MTD_Lec2

35
6/4/2013 1 Mass Transfer Principles 1. Intro ducti on 2. Mass Transfer Principles 3. Equili brium Stage Operations 4. Distillation 5. Abso rpti on 6. Extra ctio n 7. Lea chin g The objective is:  Recognize and be able to use equilibria and material and energy balances to carry out process calculations Recognize the mass transfer concept in separation process and their estimation

Transcript of MTD_Lec2

Page 1: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 1/35

6/4/201

Mass Transfer Principles

1. Introduction

2. Mass Transfer Principles

3. Equilibrium Stage Operations

4. Distillation

5. Absorption6. Extraction

7. Leaching

The objective is: 

Recognize and be able to use equilibria and material

and energy balances to carry out process calculations

Recognize the mass transfer concept in separation

process and their estimation

Page 2: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 2/35

Page 3: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 3/35

6/4/201

Introduction

The transport of one constituent from a region

of higher concentration to that of a lower

concentration is called mass transfer.

Rate of a transfer process = driving force

resistance

Possible driving force for mass transfer

• Concentration different

• Pressure different

• Electrical gradient

Page 4: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 4/35

6/4/201

Examples of mass transfer

• Evaporation of water in the open pail to

atmosphere

• Coffee dissolves in water

• O2 dissolves in the solution to the

microorganism in the fermentation process

• Reaction occurs when reactants diffuse

from the surrounding medium to thecatalyst surface

• The mechanism of mass transfer involves

both molecular diffusion and convection.

Page 5: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 5/35

Page 6: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 6/35

6/4/201

Convective mass transfer

• Using mechanical force or action to

increase rate of molecular diffusion

• e.g- stirred the water to dissolve coffee

during coffee making

Molecular Diffusion

Transfer of individual molecules

through a fluid by random, individual

movements of the molecules

Page 7: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 7/35

6/4/201

Molecular Diffusion

The basic of diffusion(Fick’s Law) wasenunciated by Adolf Eugen Fick, a

physiologist in 1885

“the molar flux of a species relative to an

observer moving with molar average

velocity is proportional to the conc.

 gradient of the species” 

Molecular Diffusion

Diffusion of molecules when the bulk fluid isstationary given by Fick’s Law : 

dz 

dxcD J    A

 AB A   *

Molar flux of component A (kgmol A/s.m2)

Molecular diffusivity of the molecule A in B (m2 /s)

Total conc. of A and B (kgmol A+B/m3)

Mole fraction of A

 A J *

 AB D

c

 A x

(1)

Page 8: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 8/35

6/4/201

Molecular DiffusionFick’s Law for molecular diffusion of mass at constant

total concentration c A = x Ac:

dz 

dc D J    A

 AB Az *

Molar flux of component A in the z direction due tomolecular diffusion (kgmol A/s.m2)Molecular diffusivity of the molecule A in B (m2 /s)Concentration of A (kgmol/m3)Distance of diffusion (m)

 Az * J 

 AB D

 Ac z 

(2)

If c is varies, an average value is often used with equation (2).

Other driving forces (besides conc.) for diffusion also occur because of T,

P, electrical potential and other gradients. (transport phenomena TB)

Example

Molecular Diffusion of Helium in Nitrogen. Amixture of He and N2 gas is contained in apipe at 298 K and 1 atm total pressure whichis constant throughout. At one end of thepipe at point 1 the partial pressure p A1of He

is 0.60 atm and at the other end 0.2 m (20cm) p A2= 0.20 atm. Calculate the flux of Heat steady state if D AB of the He-N2  mixture is0.687 x 10-4m2/s (0.687 cm2/s).

Page 9: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 9/35

6/4/201

• Integrate the equation:

•From ideal gas law, p AV = n A RT ,

12

21   )(

 z  z 

cc D J    A A AB

 A

)()(

12

21

 z  z  RT  p p D J    A A AB

 A

n

 RT 

 pc   A A A  

  11

)020.0)(298(8314

)10027.21008.6)(10887.0(   444

 x x x J  A

= 5.63 x 10-6 kgmolA/s.m2

Page 10: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 10/35

6/4/201

1

Think of the last time that you washed the dishes.

You placed your first greasy plate into the water,

and the dishwater got a thin film of oil on the top of

it, didn’t it? Find the flux, J, of oil droplets through

the water to the top surface. The sink is 18 cm

deep, and the concentration of oil on the plate is 0.1

mol/cm3. Assume that there is no oil at the top of

the sink yet.

Exercise

•  Answer:• To solve this problem, we will need to apply the mass transfer equation we

 just learned.

where: D AB = 7 x 10-7cm2/s

dc A= concentration at the top of the sink – the concentration of oil on the plate.

The concentration at the top of the sink = 0

The concentration of oil on the plate = 0.1 mol/cm3

dc A = 0 – 0.1 = -0.1 mol/cm3

dz = the depth of the sink = 18 cm

Since we know all of the numbers needed, we can calculate the flux.

 J = -(7 x 10-7 cm2/s) * (-0.1 mol/cm3) / (18 cm) 

J  = 4 x 10-4 mol / (cm2s)

dz 

dc D J    A

 AB Az *

Page 11: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 11/35

6/4/201

Convective Mass Transfer

• When fluid flowing outside a solid surfacein forced convection motion, rate ofconvective mass transfer is given by:

 )cc( k  N   Li Lc A     1

Mass-transfer coefficient (m/s)Bulk fluid concentration (kgmol A/m3)Concentration in the fluid next to the surface of thesolid

ck 

1 Lc

 Lic

(2)

k c depends on >>>>>system geometry, fluid properties and flow velocity

The objective is: 

Recognize and be able to use equilibria and material

and energy balances to carry out process calculations

Recognize the mass transfer concept in separation

process and their estimation

Learning Outcomes

Page 12: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 12/35

6/4/201

1

Diffusion in Gases p 414

• Outlines:1. Equimolar counter diffusion in gases

2. General case for diffusion of gases A and Bplus convection

3. Special case for A diffusing throughstagnant, non-diffusing B

4. Diffusion through varying cross-sectionalarea

5. Diffusion coefficients for gases

1. Equimolar counter-diffusion

• Consider:

 – 2 gases A and B

 –  At constant total

pressure P

 – Molecular diffusion at

steady-state – Partial pressures:

21   A A   p p  

12   B B   p p  

Page 13: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 13/35

Page 14: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 14/35

6/4/201

1

Exercise

Check example 6.2-1

Equimolar counter diffusion is occurring at steady

state in a tube 0.11 m long containing N2 and CO

gases at the total pressure of 1.0 atm abs. The

partial pressure of N2 is 80mm Hg at one end and

10 mmHg at the other end. Given the D AB at 298K 

is 2.05 x 10-5 m2/s

a) Calculate the flux in kg mol/s.m2 at 298 K for N2

b) Repeat at 473 K. Given that D AB at 493K is 4.60

x 10-5m2/s.

Exercise

Page 15: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 15/35

Page 16: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 16/35

6/4/201

1

2. General diffusion & convection

Multiplying by c A,

 M  A Ad  A A A   vcvcvc  

Hence,

 M  A A*

 A   vc J  N   

If N  = total convective flux of the whole stream relative to the

stationary point, then

 B A M    N  N cv N   

c

 N  N v   B A M 

(11)

(12)

(10)

2. General diffusion & convectionSubstituting equation (11) and Fick’s law into (12), 

 B A A A

 AB A   N  N c

c

dz 

dxcD N   

Note:For Equimolar counter-diffusion,Hence,

 B A   N  N   

dz 

dxcD N    A

 AB A  

Convectionterm

Diffusionterm

(13)

This is the general equation describing mass transfer of component-A by

diffusion through moving bulk fluid. It allows one to calculate the mass

transfer rate (molar flux, e.g. in kg-mole/m2.s) between 2 points.

Page 17: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 17/35

6/4/201

1

3. Stagnant, non-diffusing B

3. Stagnant, non-diffusing B

For A diffusing in stagnant, non-diffusing B, in equation (12) set 0 B N 

0   A A A

 AB A   N c

c

dz 

dxcD N 

If total pressure is kept constant P

(14)

 RT 

 P c    P  x p  A A 

 P 

 p

c

c  A A

Substituting into (14)

 A

 A A AB

 A   N  P 

 p

dz 

dp

 RT 

 D N    (15)

Page 18: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 18/35

6/4/201

1

3. Stagnant, non-diffusing B

Re-arranging and integrating

1

2

12   A

 A AB A

 p P 

 p P ln

 ) z  z (  RT 

 P  D N 

(16)

Or another form P =p A1 + p B1 =p A2 + p B2 ,

 p B1 =P-p A1 and p B2 = P-p A2 

21

12

 A A

 BM 

 AB A   p p

 p ) z  z (  RT 

 P  D N   

(17)

dz 

dp

 RT 

 D

 P 

 p N    A AB A

 A     

   1

 p

 p

dp

 RT 

 Ddz  N 

 A

 A

 p

 AB

 z 

 z 

 A

 p  

1

2

1

2

1

)/()(ln)/ln( 12

21

12

12

 A A

 A A

 BM  B B

 B B BM 

 p P  p P  p p

 p p p p p p

Water

vapor

example

Page 19: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 19/35

6/4/201

1

M Azmi Bustam

• Sphere to surrounding medium

Evaporation of a drop of liquid

Evaporation of a ball of naphthalene

Diffusion of nutrients to a sphere-like micro-

organism in a liquid• Conduit of non-uniform csa

4. Varying cross-sectional area

Page 20: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 20/35

6/4/201

2

4. Varying cross-sectional area

4. Varying cross-sectional area

Define

 A

 N  N 

  A

 A  

Where

Kg moles of A diffusing per second (kgmol/s)

Cross-sectional area through which the diffusionoccurs

 A N 

 A

 At steady-state, will be constant but not for varyingarea.

 A N    A

(18)

Page 21: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 21/35

6/4/201

2

4. Varying cross-sectional area

1. Diffusion from a sphere

 BM 

 A A AB A

 A

 p

 P  p

 RTr 

 P  D N 

 N  21

1

12

14

 

If is small compared to (a dilute phase), Also, setting , diameter, and

(19)

1 A p  P    P  p BM  

112   Dr     RT  /  pc  A A   11  

21

1

1

2 A A

 AB A   cc

 D

 D N    (20)

24   r  A    

4. Varying cross-sectional area

2. Diffusion through a conduit of non-uniform csa

dz  P  /  p

dp

 RT 

 D

 N  N 

 A

 A AB A A

12 

Defining1

12

12 r  z  z  z 

r r r   

 

  

 

 

 

  

 

2

1

2

112

1

12

12

 z 

 z 

 p

 p   A

 A AB A A

 A P  /  p

dp

 RT 

 D

r  z  z  z 

r r 

dz  N 

  (21)

Page 22: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 22/35

6/4/201

2

5. Diffusion coefficients for gases

a) Experimental determination

)(2 21

22

 A A AB A

 BM o F  F 

 p p P  D M  RTp z  z t 

   

5. Diffusion coefficients for gases

a) Experimental determination

 

 

V V  A /  L

V V  Dexp

cc

cc  AB

av

av

12

21

0

2

2

Where is the average concentration value at equilibriumavc

Page 23: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 23/35

6/4/201

2

5. Diffusion coefficients for gases

b) Experimental diffusivity data

 Available in Perry and Green or Reid at al.Typical data as in Geankoplis pg 424.

 D AB , range from 0.05 x 10-4 m2/s, to about 1.0 x 10-4 m2/s(H2)

5. Diffusion coefficients for gases

c) Prediction of diffusivity for gases

Semi-empirical method of Fuller et al.

23131

2175171110

 / 

 B

 / 

 A

 / 

 B A

.

 AB

vv P 

 M  /  M  / T  D

 

WhereSum of structural volume increments   Av

Page 24: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 24/35

Page 25: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 25/35

Page 26: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 26/35

6/4/201

2

a. Equimolar counter diffusion

12

21

12

21   )()(

 z  z 

 x xc D

 z  z 

cc D N    A Aav AB A A AB

 A

Diffusion in Liquids

Where,

2/21

21

 

 

 

 

 

 

 

 

 M  M  M 

cav

av

      

c A1  – conc. A at

point 1

 x A2  – mole frac.

 A at point 1

cav  – average total

conc. A + B in

kgmol/m3

b. Diffusion of A through nondiffusing B,

in gas

Rewrite in terms of conc. by substituting

Where pBM is “log mean partial conc. of B” between the location z 2 and z 1 

 BM 

 A Aav AB A

 x z  z 

 x xc D N  )(

)(

12

21

Diffusion in Liquids

Where,

)/ln( 12

12

 B B

 B B BM 

 x x

 x x x

 

21

12

 A A

 BM 

 AB A   p p

 p ) z  z (  RT 

 P  D N   

 P 

 p x

 RT 

 pc

 RT 

 P c   BM 

 BM  A

 A AV      ,,   11

12

21   )(

 z  z 

cc D N    A A AB

 A

Very dilute soln. x BM  close to 1

and c constant

Page 27: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 27/35

6/4/201

2

3.Diffusion coefficients for liquids

(several methods)- unsteady state diffusion in a

long capillary tube- conc. profile

- quasi-steady state diffusion

Diffusion in Liquids

  

  cc D N   AB A

Where,

  the fraction of area of the

glass open to diffusion

c conc. in the lower chamber

c’ conc. in the upper chamber

  effective diffusion length 

t  DV 

 A

cc

cc AB

o

oo

 

 2ln

'

'

Where,

 A

 

 2 - cell constant

Page 28: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 28/35

6/4/201

2

4. Prediction of diffusivities in liquids

(theory for diffusion in liquid is not well established)

Modifying from the Stokes-Einstien equation:

Diffusion in Liquids

3

1

161096.9

 A

 AB

T  D

 

 By assuming all molecules are alike and arrange in a cubic lattice and

expressing the molecular radius in term of molar volume

Where:

 D AB : Diffusivity in m2/s

T  : Temp.

: viscosity in Pa.s or kg/m.s

V  A  : solute molar volume at its normal boiling point.

4. Prediction of diffusivities in liquids

Modifying from the Stokes-Einstien by Wilke-

Chang:

Diffusion in Liquids

6.0

2/116 )(10173.1 A B

 B AB

T  M  D

 

 

Where:

 D AB : Diffusivity in m2/s

T : Temp.

B : viscosity of B in Pa.s or kg/m.s

V  A  : solute molar volume at its normal boiling point.

 M  B  : Molecular weight of solvent B

  : an “associate parameter” of the solvent 

Refer example 6.3-2 for your exercise. (p432)

Page 29: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 29/35

6/4/201

2

Mass transfer

Molecular diffusionConvective mass

transfer

• Gases1. Equimolar counter diffusion in gases

2. General case for diffusion of gases A

and B plus convection

3. Special case for A diffusing through

stagnant, non-diffusing B

4. Diffusion through varying cross-

sectional area5. Diffusion coefficients for gases

• Liquid

• Solid

dz dc D J    A

 AB Az *

Molar flux of component

 A in the z direction:

 Bz *

 Az *  J  J   

Equimolar counter diffusion:

 )cc( k  N   Li Lc A     1

Convective mass transfer:

 B A

 A A

 AB A   N  N c

c

dz 

dxcD N   

General diffusion & convection

0   A A A

 AB A   N c

c

dz 

dxcD N 

Stagnant, non-diffusing B

1

2

12   A

 A AB A

 p P 

 p P ln

 ) z  z (  RT 

 P  D N 

21

12

 A A

 BM 

 AB A   p p

 p ) z  z (  RT 

 P  D N   

Stagnant non-diffusion B,

another form…. 

4. Diffusion through varying cross-sectional area  A

 N  N 

  A

 A 

 BM 

 A A AB A

 A

 p

 P  p

 RTr 

 P  D N 

 N  21

1

12

14

 

Sphere

a conduit of non-uniform csa

dz  P  p

dp

 RT 

 D

 N  N 

 A

 A AB A

 A/12

 

Page 30: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 30/35

6/4/201

3

5. Diffusion coefficients for gases )(2 21

22

 A A AB A

 BM  F  F  F  p p P  D M 

 RTp z  z t 

   

 

 

V V  A /  L

V V  Dexp

cc

cc  AB

av

av

12

21

0

2

2

23/13/1

2/175.17 /1/110

 

 B A

 B A AB

vv P 

 M  M T  D

 AB

Sc pD

 N    

Stagnant non-diffusion B

The two bulb method

Semi-empirical method of

Fuller et al.

Schmidt number of gases

• Liquid

• Solid

12

21

12

21   )()(

 z  z 

 x xc D

 z  z 

cc D N    A Aav AB A A AB

 A

t  DV 

 A

cc

cc AB

o

oo

 

 2ln

'

'

Diffusion in liquid

Diffusion in coefficients liquid

Prediction of diffusion in liquid

6.0

2/116 )(10173.1 A B

 B ABV T  M  D

  

Page 31: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 31/35

6/4/201

3

Diffusion in solids

Typical values for diffusivity in gases, liquids

and solids are shown in table.

General range of values of diffusivity:

Gases : 5 X 10  –6  ~ 1 X 10-5  m2 / sec. 

Liquids : 10  –6  ~10-9  m2 / sec. 

Solids : 5 X 10  –14~1 X 10-10  m2 / sec. 

Diffusion in solids

• Outlines:

1. Types of diffusion in solids

2. Diffusion in solids following Fick’s Law 

3. Diffusion in porous solids that depend on

structure

Page 32: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 32/35

6/4/201

3

Introduction

- Molecular diffusion in solids slower than gasesand liquids;

- Very important in chemical and biological processe.g. leaching of food, drying thing (timber, salts andfoods), diffusion and catalytic reaction, treatment ofmetal in high temp. etc

Types of diffusion in solids

1. Follow Fick’s law 2. depend on actual structure and void channels

Diffusion in solids

Diffusion in solids1.Diffusion in solids following Fick’s Law p 441 

 B A

 A A

 AB A  N  N 

c

c

dz 

dxcD N    Using general equation for binary diffusion;

Bulk-flow is small, it is neglected. Also c is assumed constant.

Giving diffusion in solids;

 B A

 A  N  N c

c

dz 

dc D N    A AB

 A 

12

21  )(

 z  z 

cc D N    A A AB

 A

In case of diffusion through cylinder wall of inner

radius r 1 and outer r 2 and length of L;

)/ln(

2)(

12

21r r 

 Lcc D N  A A AB A

 

Page 33: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 33/35

6/4/201

3

2. Diffusion in porous solids that depend on structure

Diffusion in solids

)(

)(

)(

)(

12

21

12

21

 z  z  RT 

 p p D

 z  z 

cc D

 N   A A AB A A AB

 A

  

 

)(

)(

12

21

 z  z 

cc D N    A A AB

 A

 

 

Diffusion of salt in water

at steady state;

Where;

: open void fraction

: tortuosity

Diffusion of gases in porous solids;

Mass transfer

Molecular diffusionConvective mass

transfer

• Gases1. Equimolar counter diffusion in gases

2. General case for diffusion of gases A

and B plus convection3. Special case for A diffusing through

stagnant, non-diffusing B

4. Diffusion through varying cross-

sectional area

5. Diffusion coefficients for gases

dz 

dc D J    A

 AB Az *

Molar flux of component

 A in the z direction:

 Bz *

 Az *  J  J   

Equimolar counter diffusion:

 )cc( k  N   Li Lc A     1

Convective mass transfer:

 B A A A

 AB A   N  N c

c

dz 

dxcD N   

General diffusion & convection

0   A A A

 AB A   N c

c

dz 

dxcD N 

Stagnant, non-diffusing B

Page 34: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 34/35

Page 35: MTD_Lec2

8/13/2019 MTD_Lec2

http://slidepdf.com/reader/full/mtdlec2 35/35

6/4/201

• Liquid

• Solid

12

21

12

21  )()(

 z  z 

 x xc D

 z  z 

cc D N    A Aav AB A A AB A

t  DV 

 A

cc

cc AB

o

oo

 

 2ln

'

'

Diffusion in liquid

Diffusion in coefficients liquid

Prediction of diffusion in liquid

6.0

2/116 )(10173.1 A B

 B ABV 

T  M  D

  

12

21  )(

 z  z 

cc D N    A A AB

 A

Diffusion in solids

Problem based learning

)(

)(

)(

)(

12

21

12

21

 z  z  RT 

 p p D

 z  z 

cc D N    A A AB A A AB

 A

  

 

Diffusion in porous solids

Diffusion of liquidDiffusion of gas