Operator Vademecum

download Operator Vademecum

of 3

description

Some infos about Operators in QM

Transcript of Operator Vademecum

  • 1Position OperatorLet : R C be a 1D wavefunction; we define the position operator as:

    x = x

    If we are in three dimensions, well have:~r = xe1 + ye2 + ze3~r = xe1 + ye2 + ze3

    Expressing everything in spherical coordinates:~r = e

    The eigenfunction for the Position Operator is the delta functions cente-red at x0 with eigenvalue x0:

    x(x x0) = x0(x x0)

    Momentum OperatorLet : R C be a 1D wavefunction; we define the momentum operator

    as:

    p = i~x

    If we are in three dimensions, well have:~p = i~

    The eigenfunction for the Momentum Operator are:

    p = p (1)

    i~x

    = p (2)

    x=

    ip

    ~ (3)

    Setting p = ~k we have:(x) = Aeikx = A(cos kx+ i sin kx)

  • 2Commutations Relations: Position-Momentun

    In one dimension we have:

    [x, p] = i~Proof:

    x(p) p(x) = x(i~)x (i~)(x)

    x= i~(x

    x x

    x) = i~

    In three dimensions we have:

    [xi, pj] = i~ijFor example:

    [x, px] = i~[x, py] = 0

    [x, pz] = 0

    Orbital Angular Momentum Operator

    Like in classical mechanics, we define the angular momentum as:

    ~L = ~r ~p = i~~r ~

    In cartesian coordinates we have:~L = (Lx, Ly, Lz) = i~[(y z z y )e1 + (z x x z )e2 + (x y y x)e3]In spherical:

    ~L = i~(e 1sin e )

    L2 = ~2sin2

    2

    2 ~2

    sin

    (sin

    )

    Lx = i~(sin + cos cot

    )

    Ly = i~( cos + sin cot )L = ~ei( + i cot )Lz = i~ Useful relations:

    [Lx, Ly] = i~Lz [Ly, Lz] = i~Lx [Lz, Lx] = i~Ly[L2, Lx] = 0 [L

    2, Ly] = 0 [L2, Lz] = 0

    Since L2 and Lz commute, we can find common eigenfunctions for bothoperators; lets call the Ylm

    For Lz we have (measuring eigenvalues in units of ~ ):

    LzYlm = ~mYlm

  • 3i~Ylm

    = ~mYlm

    Ylm = P ()eim

    where P is a function of only variableLets impose some conditions:

    Ylm(, 0) = Ylm(, 2pi)

    P ()eim(0) = P ()eim(2pi)

    m N

    Now solve for L2:

    L2Ylm = ~2

    sin2

    2Ylm2

    ~2

    sin

    (sin

    Ylm

    )

    L2(P ()eim) = ~2

    sin2

    2(P ()eim)

    2 ~

    2

    sin

    (sin

    (P ()eim)

    )

    eim~2l(l + 1)P () = ~2

    sin2 P ()(m2)eim eim ~

    2

    sin

    (sin

    P ()

    )

    P ()[m2

    sin2 l(l + 1)] = 1

    sin

    (sin

    P ()

    )

    Setting x = cos we obtain:(1 x2)P (x) 2xP + [l(l + 1) m2

    1x2 ]P = 0