯体最易发生正常的 D-A 反应。

O

O

O

+

OO

O

HH

双烯体 亲双烯体

Page 50: 第六章    炔烃和共轭烯烃

四 D--A 反应的特点

四 D--A 反应的特点

1 反应具有很强的区域选择性

+

OCH3CHO

OCH3OCH3

CHO

CHO+

CH3 CHO

+

CH3CH3

CHO

CHO

+

70 %

100 % 0 %

30 %

当双烯体和亲双烯体上均有取代基时,可产生两种不同的产物,实验证明:邻或对位的产物占优势。 当双烯体和亲双烯体上均有取代基时,可产生两种不同的产物,实验证明:邻或对位的产物占优势。

Page 51: 第六章    炔烃和共轭烯烃

2 反应是立体专一的顺式加成反应

COOHH

HHOOC

+COOH

H

H

COOH

H

COOH

COOH

H

+

COOHH

COOHH

+COOH

COOH

H

H

( 1)参与反应的亲双烯体顺反关系不变

Page 52: 第六章    炔烃和共轭烯烃

O NH

O

O

+

O

NO

O

HH

H

*

**

*O

NH

O

O

HH

*

**

*90o C 25o C

内型产物

动力学控制

外型产物

热力学控制

122

2

33 34

连接平面连接平面连接平面连接平面

与烯键或炔键共轭的不饱和基团与烯键或炔键共轭的不饱和基团

内型加成产物:双烯体中的 C(2)-C(3) 键和亲双烯体中与烯键或炔键共轭的不饱和基团处于连结平面同侧时的生成物。(处于异侧为外型加成产物。)

内型加成产物:双烯体中的 C(2)-C(3) 键和亲双烯体中与烯键或炔键共轭的不饱和基团处于连结平面同侧时的生成物。(处于异侧为外型加成产物。)

( 2)当双烯体上有给电子取代基,而亲双烯体上有不饱和基团与烯键或炔键共轭时,优先生成内型加成产物。

Page 53: 第六章    炔烃和共轭烯烃

+

内型产物外型产物

COOCH3+

H*

*

*

COOCH3H

*

*

*

COOCH3

3 D-A 反应是一个可逆反应,提高温度利于逆向 分解反应。

Page 54: 第六章    炔烃和共轭烯烃

五 D-A 反应的应用五 D-A 反应的应用

1 合成环状化合物

+

CHO= H

CHO

KMnO4

HOOC COOH

COOH

CHO**

*H

Page 55: 第六章    炔烃和共轭烯烃

2 利用可逆性提纯双烯化合物,鉴别双烯化合物。

3 利用逆反应制备不易保存的双烯体。

+200oC, 20MPa

200oC 镍铬丝

Page 56: 第六章    炔烃和共轭烯烃

第七节 橡胶

天 然 橡 胶

1 处理:橡胶植物 -----胶乳 -----经醋酸处理后凝固 -----经压制成生橡胶

(线状结构,加热变软,溶剂溶涨) -------经加硫处理成天然橡

胶(网状结构,性能良好) ------- 成型加工成橡胶制品。

2 结构: 顺 -1,4-聚异戊二烯

3 发展史

1 处理:橡胶植物 -----胶乳 -----经醋酸处理后凝固 -----经压制成生橡胶

(线状结构,加热变软,溶剂溶涨) -------经加硫处理成天然橡

胶(网状结构,性能良好) ------- 成型加工成橡胶制品。

2 结构: 顺 -1,4-聚异戊二烯

3 发展史

Page 57: 第六章    炔烃和共轭烯烃

合 成 橡 胶通用合成橡胶:顺丁橡胶、乙丙橡胶、异戊橡胶、丁苯橡胶特种合成橡胶:用于特殊用途。

甲基橡胶 ( 第一次世界大战,德 ),丁钠橡胶 (1910-1932 俄 ), 氯丁橡胶 (1925-1937 美 ), 丁苯橡胶 (1933-1937 德 ), 丁腈橡胶 (1925-1937 德 )

通用合成橡胶:顺丁橡胶、乙丙橡胶、异戊橡胶、丁苯橡胶特种合成橡胶:用于特殊用途。

甲基橡胶 ( 第一次世界大战,德 ),丁钠橡胶 (1910-1932 俄 ), 氯丁橡胶 (1925-1937 美 ), 丁苯橡胶 (1933-1937 德 ), 丁腈橡胶 (1925-1937 德 )

塑料中的四烯:聚乙烯,聚丙烯,聚氯乙烯,聚苯乙烯。塑料中的四烯:聚乙烯,聚丙烯,聚氯乙烯,聚苯乙烯。

纤维中的四纶:涤纶,锦纶,腈纶,维纶。纤维中的四纶:涤纶,锦纶,腈纶,维纶。

Page 58: 第六章    炔烃和共轭烯烃

重要单体的合成

氯丁二烯的合成: 乙炔法 丁二烯氯化法氯丁二烯的合成: 乙炔法 丁二烯氯化法

1,3-丁二烯的合成:乙炔法 丁烷法 甲醛 - 乙炔法1,3-丁二烯的合成:乙炔法 丁烷法 甲醛 - 乙炔法

异戊二烯的合成: 丙酮 - 乙炔法 异戊二烯的合成: 丙酮 - 乙炔法

2CHCH CH2=CH-CCH

CH2=CH-CH=CH2

Cu2Cl2, NH4Cl

H2, Pd/PbO, CaCO3