Rheology File

28
Membuat Keripik Buah & Sayur dgn Penggoreng Hampa... Untuk menggoreng buah-buahan yang akan dijadikan sebagai produk olahan keripik, kita memang harus memiliki sebuah alat yang dinamakan vacuum fryer atau vacuum frying (Mesin Penggoreng Hampa) !ita tidak mungkin menghasilkan produk buah olahan berupa kripik dengan menggunakan alat penggoreng biasa "eperti kita ketahui bersama, untuk komoditi buah-buahan hampir semuanya memiliki kandungan glukosa (gula) yang cukup tinggi !arenanya, bila kita mengolahnya dengan cara menggoreng menggunakan alat penggoreng biasa, keinginan untuk bisa berubah menjadi keripik tidak akan kesampaian, justru buah yang kita goreng malah meleleh seperti jelly #tau kalau tidak malah membuat buah menjadi gosong dan tidak layak untuk dijual maupun dikonsumsi $eda halnya bila kita menggunakan teknologi terapan vacuum fryer atau vacuum frying (Penggoreng Hampa) %engan teknologi ini, akan mampu menurunkan titik didih minyak sehingga buah-buahan berkadar air tinggi yang diolah menjadi keripik tidak mudah hangus%engan menggunakan mesin vacuum fryer buatan &'% &*#+ aktu yang diperlukan sekitar satu jam *etapi, kita mendapatkan banyak kelebihan Hasilnya menjadi lebih bagus, !eripik tidak gosong, tetap cerah seperti arna aslinya #tau dengan kata lain, kecil kemungkinan untuk terjadi peristi a oksidasi pada produk buah olahan yang dihasilkan "erta kandungan vitamin dari buah olahan tidak rusak !elebihan lainnya adalah dengan adanya penurunan titik didih menjadikan minyak memiliki umur pakai lebih lama %engan menggunakan mesin penggorengan yang diproduksi oleh &'% &*#+ ini, minyak goreng yang dipakai dapat digunakan hingga ./ kali penggorengan "elain itu, kelebihan lainnya adalah mesin penggorengan tidak mudah terkena korosi, sebab uap air yang dihasilkan dari penggorengan dikondensasikan dan disedot keluar le at pipa kapiler %engan mekanisme kerja semacam ini secara otomatis menjadikan mesin menjadi lebih a et dan tahan lama 3.1. Pendahuluan Setiap makanan atau produk pangan pasti memiliki warna, bau dan ra mereka masing-masing memiliki sifat mekanis yang unik, bisa keras empuk, lembut atau kasar, rapuh, renyah, mudah dan tidak mudah men seterusnya. Ada dua cara yang bisa dilakukan untuk menguji sifat mekanis produ menggunakan indera manusia, dengan cara menyentuh, memijit, menggi dan sebagainya, selanjutnya kita sampaikan apa yang kita rasakan. dengan analisa sensori. arena reaksi kita sebagai manusia yang me maka diperlukan analisa statistik untuk menyimpulkan skala perbeda kesukaan penguji terhadap produk tersebut. !ara uji kedua dengan p menggunakan instrument atau peralatan tertentu, hasilnya dinyataka meter "m#, kilogram "kg# dan detik "dt#. Pendekatan fisik untuk me mekanis bahan disebut rheology. $%&'(')* adalah suatu cabang ilmu didefinisikan sebagai ilmu yang mempelajari perubahan bentuk suatu antara bahan padat, sifat alir material bentuk tepung, bahkan peng partikel seperti pada proses penggilingan, proses emulsifikasi dan termasuk. Mengapa kita mempelajari Rheology ? Ada beberapa alasan utama kenapa kita mempelajari sifat reologi su ita bisa melihat lebih dalam struktur suatu bahan. misalnya hubun molekul dan bentuk nya dalam suatu larutan terhadap kekentalan, hu tingkat cross-linkage polymers dengan elastisitasnya. edua, test reologi s diterapkan untuk mengontrol bahan dasar dan mengontrol proses suat !ontohnya+ sifat reologi adonan tepung gandum pada pengolahan roti

description

rheology file

Transcript of Rheology File

Membuat Keripik Buah & Sayur dgn Penggoreng Hampa...

Untuk menggoreng buah-buahan yang akan dijadikan sebagai produk olahan keripik, kita memang harus memiliki sebuah alat yang dinamakan vacuum fryer atau vacuum frying (Mesin Penggoreng Hampa). Kita tidak mungkin menghasilkan produk buah olahan berupa kripik dengan menggunakan alat penggoreng biasa. Seperti kita ketahui bersama, untuk komoditi buah-buahan hampir semuanya memiliki kandungan glukosa (gula) yang cukup tinggi.

Karenanya, bila kita mengolahnya dengan cara menggoreng menggunakan alat penggoreng biasa, keinginan untuk bisa berubah menjadi keripik tidak akan kesampaian, justru buah yang kita goreng malah meleleh seperti jelly. Atau kalau tidak malah membuat buah menjadi gosong dan tidak layak untuk dijual maupun dikonsumsi.

Beda halnya bila kita menggunakan teknologi terapan vacuum fryer atau vacuum frying (Penggoreng Hampa). Dengan teknologi ini, akan mampu menurunkan titik didih minyak sehingga buah-buahan berkadar air tinggi yang diolah menjadi keripik tidak mudah hangus.Dengan menggunakan mesin vacuum fryer buatan INDOCITAGRO waktu yang diperlukan sekitar satu jam. Tetapi, kita mendapatkan banyak kelebihan. Hasilnya menjadi lebih bagus, Keripik tidak gosong, tetap cerah seperti warna aslinya. Atau dengan kata lain, kecil kemungkinan untuk terjadi peristiwa oksidasi pada produk buah olahan yang dihasilkan. Serta kandungan vitamin dari buah olahan tidak rusak.

Kelebihan lainnya adalah dengan adanya penurunan titik didih menjadikan minyak memiliki umur pakai lebih lama. Dengan menggunakan mesin penggorengan yang diproduksi oleh INDOCITAGRO ini, minyak goreng yang dipakai dapat digunakan hingga 60 kali penggorengan. Selain itu, kelebihan lainnya adalah mesin penggorengan tidak mudah terkena korosi, sebab uap air yang dihasilkan dari penggorengan dikondensasikan dan disedot keluar lewat pipa kapiler. Dengan mekanisme kerja semacam ini secara otomatis menjadikan mesin menjadi lebih awet dan tahan lama.

3.1. Pendahuluan

Setiap makanan atau produk pangan pasti memiliki warna, bau dan rasa. Demikian pula mereka masing-masing memiliki sifat mekanis yang unik, bisa keras atau lunak, liat atau empuk, lembut atau kasar, rapuh, renyah, mudah dan tidak mudah mengalir, dan seterusnya.

Ada dua cara yang bisa dilakukan untuk menguji sifat mekanis produk pangan. Pertama, menggunakan indera manusia, dengan cara menyentuh, memijit, menggigit, mengunyah, dan sebagainya, selanjutnya kita sampaikan apa yang kita rasakan. Ini yang disebut dengan analisa sensori. Karena reaksi kita sebagai manusia yang menguji berbeda-beda, maka diperlukan analisa statistik untuk menyimpulkan skala perbedaan ataupun tingkat kesukaan penguji terhadap produk tersebut. Cara uji kedua dengan pendekatan fisik, menggunakan instrument atau peralatan tertentu, hasilnya dinyatakan dengan unit satuan meter (m), kilogram (kg) dan detik (dt). Pendekatan fisik untuk mempelajari sifat mekanis bahan disebut rheology. RHEOLOGY adalah suatu cabang ilmu fisik yang didefinisikan sebagai ilmu yang mempelajari perubahan bentuk suatu mat erial. Gesekan antara bahan padat, sifat alir material bentuk tepung, bahkan pengecilan ukuran suatu partikel seperti pada proses penggilingan, proses emulsifikasi dan atomisasi juga termasuk.

Mengapa kita mempelajari Rheology ? Ada beberapa alasan utama kenapa kita mempelajari sifat reologi suatu bahan. Pertama, Kita bisa melihat lebih dalam struktur suatu bahan. misalnya hubungan antara ukuran molekul dan bentuk nya dalam suatu larutan terhadap kekentalan, hubungan antara tingkat cross-linkage polymers dengan elastisitasnya. Kedua, test reologi sering diterapkan untuk mengontrol bahan dasar dan mengontrol proses suatu pengolahan. Contohnya: sifat reologi adonan tepung gandum pada pengolahan roti. Ketiga, pengetahuan reologi diperlukan didalam mendesain alat tertentu seperti pompa, pipa-pipa aliran. dan lainnya. Desain akan lebih efektif bila reologi bahan yang menggunakan pompa atau melalui pipa alir tersebut diketahui. Keempat, Penerimaan konsumen terhadap suatu produk dipengaruhi oleh sifat reologinya. Misalnya, mudah tidaknya jam atau selai dioleskan, liat dan empuknya daging , dan sebagainya.

Kendala dalam mempelajari reologi suatu produk pangan secara garis besar disebabkan oleh: pertama, sangat bervariasinya produk pangan, ada yang bersifat padat, cair atau gas, dan ada yang dalam bentuk-bentuk antaranya. Kedua, disebabkan karena masing-masing produk tersebut mempunyai sifat berbeda pada kondisi yang berbeda. Contohnya, sebuah batu bersifat sebagai bahan padat, tapi kumpulan batu bisa dikatagorikan bersifat sebagai bahan cair. Kapankah hal ini terjadi?

Referensi Karena bervariasinya sifat reologi bahan, maka ahli reologi mendefinisikan bentuk-bentuk bahan ideal. Bahan padat ideal dan bahan cair ideal. Artinya kalaupun ada bahan-bahan padat yang pada kondisi tertentu bisa bersifat sebagai bahan cair yang bisa mengalir, tidak demikian halnya bahan padat ideal, yang selalu sebagai bahan padat, tidak pernah tidak. Bahan padat ideal disebut juga Hooked Solid atau Hookean untuk mengenang Robert Hooke (1635-1705) pencetusnya, seorang arsitek dari Inggris. Bahan cair ideal disebut Newton Liquid atau sering juga disebut Newtonian untuk mengenang pencetusnya Sir Isaac Newton (1642-1726) seorang ahli matematik dari Inggris. Jadi didunia ini tidak ada bahan yang lebih padat dari pada Hooked Solid dan tidak ada yang pernah lebih cair dari pada Newton Liquid. Kedua bahan ini tidak mempunyai struktur dan bersifat isotropik, artinya bersifat sama kesemua arah, dan mengikuti hukumnya sebagai bahan padat dan bahan cair. Tentu saja kedua bahan ideal ini tidak pernah ada nyata didunia ini.

Dengan mengkombinasi kedua model reologi ideal ini dikenal Bingham Model yang mewakili material ideal plastik. Model Maxwell merupakan model ideal visco-elastic liquid dan model Kevin-Voigt mewakili suatu bahan padat.

3.2. Reologi Bahan Pangan Padat

Dalam mempelajari reologi bahan pangan padat kita perlu mempelajari konsep mendasar tentang stress dan strain. STRESS 1 . Force adalah suatu beban atau gaya yang dikenakan pada suatu benda yang mengakibatkan terjadinya deformasi, biasanya tercatat berunit g, kg atau Newton (1 kg f = 9.807 N).

2. Stress adalah intensitas beban force pada suatu luas permukaan.

stress = (beban force)/luas lintang permukaan

artinya beban force yang sama dikenakan pada luas lintang permukaan yang lebih kecil akan memberikan stress yang lebih besar. Contoh: sebuah balok segi empat dengan ukuran tinggi 2 cm, tebal 1 cm, panjang balok 4 cm, ditekan dengan beban force 4 N pada salah satu ujungnya, maka stress pada setiap titik didalam balok tersebut adalah sebesar:

s = ( 4 N) / (0.02 m x 0.01 m) = 20 000 N/m 2 = 20 000 Pa = 20 kPa

3. Satuan Stress. Stress didefinisikan sebagai beban force per satuan luasan, seperti halnya tekanan. Tekanan hidrostatik pada kenyataannya adalah satu contoh bentuk stress, satuannya pun sama dengan satuan stress.

4. Compressive Stress. Contoh terapan compressive stress bila kita menekan bola atau suatu adonan roti misalnya dengan kedua telapak tangan kita.

5. Tensile Stress.Contoh terapan tensile stress terjadi bila kita menarik atau meregang karet gelang.

6. Normal Stress. Didalam perhitungan, baik compressive maupun tensile stress yang arah sumbu force nya tegak lurus atau bersudut 90 derajat terhadap lintang permukaannya disebut dengan normal stress.

7. Shear Stress

Didalam perhitungan, shear stress ini disebut sebagai tangential stress

8. Isotropic Stress adalah stress yang seragam pada semua arah, seperti halnya pada tekanan hidrostatis.

STRAIN 1. Deformasi. Bila suatu bahan padat dikenakan beban stress, maka satu atau lebih dimensinya akan berubah. Perubahan dimensi ini mengakibatkan apa yang disebut dengan deformasi.

2. Strain . Strain adalah perubahan dimensi relatif terhadap dimensi awal.

3. Satuan Strain . Strain merupakan perbandingan antara dua dimensi panjang, karenanya tidak memiliki satuan.

4. Axial Strain dan Lateral Strain .

5. Poisson's ratio adalah perbandingan antara lateral strain dan axial strain .

6. Volumetric Strain

7. Shear Strain

HUBUNGAN STRESS and STRAIN 1. Bahan Elastik. Objek padat yang dikenai stress akan mengalami deformasi. Bila stress tersebut dihilangkan bahan kemungkinan akan kembali atau mungkin tidak akan kembali kepada kekeadaan atau bentuk semula. Bila kembali ke bentuk atau kekeadaan semula, maka objek padat tersebut merupakan bahan elastik ideal.

2. Hooked's Law. Hukum Hooked ini mengatakan bahwa strain yang terjadi berbanding langsung dengan stress yang dikenakan.

RUMUS !

3. Modulus Young ( E ) Konstanta E pada Hukum Hooked disebut dengan Modulus Young, yang merupakan ketahanan material terhadap deformasi.

GAMBAR !

4. Bulk modulus ( K )

5. Shear modulus ( G ) adalah the ratio antara shear stress dan shear strain.

Jadi sifat reologi bahan padat dikaraterisasikan oleh 4 konstanta yaitu Modulus Young ( E ), Modulus Shear (G ), Poisson's ratio ( ) dan Bulk Modulus ( K ). Keempat konstanta ini dihubungkan dengan persamaan

E = 3K(1-2 ) = 2(1 + )G Artinya, hanya 2 konstanta yang perlu ditentukan melalui percobaan. Untuk bahan padat dengan nilau = 0,5 maka persamaan bisa disederhanakan menjadi :

E = 3 G Reologi Bahan Pangan Likuid dan Bahan Pangan Semi Padat Bahan pangan likuid seperti susu, madu, sari buah dan minuman lainnya serta minyak sayur menunjukkan sifat alir yang sederhana. Bahan pangan likuid yang leih kental seperti saus salad, saus tomat dan mayonais mempunyai sifat yang lebih rumit. Bahan pangan semipadat seperti selai kacang dan margarin beraksi diantara bahan padat dan likuid, Hampir semua bahan pangan ini dialirkan dengan pompa pada suatu tahap pengolahan ataupun pengemasannya, oleh karena itu karakteristik sifat alirnya penting untuk menentukan kebutuhan tenaga pada proses pemompaan, untuk menentukan ukuran pipa yang digunakan. Pengangkutan bahan pangan likuid dengan pemompaan ini ditentukan oleh massa jenis dan viskositasnya.

VISKOSITAS

GAMBAR !

FLUIDA NEWTONIAN IDEAL

Untuk fluida newtonian ideal shear stress merupakan fungsi linear shear rate, dengan konstanta merupakan dynamic viscosity.

? = - (dv/dy) Beberapa bahan pangan likuid seperti susu, jus apel, jus jeruk, bir dan wine menunjukkan bahwa mereka adalah bahan pangan likuid Newtonian. Satuan viskositas likuid adalah Poise.

1 P = 100 cP (centiPoise) 1cP = 1 mPa.s

FLUIDA NON-NEWTONIAN

Bahan pangan fluida non-newtonian seperti krim, larutan gula, sirup, madu, saus salad mempunyai karakteristik hubungan shear stress dan shear rate yang tidak linear. Bahkan beberapa bahan pangan tipe ini memiliki yield stress yang harus dicapai sebelum mulai mengalir. Bahan ini dikelompokan kedalam fluida tipe plastik Bingham , contohnya saus tomat dan pasta tomat.

GAMBAR !

Bahan pangan fluida tipe pseudoplastic atau shear tinning pada proses shearing akan menjadi encer atau viskositasnya menurun, contohnya pada selai kacang dan saus salad.

Bahan pangan fluida tipe dilatant atau shear thickening akan mengental atau viskositasnya naik pada proses shearing , contohnya suspensi pati.

Bila fluida memiliki yield stress serta kurva shear stress-shear rate nya convec kearah sumbu shear, fluida tersebut disebut sebagai tipe Casson Plastic. MODEL REOLOGI

Power Law Model

3.1 Perilaku Stress dan Strain Bahan Pangan

INCLUDEPICTURE "http://web.ipb.ac.id/%7Etepfteta/elearning/media/Teknik%20Pengolahan%20Pangan/images/bab3_clip_image003.gif" \* MERGEFORMATINET

3.2. Sifat-sifat Suspensi dan Konsentrat

3.3. Sifat-sifat Pangan Biji-bijian

3.4. Model Viskositas dan Tekstur Pangan Padat

TUGAS

Rheology

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Continuum mechanics

Laws[show]

Solid mechanics

HYPERLINK "javascript:toggleNavigationBar(2);" [show]

Fluid mechanics

HYPERLINK "javascript:toggleNavigationBar(3);" [show]

Rheology[hide] Viscoelasticity Smart fluids

Magnetorheological Electrorheological Ferrofluids Rheometry Rheometer

Scientists[show]

v t e

Rheology (/

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English" r

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English" i

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English"

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English"

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English" l

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English"

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English" d

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \l "Key" \o "Help:IPA for English" i

HYPERLINK "http://en.wikipedia.org/wiki/Help:IPA_for_English" \o "Help:IPA for English" /) is the study of the flow of matter, primarily in the liquid state, but also as 'soft solids' or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.[1] It applies to substances which have a complex molecular structure, such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates), as well as many foods and additives, bodily fluids (e.g., blood) and other biological materials.

Newtonian fluids can be characterized by a single coefficient of viscosity for a specific temperature. Although this viscosity will change with temperature, it does not change with the flow rate or strain rate. Only a small group of fluids exhibit such constant viscosity, and they are known as Newtonian fluids. But for a large class of fluids, the viscosity change with the strain rate (or relative velocity of flow) and are called non-Newtonian fluids. Rheology generally accounts for the behaviour of non-Newtonian fluids, by characterizing the minimum number of functions that are needed to relate stresses with rate of change of strains or strain rates. For example, ketchup can have its viscosity reduced by shaking (or other forms of mechanical agitation, where the relative movement of different layers in the material actually causes the reduction in viscosity) but water cannot. Ketchup is a shear thinning material, as an increase in relative velocity caused a reduction in viscosity, while some other non-Newtonian materials show the opposite behaviour: viscosity going up with relative deformation, which are called shear thickening or dilatant materials. Since Sir Isaac Newton originated the concept of viscosity, the study of liquids with strain rate dependent viscosity is also often called Non-Newtonian fluid mechanics.[1]The term rheology was coined by Eugene C. Bingham, a professor at Lafayette College, in 1920, from a suggestion by a colleague, Markus Reiner.[2]

HYPERLINK "http://en.wikipedia.org/wiki/Rheology" \l "cite_note-2" [3] The term was inspired by the aphorism of Simplicius (often misattributed to Heraclitus), panta rhei, "everything flows"[4]The experimental characterization of a material's rheological behaviour is known as rheometry, although the term rheology is frequently used synonymously with rheometry, particularly by experimentalists. Theoretical aspects of rheology are the relation of the flow/deformation behaviour of material and its internal structure (e.g., the orientation and elongation of polymer molecules), and the flow/deformation behaviour of materials that cannot be described by classical fluid mechanics or elasticity.

Contents

1 Scope 2 Rheologist 3 Viscoelasticity 4 Applications

4.1 Materials science

4.1.1 Polymers 4.1.2 Biopolymers 4.1.3 Sol-gel 4.2 Geophysics 4.3 Physiology 4.4 Food rheology 4.5 Concrete rheology 5 Measurement 6 Dimensionless numbers

6.1 Deborah number 6.2 Reynolds number 7 See also 8 References 9 External links

ScopeIn practice, rheology is principally concerned with extending continuum mechanics to characterize flow of materials, that exhibits a combination of elastic, viscous and plastic behaviour by properly combining elasticity and (Newtonian) fluid mechanics. It is also concerned with establishing predictions for mechanical behaviour (on the continuum mechanical scale) based on the micro- or nanostructure of the material, e.g. the molecular size and architecture of polymers in solution or the particle size distribution in a solid suspension. Materials with the characteristics of a fluid will flow when subjected to a stress which is defined as the force per area. There are different sorts of stress (e.g. shear, torsional, etc.) and materials can respond differently for different stresses. Much of theoretical rheology is concerned with associating external forces and torques with internal stresses and internal strain gradients and velocities.[1]

HYPERLINK "http://en.wikipedia.org/wiki/Rheology" \l "cite_note-bird1-4" [5]

HYPERLINK "http://en.wikipedia.org/wiki/Rheology" \l "cite_note-bird2-5" [6]

HYPERLINK "http://en.wikipedia.org/wiki/Rheology" \l "cite_note-morris1-6" [7]Continuum mechanicsThe study of the physics of continuous materialsSolid mechanicsThe study of the physics of continuous materials with a defined rest shape.ElasticityDescribes materials that return to their rest shape after applied stresses are removed.

PlasticityDescribes materials that permanently deform after a sufficient applied stress.RheologyThe study of materials with both solid and fluid characteristics.

Fluid mechanicsThe study of the physics of continuous materials which deform when subjected to a force.Non-Newtonian fluids do not undergo strain rates proportional to the applied shear stress.

Newtonian fluids undergo strain rates proportional to the applied shear stress.

Rheology unites the seemingly unrelated fields of plasticity and non-Newtonian fluid dynamics by recognizing that materials undergoing these types of deformation are unable to support a stress (particularly a shear stress, since it is easier to analyze shear deformation) in static equilibrium. In this sense, solids undergoing plastic deformation is a fluid, although no viscosity coefficient is associated with this flow. Granular rheology refers to the continuum mechanical description of granular materials.

One of the major tasks of rheology is to empirically establish the relationships between deformations and stresses, respectively their derivatives by adequate measurements, although a number of theoretical developments (such as assuring frame invariants)are also required before using the empirical data. These experimental techniques are known as rheometry and are concerned with the determination with well-defined rheological material functions. Such relationships are then amenable to mathematical treatment by the established methods of continuum mechanics.

The characterization of flow or deformation originating from a simple shear stress field is called shear rheometry (or shear rheology). The study of extensional flows is called extensional rheology. Shear flows are much easier to study and thus much more experimental data are available for shear flows than for extensional flows.

RheologistA rheologist is an interdisciplinary scientist/engineer who studies the flow of complex liquids or the deformation of soft solids. It is not taken as a primary degree subject, and there is no general qualification. He or she will usually have a primary qualification in one of several fields: mathematics, the physical sciences (e.g. chemistry, physics, biology), engineering (e.g. mechanical, chemical, Materials Science & Engineering or civil engineering), medicine, or certain technologies, notably materials or food. Typically, a small amount of rheology may be studied when obtaining a degree, but the professional will extend this knowledge during postgraduate research or by attending short courses and by joining one of the professional associations (see below).

ViscoelasticityMain article: ViscoelasticityThe classical theory of elasticity deals with the behaviour of elastic solids under small deformations, for which,(1) according to Hooke's Law, stress is directly proportional to the strain but independent of the rate of strain, or how fast the deformation was applied, and (2) the strains are completely recoverable once the stress is removed. Materials that can be characterized by classical theory of elasticity is known as linear elastic materials, even for such materials the linear relationship between stress and strain may be valid only for a certain range of strains. A large number of solids show non-linear relationship between stress and strain even for small stresses (such as rubber), but if the strains are still recoverable they are known as non-linear elastic materials. The classical theory of fluid mechanics, governed by the Navier-Stokes equation, deals with the behaviour of viscous fluids, for which, according to Newton's Law, the stress is directly proportional to the rate of strain, but independent of the strain itself. These behaviour are, of course, generally observed for ideal materials under ideal conditions, although the behaviour of many solids approaches Hooke's law for infinitesimal strains, and that of many fluids approaches Newton's law for infinitesimal rates of strain. Two types of deviations from linearity may be considered here.

1. When finite strains (larger strains, as opposed to infinitesimal strains) are applied to solid bodies, the stress-strain relationships are often much more complicated (i.e. Non-Hookean). Similarly, in steady flow with finite strain rates, many fluids exhibit marked deviations in stress-strain rate proportionality from Newtons law.

2. Even if both strain and rate of strain are infinitesimal, a system may exhibit both liquid-like and solid-like characteristics. A good example of this is when a body which is not quite an elastic solid (i.e. an inelastic solid) does not maintain a constant deformation under constant stress, but rather continues to deform with time or "creeps" under the same stress at constant temperature. When such a body is constrained at constant deformation, the stress required to hold it at that stretch level gradually diminishesor "relaxes" with time.

Similarly, a fluid while flowing under constant stress may show some elastic properties as well, such as storing some of the energy input instead of dissipating it all as heat and random thermal motion of its molecular constituents or having some recovery of strains after stresses are removed, although it may never recover all of its deformation upon removal of the initial applied stress. When such bodies are subjected to a sinusoidally oscillating stress, the strain is neither exactly in phase with the stress (as it would be for a perfectly elastic solid) nor 90 degrees out of phase (as it would be for a perfectly viscous liquid) but rather exhibits a strain that lags the stress at a value between zero and 90 degrees: i.e., Some of the energy is stored and recovered in each cycle, and some is dissipated as heat. These are viscoelastic materials.

Thus, fluids are generally associated with viscous behaviour (a thick oil is a viscous liquid) and solids with elastic behaviour (an elastic string is an elastic solid). A more general point of view is to consider the material behaviour at short times (relative to the duration of the experiment/application of interest) and at long times.

Fluid and solid character are relevant at long times:We consider the application of a constant stress (a so-called creep experiment):

if the material, after some deformation, eventually resists further deformation, it is considered a solid

if, by contrast, the material flows indefinitely, it is considered a fluid

By contrast, elastic and viscous (or intermediate, viscoelastic) behaviour is relevant at short times (transient behaviour):We again consider the application of a constant stress[8]:

if the material deformation strain increases linearly with increasing applied stress, then the material is linear elastic within the range it shows recoverable strains. Elasticity is essentially a time independent processes, as the strains appear the moment the stress is appliled, without any time delay.

if the material deformation rate increases linearly with increasing applied stress, then the material is viscous in the Newtonian sense. These materials are characterized due to the time delay between the applied constant stress and the maximum strain.

if the materials behaves as a combination of viscous and elastic components, then the material is viscoelastic. Theoretically such materials can show both instantaneous deformation as elastic material and a delayed time dependent deformation as in fluids.

Plasticity is the behaviour observed after the material is subjected to a yield stress:A material that behaves as a solid under low applied stresses may start to flow above a certain level of stress, called the yield stress of the material. The term plastic solid is often used when this plasticity threshold is rather high, while yield stress fluid is used when the threshold stress is rather low. However, there is no fundamental difference between the two concepts.

ApplicationsRheology has applications in materials science engineering, geophysics, physiology, human biology and pharmaceutics. Materials science is utilized in the production of many industrially important substances, such as concrete, paint, and chocolate, which have complex flow characteristics. In addition, plasticity theory has been similarly important for the design of metal forming processes. The science of rheology and the characterization of viscoelastic properties in the production and use of polymeric materials has been critical for the production of many products for use in both the industrial and military sectors. Study of flow properties of liquids is important for pharmacists working in the manufacture of several dosage forms, such as simple liquids, ointments, creams, pastes etc. The flow behaviour of liquids under applied stress is of great relevance in the field of pharmacy. Flow properties are used as important quality control tools to maintain the superiority of the product and reduce batch to batch variations.

Materials sciencePolymersThe viscoelastic properties of polymers are determined by the effects of the many variables, including temperature, pressure, and time. Other important variables include chemical composition, molecular weight and weight distribution, degree of branching and crystallinity, types of functionality, component concentration, dilution with solvents or plasticizers, and mixture with other materials to form composite systems. With guidance by molecular theory, the dependence of viscoelastic properties on these variables can be simplified by introducing additional concepts such as the free volume, the monomeric friction coefficient, and the spacing between entanglement loci, to provide a qualitative understanding and in many cases a quantitative prediction of how to achieve desired physical and chemical properties and ultimate microstructure.

Viscoelastic behaviour reflects the combined viscous and elastic responses, under mechanical stress, of materials which are intermediate between liquids and solids in character. Fundamentally, the viscoelasticity can be related to the motions of flexible polymer molecules and their entanglements and network junctionsthe molecular basis of viscoelasticity. Thus, rearrangements on a local scale (kinks) are relatively rapid, while on a long-range scale (convolutions) very slow. In addition, a new assortment of configurations is obtained under stress. The response to the local aspects of the new distribution is rapid, while the response to the long-range aspects is slow. Thus there is very wide and continuous range of timescales covering the response of such a system to externally applied stress. From measurements of the viscoelastic properties of polymers, information can be obtained about the nature and the rates of change of the configurational rearrangements, and the nature of the (macro)molecular interactions over a range of time scales.

Examples may be given to illustrate the potential applications of these principles to practical problems in the processing and use of rubbers, plastics, and fibers. Polymers constitute the basic materials of the rubber and plastic industries and are of vital importance to the textile, petroleum, automobile, paper, and pharmaceutical industries. Their viscoelastic properties determine the mechanical performance of the final products of these industries, and also the success of processing methods at intermediate stages of production.

In viscoelastic materials, such as most polymers and plastics, the presence of liquid-like behaviour depends on the properties of and so varies with rate of applied load, i.e., how quickly a force is applied. The silicone toy 'Silly Putty' behaves quite differently depending on the time rate of applying a force. Pull on it slowly and it exhibits continuous flow, similar to that evidenced in a highly viscous liquid. Alternatively, when hit hard and directly, it shatters like a silicate glass.

In addition, conventional rubber undergoes a glass transition, (often called a rubber-glass transition). E.G. The Space Shuttle Challenger disaster was caused by rubber O-rings that were being used well below their glass transition temperature on an unusually cold Florida morning, and thus could not flex adequately to form proper seals between sections of the two solid-fuel rocket boosters.

Biopolymers

Linear structure of cellulose -- the most common component of all organic plant life on Earth. * Note the evidence of hydrogen bonding which increases the viscosity at any temperature and pressure. This is an effect similar to that of polymer crosslinking, but less pronounced.

A major but defining difference between polymers and biopolymers can be found in their structures. Polymers, including biopolymers, are made of repetitive units called monomers. While polymers are often randomly constructed with massive entanglement, biopolymers often have a well defined structure. In the case of proteins, the exact chemical composition and the sequence in which these units are arranged is called the primary structure.

Many proteins spontaneously fold into characteristic compact shapeswhich determine their biological functions and depend in a complicated way on their primary structures. Structural biology is the study of the structural properties of the biopolymers, much of which can be determined by their viscoelastic response to a wide range of loading conditions.

Sol-gelMain article: sol-gel

Polymerization process of tetraethylorthosilicate (TEOS) and water to form amorphous hydrated silica particles (Si-OH) can be monitored rheologically by a number of different methods.

Sol-gel science (aka chemical solution deposition) is a wet-chemical technique widely used in the fields of materials science, glass production and ceramic engineering. Such methods are used primarily for the fabrication of materials (typically a metal oxide) starting from a chemical solution which acts as the precursor for an integrated network (or gel) of either discrete nanoparticles or network polymers. Typical precursors are metal alkoxides and metal chlorides, which undergo various forms of hydrolysis and polycondensation reactions in order to form a viscoelastic network (or solid).

One of the largest application areas is thin films and coatings, which can be produced on a piece of substrate by spin coating or dip coating. Other methods include spraying, electrophoresis, inkjet printing or roll coating. Optical coatings, protective and decorative coatings, and electro-optic components can be applied to glass, metal and other types of substrates with these methods. With the viscosity of a sol adjusted into a proper range, both optical quality glass fiber and refractory ceramic fiber can be drawn which are used for fiber optic sensors and thermal insulation, respectively. The mechanisms of hydrolysis and condensation, and the rheological factors that bias the structure toward linear or branched structures are the most critical issues of sol-gel science and technology.

GeophysicsGeophysics includes the flow of molten lava and debris flows (fluid mudslides). Also included in this disciplinary branch are solid Earth materials which only exhibit flow over extended time scales. Those that display viscous behaviour are known as rheids. E.G. granite can flow plastically with a vanishingly small yield stress at room temperatures, (i.e. a viscous flow). Long term creep experiments (~ 10 years) indicate that the viscosity of granite under ambient conditions is on the order of 1020 poises.[9]

Piledriving for a bridge in Napa, California.

Deep foundations are used for structures or heavy loads when shallow foundations cannot provide sufficient capacity. They may also be used to transfer building loads past weak or compressible soil layers. While shallow foundations rely solely on the bearing capacity of the soil beneath them, deep foundations can rely on end bearing resistance, frictional resistance along their length, or both in developing the required capacity. Geotechnical engineers use specialized tools, such as the cone penetration test, to estimate the amount of skin and end bearing resistance available in the subsurface.

In addition, pile driving is often used to check for stability in varying soil types such as clay, sand, gravels, fractured shale, etc. Geotechnical engineering (or 'soil engineering') often utilizes soil logs or bore logs to show what may be evidenced while driving piles through given stratum and soil lenses. Wave equations must often be employed when using vibratory or mechanical impact hammers. The harmonics set up by vibratory or impact hammers drastically change the ability of given soils to create wall friction on a given pile type, as well as the elastic alteration or resistance to penetration in a normal state.

Dynamic testing of soils may involve the attachment of transducers to pilings while they are being driven. In addition, theoretical bearing calculations using a nuclear densometer may be carried out in the field. In the end, a fairly simple linear equation may suffice to give a good approximation of the bearing capacity of the soil.

Physiology

Heme bPhysiology includes the study of many bodily fluids that have complex structure and composition, and thus exhibit a wide range of viscoelastic flow characteristics. In particular there is a specialist study of blood flow called hemorheology. This is the study of flow properties of blood and its elements (plasma and formed elements, including red blood cells, white blood cells and platelets). Blood viscosity is determined by plasma viscosity, hematocrit (volume fraction of red blood cell, which constitute 99.9% of the cellular elements) and mechanical behaviour of red blood cells. Therefore, red blood cell mechanics is the major determinant of flow properties of blood.[10]Food rheologyFood rheology is important in the manufacture and processing of food products, e.g. cheese.[11] Food rheology is the study of the rheological properties of food, that is, the consistency and flow of food under tightly specified conditions. The consistency, degree of fluidity, and other mechanical properties are important in understanding how long food can be stored, how stable it will remain, and in determining food texture. The acceptability of food products to the consumer is often determined by food texture, such as how spreadable and creamy a food product is. Food rheology is important in quality control during food manufacture and processing.

Thickening agents, or thickeners, are substances which, when added to an aqueous mixture, increase its viscosity without substantially modifying its other properties, such as taste. They provide body, increase stability, and improve suspension of added ingredients. Thickening agents are often used as food additives and in cosmetics and personal hygiene products. Some thickening agents are gelling agents, forming a gel. The agents are materials used to thicken and stabilize liquid solutions, emulsions, and suspensions. They dissolve in the liquid phase as a colloid mixture that forms a weakly cohesive internal structure. Food thickeners frequently are based on either polysaccharides (starches, vegetable gums, and pectin), or proteins.[12]Concrete rheologyConcrete's and mortar's workability is related to the rheological properties of the fresh cement paste. The mechanical properties of hardened concrete are better if less water is used in the preparation of concrete paste, however reducing the water-to-cement ratio may decrease the ease of mixing and application. To avoid these undesired effects, superplasticizers are typically added to decrease the apparent yield stress and the viscosity of the fresh paste. Their addition highly improves concrete and mortar properties.[13]MeasurementRheometers are instruments used to characterize the rheological properties of materials, typically fluids that are melts or solution. These instruments impose a specific stress field or deformation to the fluid, and monitor the resultant deformation or stress. Instruments can be run in steady flow or oscillatory flow, in both shear and extension.

Dimensionless numbersDeborah numberMain article: Deborah numberOn one end of the spectrum we have an inviscid or a simple Newtonian fluid and on the other end, a rigid solid; thus the behaviour of all materials fall somewhere in between these two ends. The difference in material behaviour is characterized by the level and nature of elasticity present in the material when it deforms, which takes the material behaviour to the non-Newtonian regime. The non-dimensional Deborah number is designed to account for the degree of non-Newtonian behaviour in a flow. The Deborah number is defined as the ratio of the characteristic time of relaxation (which purely depends on the material and other conditions like the temperature) to the characteristic time of experiment or observation.[14]

HYPERLINK "http://en.wikipedia.org/wiki/Rheology" \l "cite_note-14" [15] Small Deborah numbers represent Newtonian flow, while non-Newtonian (with both viscous and elastic effects present) behaviour occurs for intermediate range Deborah numbers, and high Deborah numbers indicate an elastic/rigid solid. Since Deborah number is a relative quantity, the numerator or the denominator can alter the number. A very small Deborah number can be obtained for a fluid with extremely small relaxation time or a very large experimental time, for example.

Reynolds numberMain article: Reynolds numberIn fluid mechanics, the Reynolds number is a measure of the ratio of inertial forces (vs) to viscous forces (/L) and consequently it quantifies the relative importance of these two types of effect for given flow conditions. Under low Reynolds numbers viscous effects dominate and the flow is laminar, whereas at high Reynolds numbers inertia predominates and the flow may be turbulent. However, since rheology is concerned with fluids which do not have a fixed viscosity, but one which can vary with flow and time, calculation of the Reynolds number can be complicated.

It is one of the most important dimensionless numbers in fluid dynamics and is used, usually along with other dimensionless numbers, to provide a criterion for determining dynamic similitude. When two geometrically similar flow patterns, in perhaps different fluids with possibly different flow rates, have the same values for the relevant dimensionless numbers, they are said to be dynamically similar.

Typically it is given as follows:

where:

vs - mean fluid velocity, [m s1]

L - characteristic length, [m]

- (absolute) dynamic fluid viscosity, [N s m2] or [Pa s]

- kinematic fluid viscosity: = / , [m s1]

- fluid density, [kg m3].

See also Liquid Solid Glass transition Die swell Microrheology Transport Phenomena (book)References1. ^ a b c W. R. Schowalter (1978) Mechanics of Non-Newtonian Fluids Pergamon ISBN 0-08-021778-82. ^ J. F. Steffe (1996) Rheological Methods in Food Process Engineering 2nd ed ISBN 0-9632036-1-4 page 13. ^ The Deborah Number4. ^ Barnes, Jonathan (1982). The presocratic philosophers. ISBN978-0-415-05079-1.5. ^ R. B. Bird, W. E. Stewart, E. N. Lightfoot (1960), Transport Phenomena, John Wiley & Sons, ISBN 0-471-07392-X6. ^ R. Byrin Bird, Charles F. Curtiss, Robert C. Armstrong (1989), Dynamics of Polymeric Liquids, Vol 1 &2 , Wiley Interscience, ISBN 0-471-51844-1 and 978-04715184407. ^ Faith A. Morrison (2001), Understanding Rheology, Oxford University Press, ISBN 0-19-514166-0 and 978-01951416658. ^ William N. Findley, James S. Lai, Kasif Onaran (1989), Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Publications9. ^ Kumagai, N., Sasajima, S., Ito, H., Long-term Creep of Rocks, J. Soc. Mat. Sci. (Japan), Vol. 27, p. 157 (1978) Online10. ^ The ocular Vitreous humor is subject to rheologic observations, particularly during studies of age-related vitreous liquefaction, or synaeresis. Baskurt OK, Meiselman HJ (2003). "Blood rheology and hemodynamics". Seminars in Thrombosis and Haemostasis 29 (5): 435450. doi:10.1055/s-2003-44551. PMID14631543.11. ^ S. Gunasekaran, M. Mehmet (2003), Cheese rheology and texture, CRC Press, ISBN 1-58716-021-812. ^ B.M. McKenna, and J.G. Lyng (2003). Texture in food > Introduction to food rheology and its measurement. ISBN978-1-85573-673-3. Retrieved 2009-09-18.13. ^ Ferrari, L; Kaufmann, J; Winnefeld, F; Plank, J (2011). "Multi-method approach to study influence of superplasticizers on cement suspensions". Cement and Concrete Research 41 (10): 1058. doi:10.1016/j.cemconres.2011.06.010.14. ^ M. Reiner (1964) Physics Today volume 17 no 1 page 62 The Deborah Number15. ^ The Deborah NumberExternal links The Origins of Rheology: A short historical excursion by Deepak Doraiswamy, University of Sidney

Romanian Society of Rheology British Society of Rheology Australian Society of Rheology American Society of Rheology Rheonova:French Rheology Technology Platform[hide]

v t eBranches of physics

Core

Divisions

Experimental physics Theoretical physicsEnergy and motion Classical mechanics

Newtonian mechanics Lagrangian mechanics Hamiltonian mechanics Continuum mechanics Celestial mechanics Statistical mechanics Thermodynamics Fluid mechanics Biomechanics Quantum mechanicsWaves and fields Gravitation Electromagnetism Quantum field theory Relativity

Special relativity General relativity

Applied

Physical sciences and mathematics

Acoustics Astrophysics Atomic, molecular, and optical physics Atomic physics Chemical physics Computational physics Condensed matter physics High energy physics Mathematical physics Optics Plasma physicsBiology, geology, economics Biophysics

Medical physics Neurophysics Agrophysics

Soil physics Atmospheric physics Econophysics Geophysics

View page ratingsRate this page

What's this?Trustworthy

Objective

Complete

Well-written

I am highly knowledgeable about this topic (optional)

Categories:

Rheology Create account Log in Article Talk Read

Please use the preview button before saving. [alt-shift-e]" Edit

View historyTop of Form

Bottom of Form

Main page Contents Featured content Current events Random article Donate to WikipediaInteraction Help About Wikipedia Community portal Recent changes Contact WikipediaToolboxPrint/exportLanguages Catal Deutsch Eesti Espaol Euskara Franais Hrvatski slenska Italiano Lietuvi Magyar Nederlands Polski Portugus Romn Slovenina Suomi Svenska Trke Ting Vit This page was last modified on 13 September 2012 at 02:38.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details.Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Contact us_1413793846.bin

_1413793848.unknown

_1413793850.unknown

_1413793847.bin

_1413793845.bin

_1413793843.bin