LG_ecc

download LG_ecc

of 26

Transcript of LG_ecc

  • 7/31/2019 LG_ecc

    1/26

    do - Tunnel Radius - 3.5 m

    - Angle of Internal friction - 30 Degree

    c - Cohesive Strength - 0.1 Mpa

    GSI - - 60

    - Unit weight of Rock mass - 26 kN / cu m

    H - Height of over burden - 100 m

    do - Tunnel radius - 5 m

    Po - In-situ Stress

    - H

    - 2.6 Mpa

    Pi - Internal Support Pressure

    - 1.2 Mpa (Figure-1)

  • 7/31/2019 LG_ecc

    2/26

  • 7/31/2019 LG_ecc

    3/26

    ci - Lab Uniaxial compressive strength

    -

    - 1.1017 Mpa

    cm - Rock mass Strength/In situ Uniaxial compressive strength

    - 2c cos /(1-sin )

    - 0.35 Mpa

    dp - Plastic zone radius

    i - Tunnel Sidewall deformation/Tunnel closure

    k - or

    cm/Po - Rock mass Strength/In situ Stress

    - 0.13

    Pi/Po - 0.46

    dp/do - 1.20

    i/do - 0.005

    - i /do

    dp - 4.19 m

    i - 0.02 m

    0.019 e 0.05 GSI/ cm

    (1+sin )/(1-sin 1/ 3

    Strain of the tunnel

  • 7/31/2019 LG_ecc

    4/26

    Definitions of Dimensions:

    b - 1500 mm

    t - 150 mm

    b 1 - 780 mm

    b 2 - 330 mm

    t 2 - 95 mmd 1 - 16 mm

    d 2 - 20 mm

    - 30 Degree

    Cover - 30 mm

    h g - 195 mm

    bg - 180 mm

    Lo - 2000 mm

    d 3 - 6 mm @ 150 mm c/c

    LoRock Bolts

    ELEV

    b

    b 1

    d 1

    t

    t 2d 3

    d 2

    b 2

    PLAN

    195

    180 Lattice Girder

  • 7/31/2019 LG_ecc

    5/26

    h - t + t 2

    - 225 mm

    d g - h g - 0.5(d 1 + d 2)

    - 167 mm

    Definitions of Material Properties:

    f cd - 20 Mpafyd - 435 Mpa

    - 0.85

    A st 1 - 402 Sq mm

    A st 2 - 314 Sq mm

    A st 3 - 28 Sq mm

    A c - b t + 0.5 t 2 b 2 - A st 1 - A st 2

    - 221110 Sq mm

    b eff - 0.2 (b-b 2) + 0.24 L o+b 2

    - 1044 mm

    A s11 -

    - 599 Sq mm (only in tension)

    h cm -

    - 84.71 mm (Calculation of center of mass)

    Eight Strain conditions to derive M-N envelope:

    1 Pure axial force

    2 Zero strain in tensioned bars (positive Moment)

    3 Equilibrium (Max strain in shotcrete and yielding in rebars at the same time - P

    4 Pure moment (Positive)

    5 Pure tension

    6 Pure Moment (Negative)

    7 Equilibrium (Max strain in shotcrete and yielding in rebars at the same time - N

    8 Zero strain in tensioned bars (Negative Moment)

    1 Nd - f cd A c + f yd (A st1 + A st2)

    - 4070 kN

    5 N tog - f yd (A s11 +A st2)

    - 397 kN

    3 cu - 0

    syd - 0

    d - hg - 0.5 d 2

    - 185 mm

  • 7/31/2019 LG_ecc

    6/26

    X bal - cu d

    cu + syd

    - 116 mm

    0.8 X bal < t

    0.8 X bal- 93 mm

    < 150 mm

    f c - f cd 0.8 X bal b eff - ### N

    f s1 - f yd A st1 - 174835 N

    f s2 - f yd A st2 - 136590 N

    N ud - + f s1 - f s2 - 1680 kN

    M ud - f c (h cm -0.4 X bal) + f s1 (h cm - 0.5 d1) + f s2 (d - h cm)

    - 62.84 kN m

    2 h c3 - 0.8 d - 148 mm

    A c3 - t b eff + (0.5 b 2

    - 162006 sq mm

    Center mass of compression zone

    90

    - (h - h c3)2 / tan )

  • 7/31/2019 LG_ecc

    7/26

    4 x - f yd A st2

    f cd 0.8 b eff

    - 9.62 mm

    Mu - f yd A st2 (d -0.4 x)

    - 24.74 kN m

    5

    6 d 1 - h -0.5 d 1

    - 217 mm

    h c -

    - 94.04 mm

    M u2 - f yd A s 11 (d 1 - 0.67 hc)

    - 40.10 kN m7 X bal2 - cu d

    cu + syd

    - 136 mm

    h c2 - 0.8 X bal2

    - 109 mm

    f c2 - - 346632 N

    f s11 - yd A s 11 - 260395 N

    f s2 - f yd A st2 - 136590 N

    N ud2 - + f s2 - f s11 - 223 kN

    M ud - f c2 (h-h cm -0.67 h c2) + f s1 (d-h cm ) + f s2 (h cm - 0.5d1)

    - 17 kN m

    8

    Sqrt ((A s11 f yd tan )/ f cd)

    f cd (h c2) 2/tan

  • 7/31/2019 LG_ecc

    8/26

    0 0

    M ud3

    M ud

    M u

    Moment = 0 = 0

    -M u2-M ud3

    -M ud4

    0 0

    N d

    N ud3

    N ud

    0 0

  • 7/31/2019 LG_ecc

    9/26

    Nforce = -N tog =

    0 0

    N ud2

    N ud4

    N d

  • 7/31/2019 LG_ecc

    10/26

  • 7/31/2019 LG_ecc

    11/26

    sitive Moment)

    egative Moment)

  • 7/31/2019 LG_ecc

    12/26

  • 7/31/2019 LG_ecc

    13/26

  • 7/31/2019 LG_ecc

    14/26

  • 7/31/2019 LG_ecc

    15/26

  • 7/31/2019 LG_ecc

    16/26

    Beam L/C Node Fx kN Fy kN Mz kNm

    3 SELF WEIGHT+ROCK LO 2 941.45 103.39 0

    39 -937.7 -52.77 48.8

    34 SELF WEIGHT+ROCK LO 15 199.74 15.72 -262.21

    25 -207.5 82.83 242.46

    35 SELF WEIGHT+ROCK LO 25 213.39 -30.56 -242.46

    26 -236.46 126.68 196.236 SELF WEIGHT+ROCK LO 26 246.88 -72.47 -196.2

    27 -284.72 163.8 126.68

    37 SELF WEIGHT+ROCK LO 27 299.78 -105.74 -126.68

    28 -351.43 190.03 39.66

    38 SELF WEIGHT+ROCK LO 28 370.61 -125.42 -39.66

    29 -434.81 200.59 -56.26

    39 SELF WEIGHT+ROCK LO 29 456.35 -126.28 56.26

    30 -531.52 190.48 -149.45

    40 SELF WEIGHT+ROCK LO 30 552.26 -103.44 149.45

    31 -636.55 155.09 -225.5241 SELF WEIGHT+ROCK LO 31 651.99 -53.2 225.52

    32 -743.32 91.03 -267.95

    42 SELF WEIGHT+ROCK LO 32 748.18 26.43 267.95

    33 -844.31 -3.35 -259.2

    43 SELF WEIGHT+ROCK LO 33 833.28 135.39 259.2

    4 -931.83 -127.64 -181.81

    49 SELF WEIGHT+ROCK LO 39 937.7 52.77 -48.8

    40 -933.95 -2.14 65.96

    50 SELF WEIGHT+ROCK LO 40 933.95 2.14 -65.96

    41 -930.2 48.48 51.48

    51 SELF WEIGHT+ROCK LO 41 930.2 -48.48 -51.48

    42 -926.45 99.11 5.36

    52 SELF WEIGHT+ROCK LO 42 926.45 -99.11 -5.36

    43 -922.7 149.73 -72.4

    53 SELF WEIGHT+ROCK LO 43 922.7 -149.73 72.4

    4 -918.95 200.36 -181.81

    Beam L/C Node Fx kN Fy kN Mz kNm

    Max Fx 3 IGHT+R 2 941.45 103.39 0

    Min Fx 34 IGHT+R 15 199.74 15.72 -262.21

    Max Fy 43 IGHT+R 33 833.28 135.39 259.2Min Fy 38 IGHT+R 29 434.81 -200.59 56.26

    Max Fz 43 IGHT+R 33 833.28 135.39 259.2

    Min Fz 53 IGHT+R 43 922.7 -149.73 72.4

    Max Mx 40 IGHT+R 30 552.26 -103.44 149.45

    Min Mx 43 IGHT+R 33 833.28 135.39 259.2

    Max My 42 IGHT+R 32 748.18 26.43 267.95

    Min My 43 IGHT+R 33 833.28 135.39 259.2

  • 7/31/2019 LG_ecc

    17/26

    Max Mz 41 IGHT+R 32 743.32 -91.03 267.95

    Min Mz 34 IGHT+R 15 199.74 15.72 -262.21

  • 7/31/2019 LG_ecc

    18/26

    1.00 m

    0.030.15 m

    0.10 m0.03

    0.15 mCompression Load @ Moderate eccentricity

  • 7/31/2019 LG_ecc

    19/26

    from book

    Page 19

    b=D=m=dc=dt=

    d=Bending moment = M

    Tensile force = T

    let us assume, x = position of N.A from top of compr face=therefore, k = x/d

    No. of bars = n_c=dia of bolts = dia_c = dc =

    No. of bars = n_t=

    dia of bolts = dia_t = dt=

    Eccentricity (e) = M/P =

    Asc = n_c * pie * (dia_c) * (dia_c)/4 =Ast = n_t * pie * (dia_t) * (dia_t)/4 =

    taking the moments of internal and external forces about the centre of tensile

    i.e.,

    53100000

    thus,

    again, equating the sum of internal forces to the external forces, we have

    i.e.,299975.08

    thus,

    hence, from stress diagram, x=1*d/(1+t/(m.c')) =

    Now assume an intermediate value between (1) and (2) for x, say x=

    substituting in eqn (A), we geti.e., bxc'(d-x/3)/2 + (mc-1)Asc.c'(x-dc)(d-dc)/x = P(e+D/2 -dt)

    51854933.33

    bxc'(d-x/3)/2 + (mc-1)Asc.c'(x-dc)(d-dc)/x = P(e+D/2 -dt) ---

    bxc'/2 + (mc-1)Asc.c'/x(x-dc) Ast.t =P ----------------> (

  • 7/31/2019 LG_ecc

    20/26

    from book

    Page 20

    i.e., c' =

    substituting in eqn.(B), we geti.e., bxc'/2 + (mc-1)Asc.c'/x(x-dc) Ast.t =P

    294975.33

    thus,

    hence, from stress diagram, x=1*d/(1+t/(m.c')) =

    thus,

    and,

  • 7/31/2019 LG_ecc

    21/26

    from book

    Page 21

    400 mm800 mm1960 mm60 mm

    740 mm200 N-m per metre width400 kN

    450 mm -------> (1)0.61

    625 mm

    6

    25 mm

    500 mm

    2943.75 mm22943.75 mm2

    steel, we have

    *c' + 47708375 *c' = ###

    c' = 3.33 N/sq.mm

    + 233845.15 + -2943.75 *t = 400000

    t= 45.46 N/sq.mm

    430.77mm ------> (2)

    436mm (say)

    *c' + ### *c' = ###

    ---> (A)

    B)

  • 7/31/2019 LG_ecc

    22/26

    from book

    Page 22

    3.38 N/sq.mm

    + 236158.83 + -2943.75 *t = 400000

    t= 44.55 N/sq.mm

    437.07mm

    c' = 3.38N/sq.mm (compressive)

    t = 44.55N/sq.mm (tensile)

    tc = 83.14N/sq.mm (compressive)

  • 7/31/2019 LG_ecc

    23/26

    Sheet6

    Page 23

    b= 1000 mmD= 225 mmm= 19dc= 30 mmdt= 30 mm

    d= 195 mmBending moment = M 200 per metre width

    Tensile force = T 400 kN

    let us assume, x = position of N.A from top of comp 135 mm -------> (therefore, k = x/d 0.69 med to be between 0.

    No. of bars = n_c= 2dia of bolts = dia_c = 20 mm

    No. of bars = n_t= 2

    dia of bolts = dia_t = 32 mm

    Eccentricity (e) = M/P = 500 mm

    Asc = n_c * pie * (dia_c) * (dia_c)/4 = 628 mm2Ast = n_t * pie * (dia_t) * (dia_t)/4 = 1607.68 mm2

    taking the moments of internal and external forces about the centre of tensile steel, w

    i.e.,

    10125000 *c' + ###

    thus, c' = 18.88 N/sq.mm

    again, equating the sum of internal forces to the external forces, we have

    i.e.,1274377.8 + 253595.94 +

    thus, t= 701.62 N/sq.mm

    hence, from stress diagram, x=1*d/(1+t/(m.c')) = 65.97 mm ------> (2

    Now assume an intermediate value between (1) an 90 mm (say)

    substituting in eqn (A), we geti.e., bxc'(d-x/3)/2 + (mc-1)Asc.c'(x-dc)(d-dc)/x = P(e+D/2 -dt)

    7425000.00 *c' + ###

    bxc'(d-x/3)/2 + (mc-1)Asc.c'(x-dc)(d-dc)/x = P(e+D/2 -dt) -------> (

    bxc'/2 + (mc-1)Asc.c'/x(x-dc) Ast.t =P ----------------> (B)

  • 7/31/2019 LG_ecc

    24/26

    Sheet6

    Page 24

    i.e., c' = 24.99 N/sq.mm

    substituting in eqn.(B), we geti.e., bxc'/2 + (mc-1)Asc.c'/x(x-dc) Ast.t =P

    1124432.96 + 287688.25 +

    thus, t= 629.55 N/sq.mm

    hence, from stress diagram, x=1*d/(1+t/(m.c')) = 83.83 mm

    thus, c' = 24.99N/sq.mm

    t = 629.55N/sq.mm

    and, tc = 474.76N/sq.mm

  • 7/31/2019 LG_ecc

    25/26

    Sheet6

    Page 25

    )to 0.7)

    e have

    *c' = ###

    -1607.68 *t = 400000

    )

    *c' = ###

    )

  • 7/31/2019 LG_ecc

    26/26

    Sheet6

    Page 26

    -1607.68 *t = 400000

    (compressive)

    (tensile)

    (compressive)