Ws05_axisymflowpipe.ppt

download Ws05_axisymflowpipe.ppt

of 30

Transcript of Ws05_axisymflowpipe.ppt

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    1/30

    WS5-1

    WORKSHOP 5

    AXISYMMETRIC FLOW IN A PIPE

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    2/30

    WS5-2NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    3/30

    WS5-3NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Problem Description

    In this example we will analyze an axisymmetric structure for its

    temperature distribution. We will use the MSC.Nastran CTRIAX6 axi-symmetric element (in its 3 node configuration) as the heat conductionelement.

    The basic geometry is detailed in the figure below. A section of pipeconsisting of composite materials is divided into two different materialregions. Region A is from radius 1.5 feet to 3.5 feet. Region B is from radius3.5 feet to 4.75 feet. The overall pipe section is 5.0 feet long with an inside

    diameter of 3 feet and an outside diameter of 9.5 feet.Oil flows through the interior with an inlet temperature of 100 oF and a massflow rate of 2.88E6 lbm/hr. The forced convection heat transfer coefficientbetween the oil and wall is calculated by MSC.Nastran using the followingrelationship:

    Nu=0.023Re0.8Pr0.3333. Thermal conductivity properties for Region A andRegion B are 0.2 and 0.5 Btu/hr/(ft*oF). Volumetric internal heat generation

    occurs in the subregion of Region B (from radius 3.5 feet to 3.9167 feet),and varies based on Z location. The heat generation is 1200*(1-Z/5)Btu/hr/ft3, where Z is in units of feet. Free convection to an ambienttemperature of 100 oF is applied to the exterior surface of the model througha heat transfer coefficient of 3.0 Btu/hr/(ft2*oF).

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    4/30

    WS5-4NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    5/30

    WS5-5NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Suggested Exercise Steps1. Create a new database

    2. Set the solver as MSC.Nastran Thermal

    3. Create the geometry

    4. Mesh the fluid curve and pipe surfaces

    5. Specify material

    6. Define element properties

    7. Define a spatial field8. Apply volumetric heat generation

    9. Apply free convection to outside of model

    10. Define the inlet temperature of oil

    11. Define coupled flow tube convection

    12.All boundary conditions13. Perform the thermal analysis

    14.Attach the results file

    15. Display the temperature results

    16. Step 16: Quit MSC.Patran

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    6/30

    WS5-6NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 1: Create a New Database

    Create a new database

    a. File: New

    b. Enter axisymfor File name.

    c. Click OK.

    c

    a

    b

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    7/30WS5-7NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 2: Set the Solver as MSC.Nastran Thermal

    Create the geometry

    a. Select Defaultfor Tolerance.

    b. Select MSC.Nastranfor

    Analysis Code.

    c. Select Thermal for Analysis

    Type.

    d. Click OK.

    c

    a

    b

    d

    S C G

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    8/30WS5-8NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 3: Create the Geometry

    a. Geometry: Create/Curve/XYZ

    b. Enter for Vector

    Coordinates List.

    c. Enter [0 0 0]for Origin

    Coordinates List.

    d. Click Apply.

    e. Click Bottom view Icon

    c

    a

    b

    d

    e

    St 3 C t th G t (C t )

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    9/30WS5-9NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 3: Create the Geometry (Cont.)

    a. Geometry: Create/Surface/XYZ

    b. Enter for Vector

    Coordinates List.

    c. Enter [1.5 0 0]for Origin

    Coordinates List

    d. Click Apply.

    e. Enter for Vector

    Coordinates List.

    f. Enter [3.5 0 0]for Origin

    Coordinates List

    g. Click Apply.

    h. Enter for Vector

    Coordinates List.

    i. Enter [3.9167 0 0]for OriginCoordinates List

    j. Click Apply. d

    b

    c

    j

    h

    i

    g

    e

    f

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    10/30WS5-10NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 3: Create the Geometry (Cont.)

    St 4 M h th Fl id C d Pi S f

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    11/30WS5-11NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 4: Mesh the Fluid Curve and Pipe Surfaces

    Mesh the curve representing thefluid(oil) and surfaces for thepipe.

    a. Element: Create/MeshSeed/One Way Bias.

    b. Enter 10for Number.

    c. Enter 2.0for L2/L1.d. Enter Curve 1Surface 1.4 3.2

    for Curve List.

    e. Click Apply.

    f. Element:Create/Mesh/Surface.

    g. Select Triafor Elem Shape.

    h. Enter IsoMeshfor Mesher.

    i. Enter Tria3for Topology.

    j. Enter Surface 1:3for SurfaceList.

    k. Enter 0.25for Value of GlobalEdge Length.

    l. Click Apply.

    c

    a

    b

    j

    i

    g

    h

    f

    d

    e

    k

    l

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    12/30

    St 4 R C i id t N d

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    13/30WS5-13NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 4: Remove Coincident Nodes

    Connect elements

    a. Elements: Equivalence/All

    Tolerance Cube.

    b. Enter 0.005

    c. Click Apply.

    c

    a

    b

    Step 5: Specify Material

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    14/30WS5-14NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 5: Specify Material

    Create isotropic material property

    for Region A.

    a. Materials:

    Create/Isotropic/Manual

    Input.

    b. Enter mat_afor Material Name.

    c. Click Input Properties

    d. Select Solid propertiesfor

    Constitutive Model.

    e. Enter 0.2for Thermal

    Conductivity.

    f. Click OK.

    g. Click Apply.

    c

    a

    b

    g

    f

    d

    e

    Step 5: Specify Material (Cont )

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    15/30WS5-15

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 5: Specify Material (Cont.)

    Specify isotropic material property

    for Region B.

    a. Materials:

    Create/Isotropic/Manual

    Input.

    b. Enter mat_bfor Material Name.

    c. Click Input Properties

    d. Select Solid properties.

    e. Enter 0.5for Thermal

    Conductivity.

    f. Click OK.

    g. Click Apply.

    c

    a

    b

    f

    d

    e

    Step 5: Specify Material (Cont )

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    16/30WS5-16

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 5: Specify Material (Cont.)

    Specify material property for oil

    a. Materials:

    Create/Isotropic/Manual

    Input.

    b. Enter oilfor Material Name.

    c. Click Input Properties

    d. Select Fluid propertiesfor

    constitutive Model.

    e. Enter 0.77for Thermal

    Conductivity.

    f. Enter 0.44for Specific Heat.

    g. Enter 56.8for Density.

    h. Enter 100.08for Dynamic

    Viscosity.i. Click OK

    j. Click Apply.

    c

    a

    b

    j

    i

    gh

    f

    d

    e

    ??

    Step 6: Define Element Properties

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    17/30WS5-17

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 6: Define Element Properties

    Define axisymmetric element

    properties for Region A.

    a. Properties: Create/2D/

    Axisym Solid.

    b. Enter pipe_afor Property Set

    Name.

    c. Click Input Properties

    d. Click in Material Namebox and

    select mat_aunder Material

    Property Sets.

    e. Click OK.

    f. Enter Surface 1for Select

    Members.

    g. Click Add

    h. Click Apply

    c

    a

    b

    g

    h

    f

    d

    e

    Step 6: Define Element Properties (Cont )

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    18/30WS5-18

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 6: Define Element Properties (Cont.)

    Define axisymmetric element

    properties for Region B.

    Properties: Create/2D/Axisym

    Solid.

    Enter pipe_bfor Property Set

    Name.

    Click Input Properties

    Click in Material Namebox and

    select mat_bfor Material

    Property Sets.

    Click OK.

    Enter Surface 2 3for Select

    Members.

    Click Add.

    Click Apply.

    c

    a

    b

    g

    h

    f

    d

    e

    Step 6: Define Element Properties (Cont )

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    19/30WS5-19

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 6: Define Element Properties (Cont.)

    Define element properties for Bar2-

    s representing the oil.

    a. Properties/Create/1D/Flow

    Tube.

    b. Enter oilfor Property Set

    Name.

    c. Click Input Properties..

    d. Click in Material Namebox and

    select oilunder Material

    Property Sets.

    e. Enter 3.0for Hydraulic Diam. at

    Node

    f. Click OK.

    g. Enter Curve 1for Select

    Members.

    h. Click Add.

    i. Click Apply.

    c

    a

    b

    i

    g

    h

    f

    d

    e

    Step 7: Define a Spatial Field

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    20/30WS5-20

    NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 7: Define a Spatial Field

    Define a spatial field for heat

    generation.

    a. Fields: Create/Spatial/PCL

    Function.

    b. Enter qvol_zfor Field Name.

    c. Enter 1200*(1.0-Z/5.0)for

    Scalar Function.

    d. Click Apply.

    c

    a

    b

    d

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    21/30

    Step 9: Apply Free Convection to Outside of Model

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    22/30

    WS5-22NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 9: Apply Free Convection to Outside of Model

    Define convection on outside ofRegion B.

    a. Loads/BCs:Create/Convection/ElementUniform.

    b. Select To Ambientfor Option.

    c. Enter convfor New SetName.

    d. Select 2Dfor Target ElementType.

    e. Click Input Data

    f. Enter 3.0for Edge ConvectionCoef.

    g. Enter 100forAmbientTemperature.

    h. Click OK.i. Click Select Application

    Region

    j. Enter Surface 3.2for SelectSurfaces or Edges.

    k. Click Add.

    l. Click OK.

    m. Click Apply

    c

    a

    b

    j

    i

    g

    h

    f

    d

    e

    k

    l

    m

    Step 10: Define the Inlet Temperature of Oil

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    23/30

    WS5-23NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 10: Define the Inlet Temperature of Oil

    Define the inlet temperature.

    a. Loads/BCs:

    Create/Temp(Thermal)/Nodal.

    b. Enter inlet_tempfor New Set

    Name.

    c. Click Input Data..

    d. Enter 100for Boundary

    Temperature.

    e. Click OK.

    f. Click Select Application

    Region..

    g. Enter Point 1for Select

    Geometry Entities.

    h. Click Add.i. Click OK.

    j. Apply.

    c

    a

    b

    j

    i

    g

    h

    f

    d

    e

    Step 11: Define Coupled Flow Tube Convection

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    24/30

    WS5-24NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 11: Define Coupled Flow Tube Convection

    Create convection for oil flow.

    Loads/BCs:Create/Convection/ElementUniform.

    Select Coupled Flow Tube.

    Enter coup_flow_tubefor New SetName.

    Target Element Type:1D

    Region 2:2D

    Click Input Data Select Advancedfor Form Type.

    Enter 2.88e6for Mass Flow Rate.

    Enter 0.23for Heat TransferCoefficient

    Select h=k/d*coef*Re**Eqpr*Pr**forFormula Type Option.

    Enter 0.8for Reynolds Exponent.

    Enter 0.3333for Prandtl Exponent,Heat in.

    Click OK.

    Click Select Application Region

    Enter Curve 1for Select Curve.

    Click Add.

    Click Active Listof CompanionRegion.

    Enter Surface 1.4for Select Surfacesor Edges.

    Click Add

    Click OK

    Click Apply

    c

    a

    b

    l

    k

    i

    j

    h

    f

    g

    m

    n

    o

    p

    q

    m

    t

    u

    d

    e

    o

    r

    Step 12: All Boundary Conditions

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    25/30

    WS5-25NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 12: All Boundary Conditions

    Step 13: Perform the Thermal Analysis

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    26/30

    WS5-26NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 13: Perform the Thermal Analysis

    Perform the steady-state thermal

    analysis

    a. Analysis: Analyze/Entire

    Model/Full Run.

    b. Enter axisymfor Job Name.

    c. Click Apply.

    c

    a

    b

    Step 14: Attach the Results File

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    27/30

    WS5-27NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 14: Attach the Results File

    Attach the results file

    a. Analysis: Attach XDB/Result

    Entities/Local.

    b. Click Select Results File

    c. Select axisym.xdbfor File

    name.

    d. Click OK.

    e. Click Apply.

    b

    a

    e

    c

    d

    Step 15: Display the Temperature Results

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    28/30

    WS5-28NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 15: Display the Temperature Results

    Display the result

    a. Results:Create/Quick Plot.

    b. Select SC1DEFAULT,A1.. for

    Select Result Cases.

    c. Select Temperaturesfor Select

    Fringe Result.

    d. Click Apply.

    c

    a

    b

    d

    Step 16: Quit MSC.Patran

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    29/30

    WS5-29NAS104, Workshop 5, March 2004

    Copyright2004 MSC.Software Corporation

    Step 16: Quit MSC.Patran

    QuitMSC.Patrana. Select Fileon the Menu

    Bar and select Quitfrom

    the drop down menu

    a

  • 8/12/2019 Ws05_axisymflowpipe.ppt

    30/30

    NAS104, Workshop 5, March 2004