Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

24
Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants. have the arithmetic in hand. t us look at the Earth's atmosphere the Earth's atmosphere’s pollutants have in hands

description

Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants. we have the arithmetic in hand. let us look at the Earth's atmosphere the Earth's atmosphere’s pollutants have ~  in hands. - PowerPoint PPT Presentation

Transcript of Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Page 1: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

we have the arithmetic in hand.

let us look at the Earth's atmosphere         the Earth's atmosphere’s pollutants

    have ~  in hands

Page 2: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

我々は算術を手にしているので、地球の大気とその汚染物質を調べてみましょう。

既に計算法については手元にあるので、地球の大気とその汚染物質を考察してみよう。

Page 3: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

The most variable component of air is water vapor, or moisture, whose concentration may range from a negligibly small value in a desert to about 5% in a steaming jungle.

The (most variable) component (of air) is water vapor (, or mo

isture).

(The moisture’s) concentration may range from a (negligibly s

mall) value (in a desert) to (about) 5% (in a steaming jungle).

    range from ~  to ~

Page 4: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

The most variable component of air is water vapor, or moisture, whose concentration may range from a negligibly small value in a desert to about 5% in a steaming jungle.

最も変動する空気中の構成要素は水蒸気、または水分である。水蒸気の濃度は砂漠における無視できるほど値が小さいものから、蒸し暑いジャングルにおける 5パーセントまでの間に及ぶ。

最も変動する空気の構成成分は、水蒸気または水分であり、その濃度は砂漠の非常にわずかな量から熱帯雨林の 5%にまで変動する場合がある。

Page 5: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

If we neglect the moisture and consider only dry air, its composition by volume is roughly 78% nitrogen, 21% oxygen, and 1% of other gases.

We neglect the moisture.

We consider only dry air.

The air’s composition (by volume) is – [roughly 78%

nitrogen, 21% oxygen, and 1% of other gases].

Page 6: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

If we neglect the moisture and consider only dry air, its composition by volume is roughly 78% nitrogen, 21% oxygen, and 1% of other gases.

もし水分を無視して、乾燥した空気だけを考えると、その体積組成はおおよそ 78% が窒素、 21% が酸素、 1%がその他の気体である。

Page 7: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

A more detailed breakdown is given in Table 5.1.Table 5.1 does not include non-gaseous, or "particulate," components.

I gave a more detailed breakdown in Table 5.1.

表 5.1 で与えられているより詳細な分類は、非気体や粒子の成分を含んでいない。

Page 8: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

The "natural" concentrations of particulate matter in the air vary much more than those of gaseous matter.

The ("natural") concentrations (of particulate matter in the

air) vary (much more than the concentrations of gaseous

matter).

比較 (more than) されているのは

   The "natural" concentrations of particulate matter と

  the concentrations of gaseous matter

Page 9: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

The "natural" concentrations of particulate matter in the air vary much more than those of gaseous matter.

空中にある自然の粒子の濃度は気体の濃度以上に大いに変化する。

空気中にある微粒子状の物質の自然界の濃度はガス状の物質よりもはるかに異なる。

Page 10: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Air

Air

Moisture

Gas

Particulate

Table 5.1

0 ~ 5%

Page 11: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Thus, if we analyzed air in various parts of the Earth (which are) away from man's activities, the composition of the gases would be very close to the values in Table 5.1.

We analyzed air in various parts of the Earth.

The parts are away from man's activities.

The composition of the gases would be very close to the val

ues in Table 5.1.

   is close to (close to you という歌がありましたが )

Page 12: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Thus, if we analyzed air in various parts of the Earth (which are) away from man's activities, the composition of the gases would be very close to the values in Table 5.1.

従って、もし、私たちが人類活動から離れている地球のさまざまな場所において空気を分析してみると、それら気体の構成は、表5.1における値におそらく、とても近似しているだろう。

このように、もし私たちは地球の色々なところ(人間の活動から遠く離れた場所)の空気を分析したら、空気の構成は表 5.1 の値にとても近いです。

Page 13: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

But the particulate matter would vary widely from place to place.

しかし微粒子物質は、いたるところに広く分散するだろう。

しかし微粒子から成る物質は、(分析する)場所によって大きく異なっているだろう。

   from place to place

Page 14: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

It would include nonviable (not capable of living) particles such as airborne soil granules, volcanic dust, and salts from evaporation of sea spray.

The particulate matter would include nonviable (not capable

of living) particles such as

    airborne soil granules    volcanic dust

   salts from evaporation of sea spray.

    be capable of doing

    be able to do

Page 15: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

It would include nonviable (not capable of living) particles such as airborne soil granules, volcanic dust, and salts from evaporation of sea spray.

それはたとえば空間を漂う土の粒子や火山灰、波のしぶきが蒸発してできる塩のような生き物ではないものである。

それは、空気で運ばれた土の細粒や火山の灰、そして海のしぶきの蒸発でできた食塩のような、生きられない(生存する力のない)粒子を含むだろう。

Page 16: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

It would also include viable particles such as plant and insect matter.

The particulate matter would also include viable particles such as

    plant

   insect matter.

Page 17: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

It would also include viable particles such as plant and insect matter.

植物と虫からの排出物のように自然のままの形でいられる微粒子も含まれる。

微粒子は植物や虫といった、生物粒子も含んでいるかもしれない(含んでいるだろう)。

Page 18: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

the particulate matter

nonviable

airborne soil granules volcanic dust

salts from evaporation of sea spray

viableplant

insect matter.

the particulate matter

Page 19: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Inert gases, mostly argon (9300 ppm) with much smaller concentrations of neon (18 ppm), helium (5 ppm), krypton and xenon (1 ppm each).

Inert gases are [mostly] argon (9300 ppm) with [much small

er concentrations of]

   neon (18 ppm)

   helium (5 ppm)

   krypton (1 ppm)

   xenon (1 ppm)

Page 20: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Inert gases, mostly argon. (9300 ppm) with much smaller concentrations of neon (18 ppm), helium (5 ppm), krypton and xenon (1 ppm each).

不活性気体は大部分をしめるアルゴン (9300ppm) と、ずっと小さい濃度のネオン (18ppm) 、ヘリウム (5ppm) 、クリプトンとヘキサン (それぞれ 1ppm) から成る。

希ガスはほとんどがアルゴン (9300ppm) であり、ネオン (18ppm) 、ヘリウム (5ppm) 、クリプトンとキセノン (1ppm) はより濃度が低い。

Page 21: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Methane, CH4, a natural part of the carbon cycle of the biosphere; therefore, not a pollutant although sometimes confused with other hydrocarbons in estimating total pollution.

Methane, CH4, is a natural part of the carbon cycle of the biosphere.

Methane is not a pollutant.

Methane is sometimes confused with other hydrocarbons in estimating

total pollution.

We sometimes confuse methane with other hydrocarbons in estimating

total pollution.

Page 22: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Methane, CH4, a natural part of the carbon cycle of the biosphere; therefore, not a pollutant although sometimes confused with other hydrocarbons in estimating total pollution.

生物圏の炭素の循環の自然の部分であるメタンCH4は、汚染物質ではないが、時々全体的な汚染の推測する際に他の炭化水素と混同される。

メタンは生物圏の炭素循環の自然の一部です。それゆえ時々とはいえ汚染物質でないものが全体の汚染を見積もったときに他の炭化水素と混同することがある。

Page 23: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Oxides of nitrogen, mostly N2O (0.5 ppm) and NO2 (0.02 ppm). Both produced by solar radiation and by lightning.

Oxides of nitrogen are mostly N2O (0.5 ppm) and NO2 (0.02 ppm).

Both (N2O and NO2) are produced by solar radiation and by lightni

ng.

Page 24: Now that we have the arithmetic in hand, let us look at the Earth's atmosphere and its pollutants.

Oxides of nitrogen, mostly N2O (0.5 ppm) and NO2 (0.02 ppm). Both produced by solar radiation and by lightning.

窒素の酸化物は、主としてN2O(0.5ppm)とNO2(0.02ppm)である。二つは、太陽光線の照射または燃やすことによって生成される。

窒素酸化物、主にN 2 O( 0 . 5 ppm)とNO 2( 0.02 ppm)は共に太陽放射と稲光によって生じる。