kmia analitik.docx

21
2.15. Asiditas Asiditas adalah kapasitas kuantitatif air untuk bereaksi dengan basa kuat sehingga menstabilkan pH hingga mencapai 8,3 atau kemampuan air untuk mengikat OH - untuk mencapai pH 8,3 dari pH asal yang rendah. Semua air yang memiliki pH < 8,5 mengandung asiditas. Pada dasarnya, asiditas (keasaman) tidak sama dengan pH. Asiditas melibatkan dua komponen, yaitu jumlah asam, baik asam kuat maupun asam lemah (misalnya asam karbonat dan asam asetat), serta konsentrasi ion hidrogen. Menurut APHA (1976) dalam Effendi (2003), pada dasarnya asiditas menggambarkan kapasitas kuantitatif air untuk menetralkan basa sampai pH tertentu, yang dikenal dengan base-neutralizing capacity (BNC); sedangkan Tebbut (1992) dalam Effendi (2003) menyatakan bahwa pH hanya menggambarkan konsentrasi ion hidrogen. Pada kebanyakan air alami, air buangan domestik, dan air buangan industri bersifat buffer karena sistem karbondioksida-bikarbonat. Pada titrasi beberapa asam lemah, dapat diketahui bahwa titik akhir stoikiometri dari asam karbonat tidak dapat dicapai sampai pH sekitar 8,5. Oleh karena itu dapat disimpulkan bahwa semua air yang memiliki pH < 8,5 mempunyai sifat asiditas. Biasanya titik akhir phenophtalein pada pH 8,2 sampai 8,4 digunakan sebagai titik referensi. Dari titrasi terhadap asam karbonat dan asam kuat, diketahui bahwa asiditas dari air alami disebabkan oleh CO 2 yang merupakan agen efektif dalam air yang memiliki pH > 3,7 atau disebabkan oleh asam mineral kuat yang merupakan agen efektif dalam air dengan pH < 3,7. Dapat dikatakan bahwa asiditas di dalam air disebabkan oleh CO 2 terlarut dalam air, asam-asam mineral (H 2 SO 4 , HCl, HNO 3 ), dan garam dari asam kuat dengan basa lemah. Asiditas Total (Asiditas Phenophtalein) Asiditas total merupakan asiditas yang disebabkan adanya CO 2 dan asam mineral. Karbondioksida merupakan komponen normal dalam air

Transcript of kmia analitik.docx

2.15. AsiditasAsiditas adalah kapasitas kuantitatif air untuk bereaksi dengan basa kuat sehingga menstabilkan pH hingga mencapai 8,3 atau kemampuan air untuk mengikat OH- untuk mencapai pH 8,3 dari pH asal yang rendah. Semua air yang memiliki pH < 8,5 mengandung asiditas. Pada dasarnya, asiditas (keasaman) tidak sama dengan pH. Asiditas melibatkan dua komponen, yaitu jumlah asam, baik asam kuat maupun asam lemah (misalnya asam karbonat dan asam asetat), serta konsentrasi ion hidrogen. Menurut APHA (1976) dalam Effendi (2003), pada dasarnya asiditas menggambarkan kapasitas kuantitatif air untuk menetralkan basa sampai pH tertentu, yang dikenal dengan base-neutralizing capacity (BNC); sedangkan Tebbut (1992) dalam Effendi (2003) menyatakan bahwa pH hanya menggambarkan konsentrasi ion hidrogen. Pada kebanyakan air alami, air buangan domestik, dan air buangan industri bersifat buffer karena sistem karbondioksida-bikarbonat. Pada titrasi beberapa asam lemah, dapat diketahui bahwa titik akhir stoikiometri dari asam karbonat tidak dapat dicapai sampai pH sekitar 8,5. Oleh karena itu dapat disimpulkan bahwa semua air yang memiliki pH < 8,5 mempunyai sifat asiditas. Biasanya titik akhir phenophtalein pada pH 8,2 sampai 8,4 digunakan sebagai titik referensi. Dari titrasi terhadap asam karbonat dan asam kuat, diketahui bahwa asiditas dari air alami disebabkan oleh CO2 yang merupakan agen efektif dalam air yang memiliki pH > 3,7 atau disebabkan oleh asam mineral kuat yang merupakan agen efektif dalam air dengan pH < 3,7. Dapat dikatakan bahwa asiditas di dalam air disebabkan oleh CO2 terlarut dalam air, asam-asam mineral (H2SO4, HCl, HNO3), dan garam dari asam kuat dengan basa lemah. Asiditas Total (Asiditas Phenophtalein) Asiditas total merupakan asiditas yang disebabkan adanya CO2 dan asam mineral. Karbondioksida merupakan komponen normal dalam air alami. Sumber CO2 dalam air dapat berasal dari adsorbsi atmosfer, proses oksidasi biologi materi organik, aktivitas fotosintesis, dan perkolasi air dalam tanah. Karbondioksida dapat masuk ke permukaan air dengan cara adsorbsi dari atmosfer, tetapi hanya dapat terjadi jika konsentrasi CO2 dalam air < kesetimbangan CO2 di atmosfer. Karbondioksida dapat diproduksi dalam air melalui oksidasi biologi dari materi organik, terutama pada air tercemar. Pada beberapa kasus, jika aktivitas fotosintesis dibatasi, konsentrasi CO2 di dalam air dapat melebihi keseimbangan CO2 di atmosfer dan CO2 akan keluar dari air. Air permukaan secara konstan mengadsorpsi atau melepas CO2 untuk menjaga keseimbangan dengan atmosfer. Air tanah dan air dari lapisan hypolimnion di danau dan reservoir biasanya mengandung CO 2 dalam jumlah yang cukup banyak. Konsentrasi ini dihasilkan dari oksidasi materi organik oleh bakteri dimana materi organik ini mengalami kontak dengan air dan pada kondisi ini CO2 tidak bebas untuk keluar ke atmosfer. CO2 merupakan produk akhir dari oksidasi bakteri secara

anaerobik dan aerobik. Oleh karena itu konsentrasi CO2 tidak dibatasi oleh jumlah oksigen terlarut. Asiditas Mineral (Asiditas Metil Orange) Asiditas mineral merupakan asiditas yang disebabkan oleh asam mineral. Dapat juga disebut asiditas metil orange karena untuk menentukan titik akhir titrasi digunakan indikator metil orange untuk mencapai pH 3,7. Asiditas mineral di dalam air dapat berasal dari industri metalurgi, produksi materi organik sintetik, drainase buangan tambang, dan hidrolisis garamgaram logam berat. Asiditas mineral terdapat di limbah industri, terutama industri metalurgi dan produksi materi organik sintetik. Beberapa air alami juga mengandung asiditas mineral. Kebanyakan dari limbah industri mengandung asam organik. Kehadirannya di alam dapat ditentukan dengan titrasi elektrometrik dan gas chromatografi. Garam logam berat, terutama yang bervalensi 3, terhidrolisa dalam air untuk melepaskan asiditas mineral sesuai dengan reaksi (2.25). FeCl3 + 3 H2O Fe (OH)3 + 3 H+ + 3 Cl(2.25)

Kehadirannya dapat diketahui dari pembentukan endapan ketika pH larutan meningkat selama netralisasi. Air yang mengandung asiditas biasanya bersifat korosif sehingga memerlukan banyak biaya untuk menghilangkan/mengontrol substansi yang menyebabkan korosi (umumnya CO2). Jumlah keberadaan asiditas merupakan faktor penting dalam penentuan metode pengolahan, apakah dengan aerasi atau netralisasi sederhana dengan kapur atau sodium hidroksida. CO2 merupakan pertimbangan penting dalam mengestimasi persyaratan kimia untuk pelunakan kapur/kapur soda. Dalam penelitian ini, digunakan titrasi asam basa dengan indikator phenophtalein (p) dan metil orange (m) sesuai reaksi (2.26) sampai (2.28). H+ + OH- H2O CO2 + OH- HCO3 HCO3 + H+ H2O + CO2 (2.26) (2.27) (2.28)

Karbondioksida dan asiditas mineral dapat diukur dengan larutan standar menggunakan reagen alkaline. Asam mineral dapat diukur dengan titrasi pada pH 3,7 sehingga disebut asiditas metil orange. Titrasi contoh air pada pH mencapai 8,3 dapat mengukur asam mineral dan asiditas dari asam lemah. Asam mineral dapat dinetralkan ketika pH mencapai 3,7. Hasil yang diperoleh dinyatakan dalam CaCO3. Karena CaCO3 memiliki berat ekivalen 50, maka N/50 NaOH digunakan sebagai agen penitrasi sehingga 1 ml ekivalen dengan 1 mg asiditas.

2.16. Alkalinitas

Alkalinitas adalah kapasitas air untuk menetralkan tambahan asam tanpa menurunkan pH larutan atau dikenal dengan sebutan acid-neutralizing capacity (ANC) atau kuantitas anion di dalam air yang dapat menetralkan kation hidrogen. Alkalinitas merupakan hasil reaksi terpisah dalam larutan dan merupakan analisa makro yang menggabungkan beberapa reaksi. Alkalinitas merupakan kemampuan air untuk mengikat ion positif hingga mencapai pH 4,5. Alkalinitas dalam air disebabkan oleh ion-ion karbonat (CO32-), bikarbonat (HCO3-), hidroksida (OH-), borat (BO32-), fosfat (PO43-), silikat (SiO44-), ammonia, asam organik, garam yang terbentuk dari asam organik yang resisten terhadap oksidasi biologis. Dalam air alami, alkalinitas sebagian besar disebabkan adanya bikarbonat, karbonat, dan hidroksida. Pada keadaan tertentu, keberadaan ganggang dan lumut dalam air menyebabkan turunnya kadar CO2 dan HCO3- sehingga kadar CO32- dan OH- naik dan pH larutan menjadi naik. Pada awalnya, alkalinitas adalah gambaran pelapukan batuan yang terdapat pada sistem drainase. Alkalinitas dihasilkan dari karbondioksida dan air yang dapat melarutkan sedimen batuan karbonat menjadi bikarbonat. Jika Me merupakan logam alkali tanah (misalnya kalsium dan magnesium), maka reaksi yang menggambarkan pelarutan batuan karbonat ditunjukkan dalam reaksi (2.29). MeCO3 + CO2 + H2O Me2+ + 2HCO32(2.29)

Kalsium karbonat merupakan senyawa yang memberi kontribusi terbesar terhadap nilai alkalinitas dan kesadahan di perairan tawar. Senyawa ini terdapat di dalam tanah dalam jumlah yang berlimpah sehingga kadarnya di perairan tawar cukup tinggi. Kelarutan kalsium karbonat menurun dengan meningkatnya suhu dan meningkat dengan keberadaan karbondioksida. Kalsium karbonat bereaksi dengan karbondioksida membentuk kalsium bikarbonat [Ca(HCO3)2] yang memiliki daya larut lebih tinggi dibandingkan dengan kalsium karbonat (CaCO3) (Cole, 1983 dalam Effendi 2003). Tingginya kadar bikarbonat di perairan disebabkan oleh ionisasi asam karbonat, terutama pada perairan yang banyak mengandung karbondioksida (kadar CO2 mengalami saturasi/jenuh). Reaksi pembentukan bikarbonat dari karbonat adalah reaksi setimbang dan mengharuskan keberadaan karbondioksida untuk mempertahankan bikarbonat dalam bentuk larutan. Jika kadar karbondioksida bertambah atau berkurang, maka akan terjadi perubahan kadar ion bikarbonat. Bikarbonat mengandung asam (CO2) dan basa (CO32-) pada konsentrasi yang sama, seperti yang ditunjukkan dalam persamaan reaksi (2.30). 2 HCO3 - CO2 + CO32- + H2O Selain karena bereaksi dengan ion H+, karbonat dianggap basa karena dapat mengalami hidrolisis menghasilkan OH- seperti persamaan reaksi (2.31). (2.30)

CO32- + H2O HCO3- + OH-

(2.31)

Sifat kebasaan CO32- lebih kuat daripada sifat keasaman CO2 sehingga pada kondisi kesetimbangan, ion OH- dalam larutan bikarbonat selalu melebihi ion H+. Akumulasi hidroksida menyebabkan perairan yang banyak ditumbuhi algae memiliki nilai pH yang tinggi, sekitar 9 10. Nilai alkalinitas sangat dipengaruhi oleh pH. Dengan kata lain, alkalinitas berperan sebagai sistem penyangga (buffer) agar perubahan pH tidak terlalu besar. Alkalinitas juga merupakan parameter pengontrol untuk anaerobic digester dan instalasi lumpur aktif. Alkalinitas ditetapkan melalui titrasi asam basa. Asam kuat seperti asam sulfat dan asam klorida dapat menetralkan zat-zat alkaliniti yang bersifat basa sampai titk akhir titrasi (titik ekivalensi) kira-kira pada pH 8,3 dan 4,5. Titik akhir ini dapat ditentukan oleh jenis indikator yang dipilih dan perubahan nilai pH pada pHmeter waktu titrasi asam basa. Reaksi yang terjadi ditunjukkan dalam persamaan reaksi (2.32) sampai (2.34). OH- + H+ H2O CO32- + H+ HCO3 HCO3 - + H+ H2O + CO2 (pH = 8,3) (pH = 8,3) (pH = 4,5) (2.32) (2.33) (2.34)

Jumlah asam yang diperlukan untuk mencapai titik akhir pada pH 8,3 (sebagian dari alkalinitas total) dikenal sebagai nilai P (phenolphtalein) dan yang diperlukan sampai pH 4,3 dikenal sebagai nilai T (total alkalinity) atau M (metil orange). Air ledeng memerlukan ion alkalinitas dalam konsentrasi tertentu. Jika kadar alkalinitas terlalu tinggi dibandingkan kadar Ca2+ dan Mg2+, air menjadi agresif dan menyebabkan karat pada pipa. Alkalinitas yang rendah dan tidak seimbang dengan kesadahan dapat menyebabkan timbulnya kerak CaCO3 pada dinding pipa yang memperkecil diameter/penampang basah pipa. Satuan alkalinitas dinyatakan dengan mg/liter kalsium karbonat (CaCO3) atau miliekuivalen/liter. Selain bergantung pada pH, alkalinitas juga dipengaruhi oleh komposisi mineral, suhu, dan kekuatan ion. Nilai alkalinitas perairan alami hampir tidak pernah melebihi 500 mg/liter CaCO3. Perairan dengan nilai alkalinitas yang terlalu tinggi tidak terlalu disukai oleh oragnisme akuatik karena biasanya diikuti dengan nilai kesadahan yang tinggi atau kadar garam natrium yang tinggi. Nilai alkalinitas berkaitan erat dengan korosivitas logam dan dapat menimbulkan permasalahan pada kesehatan manusia, terutama yang berhubungan dengan iritasi pada sistem pencernaan (gastro intestinal). Nilai alkalinitas yang baik berkisar antara 30 500 mg/liter CaCO3. Perairan dengan nilai alkalinitas > 40 mg/liter CaCO3 disebut perairan sadah (hard water), sedangkan perairan dengan nilai akalinitas < 40 mg/liter disebut perairan lunak (soft water). Untuk kepentingan pengolahan air, sebaiknya nilai alkalinitas tidak terlalu bervariasi

Alkalinitas berperan dalam hal-hal sebagai berikut : Sistem penyangga (buffer) Bikarbonat yang terdapat pada perairan dengan nilai alkalinitas total tinggi berperan sebagai penyangga (buffer capacity) perairan terhadap perubahan pH yang drastis. Jika basa kuat ditambahkan ke dalam perairan, maka basa tersebut akan bereaksi dengan asam karbonat membentuk garam bikarbonat dan akhirnya menjadi karbonat. Jika asam ditambahkan ke dalam perairan, maka asam tersebut akan digunakan untuk mengonversi karbonat menjadi bikarbonat dan bikarbonat menjadi asam karbonat. Fenomena ini menjadikan perairan dengan nilai alkalinitas total tinggi tidak mengalami perubahan pH secara drastis (Cole, 1988 dalam Effendi 2003). Pada sistem penyangga, CO2 berperan sebagai asam dan ion HCO3- berperan sebagai garam. Koagulasi kimia Bahan kimia yang digunakan dalam proses koagulasi air atau air limbah bereaksi dengan air membentuk presipitasi hidroksida yang tidak larut. Ion hidrogen yang dilepaskan bereaksi dengan ion-ion penyusun alkalinitas, sehingga alkalinitas berperan sebagai penyangga untuk mengetahui kisaran pH optimum bagi penggunaan koagulan. Dalam hal ini, nilai alkalinitas sebaiknya berada pada kisaran optimum untuk mengikat ion hidrogen yang dilepaskan pada proses koagulasi. Pelunakan air (water softening) Alkalinitas adalah parameter kualitas air yang harus dipertimbangkan dalam menentukan jumlah soda abu dan kapur yang diperlukan dalam proses pelunakan (softening) dengan metode presipitasi yang bertujuan untuk menurunkan kesadahan. Perubahan pH yang terjadi pada perairan yang memiliki nilai alkalinitas rendah cukup besar, sedangkan perubahan pH yang terjadi pada perairan yang memiliki nilai alkalinitas sedang relatif rendah. Hal ini menunjukkan bahwa alkalinitas yang lebih tinggi memiliki sistem penyangga yang lebih baik. Alkalinitas biasanya dinyatakan sebagai : Alkalinitas phenophtalein Alkalinitas phenophtalein dapat diketahui dengan titrasi asam sampai mencapai pH dimana HCO3- merupakan spesies karbonat dominan (pH = 8,3). Alkalinitas total

Alkalinitas total dapat diketahui dengan titrasi asam untuk mencapai titik akhir metil orange (pH = 4,5) dimana spesies karbonat dan bikarbonat telah dikonversi menjadi CO 2. Alkalinitas pada air memberikan sedikit masalah kesehatan. Alkalinitas yang tinggi menyebabkan rasa air yang tidak enak (pahit). Pengukuran asiditasalkalinitas harus dilakukan sesegera mungkin dan biasanya dilakukan di tempat pengambilan contoh. Batas waktu yang dianjurkan adalah 14 hari.

Total Suspended Solid (TSS) Total suspended solid atau padatan tersuspensi total (TSS) adalah residu dari padatan total yang tertahan oleh saringan dengan ukuran partikel maksimal 2m atau lebih besar dari ukuran partikel koloid. TSS menyebabkan kekeruhan pada air akibat padatan tidak terlarut dan tidak dapat langsung mengendap. TSS terdiri dari partikel-partikel yang ukuran maupun beratnya lebih kecil dari sedimen, misalnya tanah liat, bahan-bahan organik tertentu, sel-sel mikroorganisme, dan sebagainya (Nasution, 2008) . TSS merupakan tempat berlangsungnya reaksi-reaksi kimia yang heterogen, dan berfungsi sebagai bahan pembentuk endapan yang paling awal dan dapat menghalangi kemampuan produksi zat organik di suatu perairan (Tarigan dan Edward, 2003). TSS umumnya dihilangkan dengan flokulasi dan penyaringan. TSS memberikan kontribusi untuk kekeruhan dengan membatasi penetrasi cahaya untuk fotosintesis dan visibilitas di perairan. Oleh karena itu nilai kekeruhan tidak dapat dikonversi ke nilai TSS. Kekeruhan sendiri merupakan kecenderungan ukuran sampel untuk menyebarkan cahaya. Sementara hamburan diproduksi oleh adanya partikel tersuspensi dalam sampel. Kekeruhan adalah murni sebuah sifat optik. Pola dan intensitas sebaran akan berbeda akibat perubahan dengan ukuran dan bentuk partikel serta materi. Sebuah sampel yang mengandung 1.000 mg/L dari fine talcum powder akan memberikan pembacaan yang berbeda kekeruhan dari sampel yang mengandung 1.000 mg/L coarsely ground talc . Kedua sampel juga akan memiliki pembacaan yang berbeda kekeruhan dari sampel mengandung 1.000 mg/L ground pepper, meskipun tiga sampel tersebut mengandung nilai TSS yang sama. TSS berhubungan erat dengan erosi tanah dan erosi dari saluran sungai. TSS sangat bervariasi, mulai kurang dari 5 mgL-1 yang yang paling ekstrem 30.000 mgL-1 di beberapa sungai. TSS ini menjadi ukuran penting erosi di alur sungai. Baku mutu air berdasarkan peraturan pemerintah No.82 tahun 2001, batas ambang dari TSS di sungai 50 mg/L. Estimasi nilai TSS diperoleh dengan cara menghitung perbedaan antara padatan terlarut total dan padatan total menggunakan rumus:

TSS (mg/L) = (A-B) X 1000 / V Keterangan: A = berat kertas saring + residu kering (mg) B = berat kertas saring (mg) V = volume contoh (mL) Menurut Alabaster dan Lloyd (1982) padatan tersuspensi bisa bersifat toksik bila dioksidasi berlebih oleh organisme sehingga dapat menurunkan konsentrasi oksigen terlarut sampai dapat menyebabkan kematian pada ikan.

B. Total Dissolve Solid (TDS) Total Dissolve Solid (TDS) yaitu ukuran zat terlarut (baik itu zat organik maupun anorganik) yang terdapat pada sebuah larutan. TDS menggambarkan jumlah zat terlarut dalam part per million (ppm) atau sama dengan milligram per liter (mg/L). Umumnya berdasarkan definisi diatas seharusnya zat yang terlarut dalam air (larutan) harus dapat melewati saringan yang berdiameter 2 micrometer (210-6 meter). Aplikasi yang umum digunakan adalah untuk mengukur kualitas cairan pada pengairan, pemeliharaan aquarium, kolam renang, proses kimia, pembuatan air mineral, dan lain-lain (Misnani, 2010). Total padatan terlarut dapat pula merupakan konsentrasi jumlah ion kation (bermuatan positif) dan anion (bermuatan negatif) di dalam air. Analisa total padatan terlarut merupakan pengukuran kualitatif dari jumlah ion terlarut, tetapi tidak menjelaskan pada sifat atau hubungan ion. Selain itu, pengujian tidak memberikan wawasan dalam masalah kualitas air yang spesifik. Oleh karena itu, analisa total padatan terlarut digunakan sebagai uji indikator untuk menentukan kualitas umum dari air. Sumber padatan terlarut total dapat mencakup semua kation dan anion terlarut (Oram, B.,2010). Sumber utama untuk TDS dalam perairan adalah limpahan dari pertanian, limbah rumah tangga, dan industri. Unsur kimia yang paling umum adalah kalsium, fosfat, nitrat, natrium, kalium dan klorida. Bahan kimia dapat berupa kation, anion, molekul atau aglomerasi dari ribuan molekul. Kandungan TDS yang berbahaya adalah pestisida yang timbul dari aliran permukaan. Beberapa padatan total terlarut alami berasal dari pelapukan dan pelarutan batu dan tanah (Anonymous, 2010). Batas ambang dari TDS yang diperbolehkan di sungai adalah 1000mg/L. Peningkatan padatan terlarut dapat membunuh ikan secara langsung, meningkatkan penyakit dan menurunkan tingkat pertumbuhan ikan serta perubahan tingkah laku dan penurunan reproduksi ikan. Selain itu, kuantitas makanan alami ikan akan semakin berkurang (Alabaster dan Lloyd ,1982). Ada dua metode yang sering digunakan dalam pengukuran TDS, yaitu: 1. Gravimetri

Gravimetri adalah pemeriksaan jumlah zat dengan cara penimbangan hasil reaksi pengendapan. Gravimetri merupakan pemeriksaan jumlah zat yang paling tua dan paling sederhana dibandingkan dengan cara pemeriksaan kimia lainnya. Hal ini dikarenakan metode gravimetri ditentukan melalui penimbangan langsung massa zat yang dipisahkan dari zat-zat lain. Bagian terbesar dari gravimetri meliputi transformasi unsur atau radikal kesenyawaan murni stabil yang dapat segera diubah menjadi bentuk yang dapat ditimbang dengan teliti. Metode gravimetri memakan waktu yang cukup lama. Adanya pengotor pada konstituen dapat diuji dan bila perlu digunakan faktor-faktor koreksi. Faktor paling penting dalam metode ini yaitu proses pemisahan harus cukup sempurna sehingga kualitas analit yang ditimbang mendekati murni (Irha, 2011).

2. Electrical Conductivity

Konduktivitas listrik air secara langsung berhubungan dengan konsentrasi padatan terlarut yang terionisasi dalam air. Ion dari konsentrasi padatan terlarut dalam air menciptakan kemampuan pada air untuk menghasilkan arus listrik yang dapat diukur menggunakan conductivity meter. Electrical conductivity berfungsi mengukur konduktivitas listrik bahanbahan yang terkandung dalam air. Semakin banyak bahan (mineral logam maupun nonlogam) dalam air maka hasil pengukuran akan semakin besar. Sebaliknya, bila sangat sedikit bahan yang terkandung dalam air maka hasilnya mendekati nol, atau disebut air murni (Insan, 2008). Prinsip kerjanya dengan menghubungkan 2 buah probe ke larutan yang diukur, kemudian dengan rangkaian pemprosesan sinyal akan mengeluarkan output yang menujukkan besar konduktivitas/daya hantar listrik sampel air tersebut (Endrah, 2010).

Argentometri adalah suatu proses titrasi yang menggunakan garam argentum nitrat (AgNO3) sebagai larutan standard. Dalam titrasi argentometri, larutan AgNO3 digunakan untuk menetapkan garam-garam halogen dan sianida karena kedua jenis garam ini dengan ion Ag+ dari garam standard AgNO3 dapat memebentuk suatu endapan atau suatu senyawa kompleks sesuai dengan persamaan reaksi berikut ini : NaX + Ag+ KCN + Ag+ KCN + AgCN AgX + Na+ AgCN + K+ K{Ag(CN)2} ( X = halida )

Argentometri termasuk salah satu cara analisis kuantitatif dengan sistem pengendapan. Cara analisis ini biasanya dipergunakan untuk menentukan ion-ion halogen, ion perak, ion tiosianat serta ion-ion lainnya yang dapat diendapkan oleh larutan standardnya. Titrasi argentometri terbagi menjadi beberapa metode penetapan disesuaikan dengan indicator yang diperlukan dalam penetapan kadar yaitu : 1. Metode Mohr Atau nama lainnya metode dengan pembentukan endapan berwarna. Dalam cara ini, ke dalam larutan yang dititrasi ditambahkan sedikit larutan kalium kromat (K 2CrO4) sebagai

indikator. Pada akhir titrasi, ion kromat akan bereaksi dengan kelebihan ion perak membentuk endapan berwarna merah dari perak kromat, dengan reaksi : CrO42- + 2Ag+ Ag2CrO4

Contoh Hasil titrasi menggunakan metode Mohr

Konsentrasi ion klorida dalam suatu larutan dapat ditentukan dengan cara titrasi dengan larutan standart perak nitrat. Endapan putih perak klorida akan terbentuk selama proses titrasi berlangsung dan digunakan indicator larutan kalium kromat encer. Setelah semua ion klorida mengendap maka kelebihan ion Ag+ pada saat titik akhir titrasi dicapai akan bereaksi dengan indicator membentuk endapan coklat kemerahan Ag2CrO4 (lihat gambar). Prosedur ini disebut sebagai titrasi argentometri dengan metode Mohr.

Reaksi yang terjadi adalah sebagai berikut: Ag+(aq) + Cl-(aq) -> AgCl(s) (endapan putih) Ag+(aq) + CrO42-(aq) -> Ag2CrO4(s) (coklat kemerahan)

2. Metode Volhard Atau nama lainnya metode dengan cara pembentukan ion kompleks berwarna. Dalam cara ini, larutan standard perak nitrat ditambahkan secara berlebih ke dalam larutan analit, kemudian kelebihan ion perak dititrasi dengan larutan standard amonium atau kalium tiosianat dengan menambahkan ion feri (Fe3+) sebagai indikator. Pada akhir titrasi, ion feri akan bereaksi dengan kelebihan ion tiosianat memebentuk ion kompleks {Fe(SCN)6}3- yang berwarna coklat. X + Ag+ AgX + Ag+ sisa AgSCN {Fe(SCN)6}3-

Ag+ sisa + SCNFe3+ + 6 SCN-

3. Metode Fajans Atau nama lainnya metode dengan menggunakan indikator adsorpsi (metode Fajans). Titik akhit titrasi dalam titrasi dengan cara ini ditandai dengan berubahnya warna endapan AgX sebagai akibat dari adanya adsorpsi endapan AgX terhadap pereaksi pewarna yang ditambahkan. Indikator yang sering digunakan adalah fluorescein dan eosin.

Indikator adsorbsi merupakan pewarna, seperti diklorofluorescein yang berada dalam keadaan bermuatan negative dalam larutan titrasi akan teradsorbsi sebagai counter ion pada permukaan endapan yang bermuatan positif. Dengan terserapnya ini maka warna indicator akan berubah dimana warna diklorofluorescein menjadi berwarna merah muda. Mekanisme teradsorbsinya indicator ini ditunjukkan oleh gambar berikut ini:

Permanganometri merupakan titrasi yang dilakukan berdasarkan reaksi oleh kalium permanganat (KMnO4). Reaksi ini difokuskan pada reaksi oksidasi dan reduksi yang terjadi antara KMnO4 dengan bahan baku tertentu. Titrasi dengan KMnO4 sudah dikenal lebih dari seratus tahun. Kebanyakan titrasi dilakukan dengan cara langsung atas alat yang dapat dioksidasi seperti Fe+, asam atau garam oksalat yang dapat larut dan sebagainya. Beberapa ion logam yang tidak dioksidasi dapat dititrasi secara tidak langsung dengan permanganometri seperti: 1. Ion-ion Ca, Ba, Sr, Pb, Zn, dan Hg (I) yang dapat diendapkan sebagai oksalat. Setelah endapan disaring dan dicuci, dilarutkan dalam H2SO4 berlebih sehingga terbentuk asam oksalat secara kuantitatif. Asam oksalat inilah yang akhirnya dititrasi dan hasil titrasi dapat dihitung banyaknya ion logam yang bersangkutan. 2. Ion-ion Ba dan Pb dapat pula diendapkan sebagai garam khromat. Setelah disaring, dicuci, dan dilarutkan dengan asam, ditambahkan pula larutan baku FeSO4 berlebih. Sebagian Fe2+ dioksidasi oleh khromat tersebutdan sisanya dapat ditentukan banyaknya dengan menitrasinya dengan KMnO4. Prinsip dari titrasi permanganometri adalah berdasarkan reaksi oksidasi dan reduksi.

Permanganometri adalah titrasi yang didasarkan pada reaksi redoks. Dalam reaksi ini, ion MnO4- bertindak sebagai oksidator. Ion MnO4- akan berubah menjadi ion Mn2+ dalam suasana asam. Teknik titrasi ini biasa digunakan untuk menentukan kadar oksalat atau besi dalam suatu sample. Pada permanganometri, titran yang digunakan adalah kalium permanganat. Kalium permanganat mudah diperoleh dan tidak memerlukan indikator kecuali digunakan larutan yang sangat encer serta telah digunakan secara luas sebagai pereaksi oksidasi selama seratus tahun lebih. Setetes permanganat memberikan suatu warna merah muda yang jelas kepada volume larutan dalam suatu titrasi. Warna ini digunakan untuk menunjukkan kelebihan pereaksi.

Kalium Permanganat distandarisasikan dengan menggunakan natrium oksalat atau sebagai arsen (III) oksida standar-standar primer. Reaksi yang terjadi pada proses pembakuan kalium permanganat menggunakan natrium oksalat adalah: 5C2O4- + 2MnO4- + 16H+ 10CO2 + 2Mn2+ + 8H2O Akhir titrasi ditandai dengan timbulnya warna merah muda yang disebabkan kelebihan permanganat.

Spektrofotometri merupakan bagian dari fotometri dan dapat dibedakan dari filter fotometri sebagai berikut : 1. Daerah jangkauan spektrum Filter fotometr hanya dapat digunakan untuk mengukur serapan sinar tampak (400-750 nm). Sedangkan spektrofotometer dapat mengukur serapan di daerah tampak, UV (200-380 nm) maupun IR (> 750 nm). 2. Sumber sinar Sesuai dengan daerah jangkauan spektrumnya maka spektrofotometer menggunakan sumber sinar yang berbeda pada masing-masing daerah (sinar tampak, UV, IR). Sedangkan sumber sinar filter fotometer hanya untuk daerah tampak. 3. Monokromator Filter fotometere menggunakan filter sebagai monokrmator. Tetapi pada spektro digunakan kisi atau prisma yang daya resolusinya lebih baik. 4. Detektor - Filter fotometer menggunakan detektor fotosel - Spektrofotometer menggunakan tabung penggandaan foton atau fototube. Komponen utama dari spektrofotometer yaitu : 1. 1. Sumber cahaya Untuk radisi kontinue : nm. Untuk daerah UV dan daerah tampak : Lampu wolfram (lampu pijar) menghasilkan spektrum kontiniu pada gelombang 320-2500

Lampu hidrogen atau deutrium (160-375 nm) Lampu gas xenon (250-600 nm)

Untuk daerah IR Ada tiga macam sumber sinar yang dapat digunakan :

Lampu Nerst,dibuat dari campuran zirkonium oxida (38%) Itrium oxida (38%) dan erbiumoxida (3%) Lampu globar dibuat dari silisium Carbida (SiC). Lampu Nkrom terdiri dari pita nikel krom dengan panjang gelombang 0,4 20 nm Spektrum radiasi garis UV atau tampak : Lampu uap (lampu Natrium, Lampu Raksa) Lampu katoda cekung/lampu katoda berongga Lampu pembawa muatan dan elektroda (elektrodeless dhischarge lamp) Laser 1. 2. Pengatur Intensitas Berfungsi untuk mengatur intensitas sinar yang dihasilkan oleh sumber cahaya agar sinar yang masuk tetap konstan. 1. 3. Monokromator Berfungsi untuk merubah sinar polikromatis menjadi sinar monokromatis sesuai yang dibutuhkan oleh pengukuran Macam-macam monokromator : - Prisma - kaca untuk daerah sinar tampak - kuarsa untuk daerah UV - Rock salt (kristal garam) untuk daerah IR - Kisi difraksi Keuntungan menggunakan kisi : - Dispersi sinar merata - Dispersi lebih baik dengan ukuran pendispersi yang sama - Dapat digunakan dalam seluruh jangkauan spektrum

1. 4. Kuvet Pada pengukuran di daerah sinar tampak digunakan kuvet kaca dan daerah UV digunakan kuvet kuarsa serta kristal garam untuk daerah IR. 1. 5. Detektor Fungsinya untuk merubah sinar menjadi energi listrik yang sebanding dengan besaran yang dapat diukur. Syarat-syarat ideal sebuah detektor : Kepekan yang tinggi Perbandingan isyarat atau signal dengan bising tinggi Respon konstan pada berbagai panjang gelombang. Waktu respon cepat dan signal minimum tanpa radiasi. Signal listrik yang dihasilkan harus sebanding dengan tenaga radiasi.

Macam-macam detektor : - Detektor foto (Photo detector) Photocell Phototube Hantaran foto Dioda foto Detektor panas 1. 6. Penguat (amplifier) Berfungsi untuk memperbesar arus yang dihasilkan oleh detektor agar dapat dibaca oleh indikator.

1. 7. Indikator Dapat berupa : Recorder Komputer