Oliver finol revistaaaaaaaaaaaa

7
EN ESTA EDICION ENCONTRARAS MUCHOS TEMAS DE SU INTERES Polinomios Interpolantes Polinomios de Newton Polinomios de Lagrange POLINOMIOS EDICION—N ° 01 MARZO DEL AÑO 2017 ANALISIS NUMERICO Los principios de estos métodos son importantes para el avance y desarrollo del Análisis Numérico OLIVER FINOL,DISTRIBUCION NOESPARTANA

Transcript of Oliver finol revistaaaaaaaaaaaa

EN ESTA EDICION ENCONTRARAS MUCHOS TEMAS

DE SU INTERES

Polinomios Interpolantes

Polinomios de Newton

Polinomios de Lagrange

POLINOMIOS EDICION—N ° 01

MARZO DEL AÑO 2017

ANALISIS NUMERICO

Los principios de estos

métodos son importantes para el avance y

desarrollo del Análisis Numérico

OL

IVE

R F

INO

L,D

IST

RIB

UC

ION

NO

ES

PA

RT

AN

A

Motivación del Polinomio Interpolado

La interpolación polinómica es un método usado para conocer, de un mo-do aproximado, los valores que toma cierta función de la cual sólo se conoce su

imagen en un número finito de abscisas. A menudo, ni siquiera se conocerá la ex-presión de la función y sólo se dispondrá de los valores que toma para dichas

abscisas.

El objetivo será hallar un polinomio que cumpla lo antes mencionado y que permi-ta hallar aproximaciones de otros valores desconocidos para la función con una

precisión deseable fijada. Por ello, para cada polinomio interpolador se dispondrá de una fórmula del error de interpolación que permitirá ajustar la precisión del poli-

nomio.

Cálculo del Polinomio Interpolado

Se dispone de varios métodos generales de interpolación polinómica que permiten aproximar una función por un polinomio de grado m. El primero de estos es el método de las diferencias divididas de Newton. Otro de los méto-

dos es la interpolación de Lagrange, y por último, la interpolación de Hermite.

El método denominado interpolación polinómica, por su parte, sirve para-

aproximarse a los valores que toma una función determinada, de la cual sim-

plemente conocemos su imagen en una cantidad finita

de abscisa (coordenadas cartesianas). Por lo general, solamente se cuenta

con los valores que toma para las abscisas (en otras palabras, se desconoce

la expresión de la función).

A través de dicho método se pretende encontrar un polinomio que también

nos aproxime a otros valores que no resultan conocidos con un nivel de pre-

cisión en particular, para lo cual existe la fórmula del error de interpolación,

que sirve para realizar el ajuste de la precisión.

El término polinomio primitivo responde a dos conceptos: un polinomio de

una estructura algebraica (denominada dominio de factorización única) en la

cual todos sus elementos sólo pueden descomponerse como producto de

elementos primos, de manera que sus coeficientes tengan 1 como su máxi-

mo común divisor; para una extensión de cuerpos, el polinomio mínimo de

uno de sus elementos primitivos.

OFERTA

ESPECIAL

En el análisis numérico, la interpolación de Hermite, nombrada así en honor a Charles Hermite, es un método de interpolación de puntos de datos como una función polinómica. El polinomio de Hermite generado está estrechamente rela-cionado con el polinomio de Newton, en tanto que ambos se derivan del cálculo de diferencias divididas.

Interpolación polinómica de Hermite

Información personal

Nacimiento 24 de diciembre de 1822

Dieuze

Fallecimiento 14 de enero de 1901 (78 años)

París

Lugar de sepultura Cementerio de Montparnasse

Nacionalidad Francés

Familia

Padres Ferdinand Hermite, Madeleine Lalle-

mand.1

Educación

Alma máter Universidad de Nancy

Lycée Henri IV

Liceo Louis-le-Grand

Fue titular de la cátedra de Álgebra superior en la Facultad de Ciencias de París, suce-diendo a Jean-Marie Duhamel de 1871 a 1898, y profesor de Análisis en la École polytech-

nique de 1869 a 1878.1

Entró a formar parte de la Academia de Ciencias Francesa en 1856 en sustitución de Jacques Binet, y pasó a presidirla en 1890. Fue nombrado gran oficial de la Legión de

Honor y recibió la gran cruz de la Estrella polar de Suecia.

Se casó con la hermana del matemático Joseph Bertrand, y fue suegro del matemáti-

co Émile Picard y del ingeniero Georges Forestier.

La mayor parte de sus obras fueron recopiladas y publicadas después de su muerte

por Émile Picard. Su correspondencia con Stieltjes se publicó en 1903.

OFERTA ESPECIAL

Interpolación polinómica de Lagrange

Para construir un polinomio de grado menor o igual que n que pase por los n+1 puntos: , donde se supone que si i ¹ j. Este Polinomio Pn es la fórmula del

Polinomio Interpolante de Lagrange.

Esta fórmula si puede aplicarse independientemente del espaciamiento de la tabla, pero tiene el inconveniente de que no se conoce el grado del polinomio.

Como no se conoce, se tiene que determinar iterativamente. Se propone un

grado, se realiza la interpolación, se propone el siguiente grado, se vuelve a interpolar y se compara con algún criterio de convergencia, si se cumple

terminamos si no, se repite el procedimiento.

Información personal

Nombre en francés Joseph-Louis Lagrange

Nacimiento

25 de enero de 1736

Turín, Piamonte

Fallecimiento 10 de abril de 1813

(77 años)

Lugar de sepultura Panteón de París

Residencia Piamonte

Francia

Nacionalidad

Piemontés,

Reino de Cerdeña, actualmente Francés

Lengua materna Francés

Familia

Cónyuge Vittoria Conti

Educación

Supervisor doctoral Leonhard Euler

Joseph-Louis Lagrange, bautizado como Giuseppe Lodovico Lagrangia, también lla-mado Giuseppe Luigi Lagrangia o Lagrange (o bien José Luis de Lagrange; Turín, 25 de enero de 1736-París, 10 de abril de 1813), fue un físico, matemático y astrónomo franco-italiano, que después de formarse en su

Italia natal pasó la mayor parte de su vida en Prusia y Francia.

Lagrange trabajó en Berlín durante veinte años para Federico II de Prusia. Aportó avances trancendentales en múltiples ramas de las matemáticas, desarrolló la mecánica Lagrangiana y fue el autor de novedosos trabajos de astronomía. Tanto por la importancia como por el volumen de sus contribuciones científicas se le pue-

de considerar uno de los físicos y matemáticos más destacados de la historia.

Joseph Louis de Lagrange procedía de una familia parisi-na que gozaba de buena posición social. Fue el más jo-ven de once hermanos y el único que alcanzó la edad adulta. Fue educado en la Universidad de Turín y no fue hasta los diecisiete años cuando mostró interés por la matemática. Su entusiasmo empezó a caminar con la lec-tura de un ensayo del astrónomo Edmund Halley sobre análisis matemático. Tras un año de incesante trabajo era ya un matemático consumado. El rey Carlos Manuel III de Cerdeña le encomendó en 1775 el adiestramiento de los artilleros de su ejército como profesor asistente en la Academia Militar, donde se aplicaron por primera vez las teorías balísticas de Benjamin Robins y de Leonhard Euler. Sin embargo, de acuerdo con los co-mentarios de Alessandro Papacino D'Antoni, comandan-te de la academia y famoso teórico de la artillería, La-grange resultó ser un profesor problemático por su estilo dominado por el razonamiento abstracto; dispuesto a re-legar a un segundo plano la práctica de la artillería y de la ingeniería de las fortificaciones.En esta Academia uno de sus alumnos fue François Daviet de Foncenex (1734-1799),militar y matemático posteriormente especializado

en análisis dimensional.

Últimos Años

En 1810 Lagrange comenzó una revisión completa de la Mécanique analytique, pero solo pudo completar unos dos tercios antes de su fallecimiento en 1813, acaecido en su casa parisina del 128 de la calle Saint Honoré (Faubourg). Napoleón Bonaparte le rindió ho-nores concediéndole la Gran Cruz de la Orden Impe-rial de la Reunión dos días antes de morir. Fue ente-rrado ese mismo año en el Panteón de París. En la inscripción en francés de su urna funeraria se puede

leer:

OFERTA ESPECIAL

Diferencias Divididas

La manera más conocida para calcular la representación de Newton del poli-nomio interpolante, está basada en el método de diferencias divididas. Una gran ventaja sobre la forma clásica del método de Lagrange es que pode-mos agregar más nodos a la tabla de datos y obtener el polinomio interpo-lante sin tener que recalcular todo. Comparado con la forma modificada de Lagrange, no hay ganancia y más bien esta última forma es más estable. Aún así, el método de diferencias divididas tiene aplicaciones adicionales en otros contextos. Podemos calcular los ais usando el hecho de que P(xi ).= yi.

Si yk= f (xk), la fórmula anterior nos muestra que cada ak depende de x0, x1,…, xk. Desde mu-chos años atrás se usa la notación ak= f [ x0, x1,…, xk] para significar esta dependencia. Al símbolo f [ x0, x1,…, xn] se le llama diferencia divida de f . Usando esta nueva notación ten-dríamos que la forma de Newton del polinomio interpolante es

donde f [ x0 ] = y0 y f [ x0,…, xi] es el coeficiente principal de la forma de Newton del polino-mio que interpola la función f en los nodos x0, x1,…, xi.

DESCUENTO

DEL 00%

Conozcamos unos ejemplos

JABONES

Fecha de expiración: 00/00/00

Indique puntos de referencia o zonas que ayuden a identificar su ubica-

ción.

NOMBRE DE LA ORGANIZACIÓN

Tel.: (555) 555 55 55

100% DE

DESCUENTO