Rheology

33
Complex Fluids & Molecular Rheology Lab., Department of Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering Chemical Engineering Rheology Rheology 中中中中中中中中中 10/28/2011

description

Rheology. Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering. 中央大學化材系講稿 10/28/2011. ●. Deformable. Small molecule. Macromolecule. 什 麼 是 流 變 ( Rheology) ?. Rheology is the science of fluids . More specifically, the study of Non-Newtonian Fluids 流體. - PowerPoint PPT Presentation

Transcript of Rheology

Page 1: Rheology

Complex Fluids & Molecular Rheology Lab., Department of Chemical Complex Fluids & Molecular Rheology Lab., Department of Chemical EngineeringEngineering

RheologyRheology

中央大學化材系講稿 10/28/2011

中央大學化材系講稿 10/28/2011

Page 2: Rheology

Rheology is the science of fluids. More specifically, the study of Non-Newtonian Fluids

流體

什 麼 是 流 變什 麼 是 流 變 ((Rheology)Rheology)??

牛頓流體- 水、有機小分子溶劑等

非牛頓流體- 高分子溶液、膠體等

yx Y

VV

YNewton’s law of viscosity

V

黏度 η 為定值

黏度不為定值(尤其在快速流場下 )

Small moleculeMacromolecule

●Deformable

V

Page 3: Rheology

非牛頓流體的三大特徵

特徵時間與無因次群分析

Page 4: Rheology

非牛頓黏度 (Non-Newtonian Viscosity) - Shear Thinning

非 牛 頓 流 體 的 特 徵非 牛 頓 流 體 的 特 徵

p

牛頓流體(甘油加水 )

非牛頓流體(高分子溶液 )

Flow curve for non-Newtonian Fluids

Page 5: Rheology

正向應力差值的效應 (Normal Stress Differences) - Rod-Climbing

牛頓流體 (水 ) 非牛頓流體 (稀薄高分子溶液 )

Page 6: Rheology

記憶效應 (Memory effects) - Elastic Recoil

- Open Syphon Flow

Page 7: Rheology

A decrease (thixotropy) and increase (anti-thixotropy) of the apparent viscosity with time at a constant rate of shear, followed by a gradual recovery when the motion is stopped

Thixotropy behavior Anti-thixotropy behavior

The distinction between a thixotropic fluid and a shear thinning fluid: A thixotropic fluid displays a decrease in viscosity over time at a constant shear rate. A shear thinning fluid displays decreasing viscosity with increasing shear rate.

Time-dependent effects (搖變性 )

Page 8: Rheology

非 牛 頓 流 體 的 不 穏 定 性非 牛 頓 流 體 的 不 穏 定 性 : : 黏 彈 性 效 應黏 彈 性 效 應

收縮流道

De 0 0.2 1 3 8

牛頓流體(葡萄糖漿 )

非牛頓流體(0.057% 聚丙烯醯胺 /葡萄糖 溶液 )

flowDe or We = t Elastic forceViscous force

:

Re for all cases)31( 0

- 描述非牛頓流體行為之程度流體的特徵或 “鬆弛” 時間流動系統的特徵時間tflow : : 剪切速率

“The mountains flowed before the Lord” [From Deborah’s Song, Biblical Book of Judges, verse 5:5], quoted by Markus Reiner at the Fourth International Congress on Rheology in 1963

Page 9: Rheology

典型製程之流場強度範圍

-1 ( ) s

High-speed coating

Injection molding

Lubrication

Sedimentation

Rolling

Pipe flow

Extrusion

Spraying

Chewing

710510310110110310510

Typical viscosity curve of a polyolefin- PP homopolymer, melt flow rate (230 C/2.16 Kg) of 8 g/10 min- at 230 C with indication of the shear rate regions of different conversion techniques. [Reproduced from M. Gahleitner, “Melt rheology of polyolefins”, Prog. Polym. Sci., 26, 895 (2001).]

Page 10: Rheology

小振幅反覆式剪切流 : 黏性與彈性檢定Exp b: Small-Amplitude Oscillatory Shear Flow

Oscillatory shear strain, shear rate, shear stress, and first normal stress difference in small-amplitude oscillatory shear flow

0( ) sinyx t t Shear strain:

0( ) cosyx t t Shear rate:

The oscillates with frequency ,

but is not in phase with eith shear s

shear s

traier the

o

n

shea

tre

r

ss

r rate

0( ) sin( )yx A t Shear Stress:

Page 11: Rheology

Storage and loss moduli, G’ and G”, as functions of frequency ω at a reference temperature of T0=423 K for the low-density polyethylene melt shown in Fig. 3.3-1. The solidcurves are calculated from the generalized Maxwell model, Eqs. 5.2-13 through 15

0 0( ) sin co( ) syx GG t t

It is customary to rewrite the above equations to display the in-phase and out-of-phase parts of the shear stress

Storage modulus

Loss modulus

Page 12: Rheology

解決流變問題的途徑為何 ?

傳統 vs. 現代 ( 未來 )

Page 13: Rheology

基本流變性質

機械量測光學量測

本質方程式

模流分析

分子動力理論

量子、原子、多尺度計算

物質特性( 化學合

成 )

流體加工性質

closure approximationsflow pattern

flow pattern

molecular orientation / alignmentparticle size distribution/ diffusivitymicro/mesoscopic structures

macrorheology microrheology

Traditional route

the De, Wi numbers

Modern (predictive) route

monomer mobility, elastic modulus etc.

microscopy/spectroscopybirefringence/dichroismlight/ neutron scatteringsparticle tracking0NG

Page 14: Rheology

Multi-angle dynamic/static light scattering

PMT

VV and VH polarizations; θ = 30° to 150°

Polarizer

Analyzer

Page 15: Rheology

100 101 102 103 104

Inte

nsi

ty D

istr

ibu

tion

0.0

0.2

0.4

0.6

0.8

1.0

Rh (nm)

Internal motion

Center-of-massdiffusion &Internal motion

Rh (nm)100 101 102 103 104

Inte

nsi

ty D

istr

ibu

tion

0.0

0.2

0.4

0.6

0.8

1.0

Morphologies of MEH-PPV SolutionsMorphologies of MEH-PPV Solutions

q<Rg>0.5 1.0 1.5 2.0 2.5 3.0 3.5

q(0)

/ q3 k B

T

0.02

0.04

0.06

0.080.3 mg/mL1 mg/mL3 mg/mL

q<Rg>0.5 1.0 1.5 2.0 2.5 3.0 3.5

q(0)

/ q3 k B

T

0.02

0.04

0.06

0.08

0.1 mg/mL0.3 mg/mL1 mg/mL3 mg/mL

asymptote of the Zimm model

(0) (1)

0

Initial decay rate:

ln ( , )qt

g q tt =

¶G =

h0

(1)

h0

2

2 20c

0

The can be expressed asDLS autocorrelation function at any angles

( )1 exp

( , )

where

( )e ( 2 )

( )

xp( )

( ) (2 ) ex

( )

N

i ii

N

i ii

cP x

Dq tP x

dR

g q tc dR

P xDq

x

tP

P x

xtj

j

¥

¥

-é ù

é ùê ú- - +ê úë ûê ú

ì ü

ë û

ï ïï ï+í ýï ïï ïî þ=

=

åò

åò

[ ]2 2

g h

2h

21/ 20

2h B s h2

c g 2h B s h

( ) (1.505 ) coilp( ) 1 ,

(0.775 ) sphere

( ) ( ) exp( 6) erf( 2)

(1.505 ) ( 6 ) coil

(0.775 ) ( 6 ) s

phere

qR qRx x x

qR

P x x x x

R k T RR D

R k T R

p

pht

ph

ìï =ï- - + =íïïîé ù= - ê úë û

ìïï= =íïïî

hR

1 mg/mL MEH-PPV/toluene1 mg/mL MEH-PPV/toluene

1 mg/mL MEH-PPV/chloroform1 mg/mL MEH-PPV/chloroform

-Suppressed Internal Motions of MEH PPV Aggregates

Mixed Dynamics

MEH-PPV/chloroformMEH-PPV/chloroformMEH-PPV/tolueneMEH-PPV/toluene

translationaltranslational internalinternal

Page 16: Rheology

Flow Birefringence Measuring System 高分子溶液於流場下,會因流場大小的不同,造成高分子鏈被拉伸、旋轉與變形的程度不同,因此我們可以藉由流變儀搭配光學雙折射系統,量測高分子鏈於不同流場下的變化情形。

y

x

0

y

x

small

y

x

argl e

何謂雙折射: 當光經過非均向介質,會分解為兩道不同路徑的折射光,其一恆遵守折射率定律的正常光 (ordinary ray, o-ray ) ,其光的偏振方向,即電場振動方向是垂直於光軸,另一道即是違反折射率定律的光為異常光 (extraordinary ray, e-ray ) ,其光的偏振方向是平行於光軸。當光於雙折射材料中傳播時,因其具有兩個不同方向的主軸,光在兩軸中前進時的速度分別為 C1 、 C2 ,且 C1>C2 ,因此我們將軸向 1 稱為快軸 (fast axis),軸向 2 稱為慢軸 (slow axis)。所以光在兩分量間會有相位延遲現象產生,稱為光波相位差,我們即可從相位差中推得折射率差。

1 2

2 2( )

dD n n

流變雙折射: 高分子溶液的流動光學雙折射 (flow birefringnece) 有兩個來源:本質的雙折射 (intrinsic birefringence) 和形狀的雙折射 (form birefringence) 。前者與高分子片段的非均向性極化有關,當鏈的構形發生改變時,鏈局部的非均向性會變成巨觀的非均向性,因而造成本質的雙折射。後者與高分子片段密度的非均向性相關,在稀薄溶液系統中較為重要。

雙折射現象

光波之相位延遲

d為樣品厚度, 為光的波長。

Page 17: Rheology

Phase modulated flow birefringence (PMFB)分析與量測: 本實驗的光學雙折射主要基於 Frattini 和 Fuller 的相位調變系統來作量測 [Frattini and Fuller J.Rheol. 28,61(1984) ; Fuller et al (1985)] 。假設 δ 和 χ 分別代表樣品的相位延遲量和方位角, I 為接收器量測到的光強, Io 為光彈調變器上的入射光強; δm 代表光彈調變器的相位延遲量, δm = A sin ωt,其中 A 為相對相位振福,ω為光彈調變器的共振頻率。 我們即可從探測器上得到光強 推算出:

進而利用應力-光學定律進行檢測 應力-光學定律目的主要為了將光學特性轉換成流變特性。高分子流體於流場下,因流場產生的應力場使其具光學的非均向性,其主應力差值的張量與折射率差值的張量成一比例關係,其比例即為應力-光學常數 C 。因此,我們可利用此比例關係來進行檢驗。

0 c1 cos 2 si n2 1 cos cos 2os si nsi n2 m m

II

1cos 2 si n

2si n4 (1 cos )

2 2

1 2 1 21/ 22 4 2

1 1 2

2cos 4 tan

2

2 2si n2 2si n4

2

nd

tan22

Cn

Page 18: Rheology

實驗裝置:

示意圖

實際實驗裝置

實驗結果: 固態材料 ( 四分之一波片 ) 量測結果:

Quartar Wave Angle

5 10 15 20 25 30 35 40 45

Ret

arda

tion

Ang

le

60

80

100

120Experimental valueTheoretical value

Angle (degree)

5 10 15 20 25 30 35 40 45

Ori

enta

tion

ang

le (

5

10

15

20

25

30

35

40

45

Theoretical valueExperimental value

相位延遲量之理論與實驗值比較 方位角之理論與實驗值比較

聚苯乙烯溶液的雙折射量測結果:

2M PS/ DOP 10wt%

Shear Rate ( 1/ s )

0 5 10 15 20 25

C

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

Experimental C

5.9*10-9

4.5*10-9

以分子量 200萬之聚苯乙烯溶於 DOP 下,配置 10wt% 的溶液進行量測,利用應力-光學定律進行檢測。

Page 19: Rheology

原理 : 利用同調入射光於撞擊粒子後產生之散射光,其光程差於接收器產生的干涉原理,經由適當的分析可推知溶質在溶液中的結構與動態情形。

Small-Angle Light Scattering (SALS) Small-Angle Light Scattering (SALS)

Page 20: Rheology

裝置實體與示意圖 :

Page 21: Rheology

實驗校正 :

Fig.1 Comparison of the predicted scattering pattern Fig. 2. Comparison of the form factor (the airy function) of a 50 μm pinhole with the predicted by the Mie theory with

experimentally measured one. the experimentally measured one.

應用 : SALS 之量測角度範圍一般為 1°≦θ≦ 10° ,多半作為較大尺度結構解析之用途。其應用範圍可

為高分子材料之混合 (mixing) 、分層 (demixing) 、相變化 (phase changes) 、結構破壞 (structure break-up) 、與結構整合 (structure build-up) 等相關研究。

k a sin0 2 4 6 8 10

I( )

/ I(

0)

0.0001

0.001

0.01

0.1

1

Measured diffractionpatternAiry function

Page 22: Rheology

Flow Wide-Angle Light Scattering簡介 流動光散射與一般光散射最大不同,在於流場下可同時觀測流體的機械性質及微觀結構變化,以更直接掌握高分子於加工過程中其微結構與分子型態的變化。此外本系統亦可搭配光纖,利用其體積小、可彎曲的特點而有效增加量測系統的靈活度。

原理 當所施加的剪切速率( shear rate)足夠壓制高分子鏈本身的轉動擴散

(rotational diffusion)運動,此時高分子鏈的構形將偏離其於靜止狀態下的特性,並逐漸朝流動方向伸展與排向,同時造成高分子鏈大小與形狀( orientation)不同程度的改變( deformation)。藉由測量方向角( orientation angle , χ)以及使用 Zimm-plot 分析其迴旋半徑 Rg ,可得知流場下高分子鏈的拉伸與排向的程度。

高分子在靜止狀態為捲曲體,可視為球狀體,在施加流場後高分子鏈開始變形,由球狀轉為橢圓狀,並隨流動方向排向與拉伸 ; 藉由此系統可即時量測高分子的排向情形與拉伸變形的程度。左圖中 G 為梯度方向( gradient direction), V為流體方( flow direction),χ 為方向角( orientation angle)。

Page 23: Rheology

原理與實驗分析

如圖示:方向角 χ為長軸與速度梯度的夾角; θ為入射光與偵測器的夾角;ψ ’ 為速度梯度與散射向量的夾角。

[Ellen C. Lee, Macromolecules 1997, 30, 7313-7321]

[Lee et al., Macromolecules 1997, 30, 7313-7321]

max90 ' 如圖:最高點為 ,利用

可得知 χ

max'

Page 24: Rheology

實驗裝置 本系統需依照流變儀之立體條件所設計,包含光學夾具、折射率匹配槽,雙圓心旋轉桌板等皆需自行設計。

實驗校正 本系統需確定散射光強與散射體積之比例關係,因此選用甲苯做靜態光散射校正。此外與一般光散射校正不同處為,需對自製桌板做校正及注意光纖光強之接收。

實驗裝置簡圖

toluene

degree

20 40 60 80 100 120 140

inte

nsity(k

coun

ts/s

ec)

10

15

20

25

30

35

40

雙圓心旋轉台之操作原理為,選定入射光及偵測器夾角 θ後,即固定散射向量 q 的大小。此時轉動桌板後散射向量 q 與梯度方向 G 的夾角 ψ’即可任意改變。

Page 25: Rheology

即時光學—流變系統 示意圖與功能

I. Particle Interactions II. Microstructures III. Molecular Anisotropy

Page 26: Rheology

in situ in situ rheo-optical measuring systemrheo-optical measuring system 實體圖實體圖

CCD cameraCCD camera(Flow SALS)(Flow SALS)

2-D detection (2-D detection (θ θ andand φφ dirs.)dirs.)(Flow Light Scattering)(Flow Light Scattering)

Phase-modulated lightPhase-modulated light(Flow Birefringence/Dichroism)(Flow Birefringence/Dichroism)

Quartz couette cellQuartz couette cell(Rheology)(Rheology)

Page 27: Rheology

多尺度分子計算 (Multiscale Computations)

無可調參數 AND 絕對預測能力 ?

Page 28: Rheology

Parameter-Free Multiscale Simulations

(1) Atomistic model & MD simulation

(2) Monomer model & CGMD/LD simulation

(3) Ellipsoid-chain model & MC simulation

(4) Bead-chain model & BD simulation

(5) Dumbbell model & BD simulation

Coarse-

graining

Coarse-

graining

Coarse-

graining

Linking

Quantum chemistry calculation

Shie, S. C.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul. 2007, 16, 111.

Shie, S. C.; Lee, C. K.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul. 2010, 19, 179.

Lee, C. K.; Hua, C. C.; Chen, S. A., J. Chem. Phys. 2010, 133, 064902.

Lee, C. K.; Hua, C. C., J. Chem. Phys. 2010, 132, 224904.

Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B 2009, 113, 15937. Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B 2008, 112, 11479.

Hua, C. C.; Chen, C. L.; Chang, C. W.; Lee, C. K.; Chen, S. A., J. Rheol. 2005, 49, 641.

Lee, C. K.; Hua, C. C.; Chen, S. A., Macromolecules, 2011, 44, 320–324

Lee, C. K.; Hua, C. C, Optoelectronics / Book 1,( InTech, ISBN 978-953-307-276-0)Lee, C. K.; Hua, C. C.; Chen, S. A., (to be submitted).

Page 29: Rheology

A Software Package under Development for Multiscale simulationsMain programMain programAnalysis toolsAnalysis tools

RDFRDF

Structure factorStructure factor

IntensityIntensity

Atomistic model & Atomistic model & MD simulationMD simulation

Monomer model & Monomer model & CGMD/LD simulationCGMD/LD simulation

Ellipsoid-chain model & Ellipsoid-chain model & MC simulationMC simulation

Bead-chain model & Bead-chain model & BD simulationBD simulation

Dumbbell model & Dumbbell model & BD simulationBD simulation

Back-Mapping techniquesBack-Mapping techniques

The mutiscale simulation package developed at Complex Fluids & Molecular Rheology Laboratory by C. K. Lee, S. C. Shie, and C. C. Hua, in the Department of Chemical Engineering, National Chung Cheng University, Taiwan, R.O.C

Page 30: Rheology

Number Ratio

CF 100% CF 75 % CF 66 % CF 50 % CF 33 % CF 25 % CF 0 %

Rg (

An

gs

tro

m)

30

35

40

45

50

55

60

CF / TCF / CB

vdw + HB + π-π vdw only

Single-Chain Conformations of Conducting Conjugated Polymers from Solution to the Quenching State: A Multiscale Simulation

PANI-EB MEH-PPV

Vacuum (V) Chloroform (CF)

Chlorobenzene (CB)

Toluene (T)

Mixed CF and T

Angstrom

5 10 15 20 25 30

Lo

ca

l Ra

tio

(C

F :

T)

/ Bu

lk R

ati

o

0.5

1.0

1.5

2.0

3:12:11:11:21:3

Angstrom

5 10 15 20 25 30

Lo

ca

l Ra

tio

(C

F :

CB

) / B

ulk

Ra

tio

0.5

1.0

1.5

2.0

3:12:11:11:21:3

distance (Angstrom)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RD

Fs

0

1

2

3

4

5

6

7

8

9

10

11

VCFTCBCF+TCF+CB

3.0 3.5 4.0 4.5 5.00

1

2

3

4

5

6

Mixed CF and T

Mixed CF and CB

Mixed CF and CB

Page 31: Rheology

Morphologies and Pair Interactions in Fullerene-Conjugated Oligomer Hybrids Investigated by Atomistic Molecular Dynamics

Page 32: Rheology

Links between Molecular dynamics and Quantum chemical calculations

Chlorobenzene (CB)

Excitation energies of a single chain MEH-PPV, calculated by ZINDO/S method

Mixed Nonane and CB (1:1)

Quantum calculations were carried out using Gaussian 09 software package as provided by the NCHC

Angle, deg

-25 -20 -15 -10 -5 0

En

erg

y,

kJ/m

ol

0

10

20

30

40

50

60

MP2_6-31GMD(original)MD (fit)

Angle, deg

0 20 40 60 80 100 120 140 160 180

En

erg

y,

kJ/m

ol

-2

0

2

4

6

8

10

12

14

16

MP2_6-31GMD(original)MD (fit)

Angle, deg

0 5 10 15 20 25 30

En

erg

y,

kJ/m

ol

0

5

10

15

20

25

30

MP2_6-31GMD(original)MD (fit)

Compound (eV)        SE(PM3) DFT(B3LYP/3-21G*)

MEH-PPV LUMO -0.754 -1.211

HOMO -8.549 -5.204

C60 LUMO -2.886 -3.769

HOMO -9.480 -6.364

PCBM LUMO -2.807 -3.386

HOMO -9.165 -6.115

Force-field validation:PPV backbone, dihedral angle

Energy level diagram for a donor–acceptor heterojunction: Structuresrefined by semi-empirical (SE) and density functional theory (DFT)

Page 33: Rheology

誰把流變做大了 ?