Trigger Merging Module for the J-PARC E16 Experiment · 2018. 11. 22. · GEM Tracker (GTR)×3...

21
Trigger Merging Module for the J-PARC E16 Experiment 12 Jun 2018 Kyoto Univ. A , RIKEN B , RCNP C , KEK D , Tohoku Univ. E M. Ichikawa A, B , M. Naruki A , S. Yokkaichi B , T. N. Takahashi C , K. Aoki D , S. Ashikaga A , E. Hamada D , R. Honda E , Y. Igarashi D , M. Ikeno D , K. Ozawa D , H. Sendai D , K. N. Suzuki A , M. Tanaka D and T. Uchida D 1

Transcript of Trigger Merging Module for the J-PARC E16 Experiment · 2018. 11. 22. · GEM Tracker (GTR)×3...

  • Trigger Merging Module for the J-PARC E16 Experiment

    12 Jun 2018 Kyoto Univ.A, RIKENB, RCNPC, KEKD, Tohoku Univ.E

    M. IchikawaA, B, M. NarukiA, S. YokkaichiB, T. N. TakahashiC, K. AokiD, S. AshikagaA, E. HamadaD, R. HondaE, Y. IgarashiD, M. IkenoD, K. OzawaD, H. SendaiD, K. N. SuzukiA, M. TanakaD and T. UchidaD

    �1

  • Outline �2◯J-PARC E16 Experiment  ・Detectors  ・Trigger System

    ◯Trigger Merging Module(TRG-MRG)  ・Hardware  ・Firmware

    ◯Performance Test  ・Time Resolution  ・Latency  ・Transfer Efficiency

    ◯Summary

    J-PARC

    J-PARC

    30 GeV Proton Synchrotron Circumference: ~1.6 km

    ※The E16 experiment will start 2019

    Japan

  • J-PARC E16 Experiment

    �3

  • Detectors �4

    and further, the first data of momentum dependence of the spectral change, with the 6 timeshigher statistics than that of E325 collected, as shown in this section. In addition, we alsomeasure the yield and kinematical distribution of vector mesons, and background conditionsin the limited detectors in this stage. Based on the information, we could blush up thedetailed plan of the next stage.

    With additional budget of about 5 Oku yen, we will able to prepare the full acceptance,which consists of 26 modules. (Cost for new module is 0.26 Oku yen/module including readoutelectronics.) The configuration is illustrated in Fig. 8. We would like to run 320 shifts (RUN2) with the configuration, and take physics data. We will be able to do systematic study ofthe in-medium spectral change of vector mesons.

    Here, we would like to request approval for RUN 0 and RUN 1.The expected yield of vector mesons expected for the different configuration and different

    lengths of the data taking is listed in Table I. For the estimation, we assume the usage of a400 µm -thick Carbon target and two 80 µm -thick Copper targets simultaneously, locatedin-line on the beamline. Thus the total interaction length is 0.2 % and the interaction rate is10 MHz at the target with the beam of 1×1010 protons per 2-sec pulse. Other numbers usedfor the yield estimation is summarized in Table II.

    FIG. 7: Detector configuration with 8 modules.FIG. 8: Detector configuration with 26 modules.(RUN 2)

    RUN beam time configuration target φ ωRUN 0 9 shifts 6 + 6 + 2 + 2 Cu 460 2400RUN 0’ 9 shifts 8 + 8 + 8 + 8 Cu 840 4400RUN 1 160 shifts 6 + 6 + 2 + 2 Cu 8200 42000RUN 1’ 160 shifts 8 + 8 + 8 + 8 Cu 15000 (1700)RUN 1’ 160 shifts 8 + 8 + 8 + 8 C 12000 (1500)RUN 2 320 shifts 26 + 26 + 26 + 26 Cu 69000 (12000)

    KEK-PS E325 Cu 2400 (460) 3200

    TABLE I: Numbers of φ’s and ω’s expected for different configurations and lengths of the beam time,compared to the numbers obtained by the KEK-PS E325 experiments. Numbers in parentheses arefor mesons with βγ < 1.25. Four numbers interleaved with “+” in the configuration column describesthe numbers of the modules for the four spectrometer components : SSD, GTR, HBD, and LG,respectively.

    10

    Proton Beam

    Hadron Blind Detector(HBD)

    Lead Glass Calorimeter(LG)

    GEM Tracker (GTR)×3

    Target ChamberSilicon Strip Detector (SSD)

    Flight Path Detection -> Momentum Measurement

    Electron Identification

    Using 4 types detectors

    ◯Readout ・112,996 ch ・Taking waveform data ・Waveform sampling time:  1 ns ・Waveform buffering time:  2 μs

    ◯Trigger ・Using GTR3, HBD, LG ・2,620 ch ・

  • Trigger System �5

    GTR3

    HBD

    ASD

    ASD

    LG DRS4 ADC/TDC

    Trigger Merging Module

    GTR3 ASDTrigger Merging Module

    GTR3 ASDTrigger Merging Module

    GTR3 ASDTrigger Merging Module

    Trigger Merging Module

    HBD ASDTrigger Merging Module

    HBD ASDTrigger Merging Module

    HBD ASDTrigger Merging Module

    Trigger Merging Module

    LGDRS4

    ADC/TDC

    Trigger Merging Module

    LG DRS4 ADC/TDC

    Trigger Merging Module

    LG DRS4 ADC/TDC

    Trigger Merging Module

    Trigger Decision Module

    Belle-2 UT-3

    Trigger Distribution Module

    Belle-2 FTSW

    to Readout Modules

    TRG-MRG ~15 modules

    Detector, Discriminator ・2,620 ch ・

  • Trigger Merging Module (TRG-MRG)

    �6

  • TRG-MRG: Hardware �7

    SFP+: optical links ×8

    FPGA: Xilinx Spartan3 50AN-4

    RJ45: for Remote JTAG

    RJ45: FTSW

    Connector to Mezzanine ×2

    NIM I/O ×212 V Power Supply

    DC/DC

    Main Board Mezzanine Card128 ch LVDS Receiver

    LVDS->1.8V LVCMOS Converter

    125 MHz Crystal Oscillator ×2

    FPGA: Xilinx Kintex7 160T-2

  • 250 MHz

    TRG-MRG: Firmware �8

    500 MHz DDR Deserializer

    Edge Detecter

    Delay Control(up to 1,024 ns)

    Hit Buffer

    FIFO

    Aurora8b10b ×4 lanes

    Discriminator 256 ch

    Hit Buffer

    Hit Buffer

    FIFO FIFO FIFO

    SFP+ SFP+ SFP+ SFP+

    Using Vivado IP Core(ISERDESE2) 1 GHz × 1 bit -> 250 MHz × 4 bit

    Buffering maximal 8 hits for 64 ns in each 64 ch

    32 bit × 5 cycle / 64 ns -> 2.5 Gbps

    6.25 Gbps optical transceiver

    Link-layer protocol for high-speed serial communication

    1 ns Sampling, 256 ch Multi Hit TDC + 6.25 Gbps 4 GTX Transceivers

    TDC

    Transceiver

    For clock domain crossing

    LVDS to LVCMOS Converter Mezzanine

    Hit Buffer

    156.25 MHz

    ※Implemented by Vivado2017.2

  • Performance Test

    �9

  • Time Resolution �10

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    tin[ns]

    ΔT[ns]

    5.10

    h0Entries 1256244Mean 1189Std Dev 0.1338

    1188 1188.5 1189 1189.5 1190 1190.5 1191 1191.5 11920

    200

    400

    600

    800

    1000

    1200

    310× h0Entries 1256244Mean 1189Std Dev 0.1338

    TIMELAG

    1189 11901188 1191時間差[ns]

    カウント数

    5.11 3bin :

    y =√x(1− x)/2 2

    62

    Function Generator Delay TRG-MRG

    1 kHz Pulse width: ~50 ns

    Discriminator

    5.1.4

    5.2 5.3

    DRS4 500MHz

    (DSOX4054A[30]) DRS4

    h0Entries 1463002Mean 16.05Std Dev 0.2212

    15 15.5 16 16.5 17 17.5 18 18.5 19Time Lag[ns]

    0

    200

    400

    600

    800

    1000

    1200

    1400310×

    Cou

    nt h0Entries 1463002Mean 16.05Std Dev 0.2212

    5.2 2ch

    54

    Distribution of time difference between 2 channel

    Distribution of time resolution

    ※tin: the remainder of (time difference) / LSB

    Red line: Quantization error

    Time resolution < 0.35 ns in all tin region Good agreement with expected error

    Time Difference[ns]

  • Latency �11

    Edge Detect

    Delay Control

    Hit Buffer

    FIFO

    Aurora8b10b ×4 lanes

    Hit Buffer

    Hit Buffer

    Hit Buffer

    FIFO FIFO FIFO

    SFP+ SFP+ SFP+ SFP+

    TDC

    Optical CableSFP+ SFP+ SFP+ SFP+

    500MHz DDR Deserializer

    Transceiver

    Aurora8b10b ×4 lanes

    ◯Latency of TDC section  From deserializing LVDS signals  to transmitting data to transceivers  with no delay

    ◯Latency of transceiver section  From inputting data to FIFO  to outputting data from Aurora  through optical cable

    Encode Serialize

    Deserialize Decode

  • Latency: TDC Section �12

    ※Using circuit simulator in Vivado2017.2

    レイテンシ 15

    回路シミュレーターを用いて確認

    Receive discriminator output

    Transmit hit data

    64 ns 179 ns

    64 ns0 ns

    Detect leading edges -> Buffering for 64 ns

    Latency in TDC section is

  • Entries 3.5e+07Mean 288Std Dev 3.692

    285 290 295 300 305 310 315 320

    410

    510

    610

    710

    Entries 3.5e+07Mean 288Std Dev 3.692

    latency {event

  • h0Entries 132808Mean 2.094RMS 1.491

    0 2 4 6 8 10 120

    5000

    10000

    15000

    20000

    25000

    30000

    35000h0

    Entries 132808Mean 2.094RMS 1.491

    nhit

    h1Entries 132808Mean 3.615RMS 1.949

    h1Entries 132808Mean 3.615RMS 1.949

    Transfer Efficiency of the Merging Criteria �14Merging Criteria: Allow maximal 8 hits for 64 ns in 64 ch

    Beam Rate[GHz]6 8 10 12 14

    TRG

    -MR

    G R

    elay

    ing

    Effic

    ienc

    y0.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    5 GHz 10 GHz

    99.95 %

    98.75 %

    Discarded hit

    Multiplicity for 64 ns in 64 ch

    Beam intensity dependence of the transfer efficiency

    Beam rate


    99.95% transfer efficiency in expected situation Enough to use in the experiment

    Blue: Beam Rate = 5 GHz Red: Beam Rate = 10 GHz

    ◯Simulate expected situation  in the experiment with Geant4  ・Beam Rate: 1×1010 /pulse (5 GHz)  ・Single rate:

  • Summary �15・Develop trigger merging module(TRG-MRG) for the J-PARC E16 Experiment

    ・Detect leading edges from discriminator output by FPGA  and transmit serialized data to trigger decision module by SFP+

    ・1 main board + 2 mezzanine cards  - Mezzanine: Receive 128 ch/card LVDS signal + Convert LVDS to LVCMOS format  - Main: 1 ns sampling, 256 ch Multi Hit TDC + 6.25 Gbps optical transceiver ×4

    ・Required performance is achieved  - Time Resolution:

  • e+

    e-NucleusBranching Ratio ~3×10-4

    Di-lepton Measurement

    Exp. Method

    J-PARC E16 Experiment �17

    / ndf 2χ 87.25 / 51

    Prob 0.001181

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    200

    400

    600

    800

    1000

    / ndf 2χ 87.25 / 51

    Prob 0.001181

    / ndf 2χ 37.12 / 38

    Prob 0.51

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    200

    400

    600

    800

    1000

    / ndf 2χ 37.12 / 38

    Prob 0.51

    / ndf 2χ 88.39 / 51

    Prob 0.0009053

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20100200300400500

    600700800900

    / ndf 2χ 88.39 / 51

    Prob 0.0009053

    / ndf 2χ 37.83 / 38

    Prob 0.4773

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20100200300400500

    600700800900

    / ndf 2χ 37.83 / 38

    Prob 0.4773

    / ndf 2χ 87.41 / 51

    Prob 0.001139

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    100

    200

    300

    400

    500

    600 / ndf 2χ 87.41 / 51

    Prob 0.001139

    / ndf 2χ 30.55 / 38

    Prob 0.7997

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    100

    200

    300

    400

    500

    / ndf 2χ 30.55 / 38

    Prob 0.7997

    / ndf 2χ 88.95 / 51

    Prob 0.000795

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    20

    40

    60

    80

    100

    120

    140

    160 / ndf 2χ 88.95 / 51

    Prob 0.000795

    / ndf 2χ 39.18 / 38

    Prob 0.4167

    0.85 0.9 0.95 1 1.05 1.1 1.15 1.20

    20

    40

    60

    80

    100

    120

    140

    160 / ndf 2χ 39.18 / 38

    Prob 0.4167

    Simulation results : Run1, Cu target

    •さらに、βγで4つのregionに分けてFitをした結果 •全てのregionで有意なexcessが見えていて、βγ-dependenceが確認できる

    10

    �� < 1.25 1.25 < �� < 1.75 1.75 < �� < 2.5 2.5 < ��

    Fit for the

    whole region

    Fit except for

    the excess region

    Mass [GeV/c2]Mass [GeV/c2]Mass [GeV/c2]Mass [GeV/c2]

    Counts /[6.67 MeV/c2 ]

    Counts /[6.67 MeV/c2 ]

    [GeV/c2]

    Expected Spectrum

    W. Nakai, JPS2017

    Mass modification due to nuclear effect

    In vacuum

    J-PARC

    30 GeV Proton Synchrotron Circumference: ~1.6 km

    Motivation: Restoration of chiral symmetry breaking under nuclear density Method: Invariant mass spectroscopy of φ( ) in nuclear medium Facility: Japan Proton Accelerator Research Complex(J-PARC) High momentum(High-p) beam-line (Completed by FY2019) Beam: 30 GeV proton, ~1×10^10 /pulse(~2 s)

    s̄s

    High-p beam-line

  • Trigger Concept �18

    Beam

    e-

    e+ GTR3HBD

    LG

    DetectDetect

    >50°

    ◯Target  e+ e- pair from φ

    ◯Main Back Ground  ・Miss ID of charged π  ・e+e- from π0   - π0 -> 2γ, γ Conversion   - π0 -> γe+e- (Dalitz Decay)

    ◯Method  ①Detect e+/e- track   by 3 detector’s coincidence   (Single rate: To avoid charged π  ②Require the opening angle > 50°   -> To reject e+e- from π0

    ◯Expected Trigger Condition  ・Trigger rate: ~1 kHz  ・φ -> ee Surviving Ratio: ~75 %

    Top View of Detectors

    πDetect

    Not Detect

  • Integral Non Linearity(INL) �19

    0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

    Input Time Lag[ns]

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    Out

    put T

    ime

    Lag[

    ns]

    / ndf 2χ 29.17 / 35Prob 0.745p0 0.003807± 0.7259 p1 06− 5.194e± 1

    / ndf 2χ 29.17 / 35Prob 0.745p0 0.003807± 0.7259 p1 06− 5.194e± 1

    5.3

    5.2

    0.02 ns ( : 5.2)

    1± (5× 10−6)

    5.2

    GTR3 ASD

    500 ns 500 ns

    2 µs

    55

    5.2.1

    1LSB 1ns

    INL 1LSB

    5.2.2

    2

    INL

    5.2.3

    5.4 5.3

    10 210 310Input Time Lag [ns]

    0.06−

    0.04−

    0.02−

    0

    0.02

    0.04

    0.06

    Res

    idua

    l [LS

    B]

    Integral Non Linearity

    5.4

    5.3

    0

    [−0.035LSB, 0.035LSB] 1LSBINL 1ns

    56

    Residual[LSB]

    Input Time Lag[ns]10^1 10^2 10^3

    Relation between Input/Output Time Lag Distribution of Residual

    Red Line: At+B Fit

    Function Generator Delay TRG-MRG

    1 kHz Pulse width: ~50 ns

    Discriminator

    INL = [-0.04, +0.04] LSB with time lag ~0-2000 ns No bad influence

  • Differential Non Linearity(DNL) �20

    DNL = [-0.022, +0.022] LSB No bad influence

    Deserialize 1 GHz -> 250 MHz -> Clock interval has 4 ns periodicity -> Check each clock width   from distribution of input clock signal

    80.008 ns Clock TRG-MRG

    Time%8[ns] Time%4[ns]

    Distribution of clock edge timing

    4 ns Periodicity

  • Minimum Pulse Width �21

    Detect narrow signal (1.0-1.3ns) with 100% efficiency Enough to use in the experiment

    Double Pulse Separation

    1.0-1.3 ns

    Input Signal

    Discriminate adjacent 2 signals (2.5-2.8ns) with 100% efficiency Enough to use in the experiment

    2.5-2.8 ns

    Input Signal

    ※Those results are limited by test setup

    Detect

    Discriminate

    Threshold

    Threshold