ECE312_lec03

download ECE312_lec03

of 46

Transcript of ECE312_lec03

  • 7/23/2019 ECE312_lec03

    1/46

    Lecture #3

    BJT Biasing CircuitsInstructor:

    Dr. Ahmad El-Banna

    Benha University

    Faculty of Engineering at Shoubra

    Octo

    ber

    2014

    ECE-312

    Electronic Circuits (A)

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    2/46

    Agenda

    Operating Point

    Transistor DC Bias Configurations

    Design Operations

    Various BJT Circuits

    Troubleshooting Techniques & Bias Stabilization

    Practical Applications 2

    ECE-312,

    Lec#3,

    Oct2

    014

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    3/46

    Introduction

    Any increase in ac voltage, current, or power is the result of a

    transfer of energy from the applied dc supplies.

    The analysis or design of any electronic amplifier therefore has two

    components: a dc and an ac portion.

    3

    ECE-312,

    Lec#3,

    Oct2

    014

    Basic Relationships/formulas for a transistor:

    Biasing means applying of dc voltages to establish a fixed level of

    current and voltage. >>> Q-Point

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    4/46

    Operating Point

    For transistor amplifiers the resulting dc current and voltage

    establish an operating point on the characteristics that define the

    region that will be employed for amplification of the applied signal.

    Because the operating point is a fixed point on the characteristics, it

    is also called the quiescent point (abbreviated Q-point).

    4

    ECE-312,

    Lec#3,

    Oct2

    014

    Transistor Regions Operation:

    1. Linear-region operation:Baseemitter junction forward-biased

    Basecollector junction reverse-biased

    2. Cutoff-region operation:Baseemitter junction reverse-biased

    Basecollector junction reverse-biased

    3.Saturation-region operation:Baseemitter junction forward-biased

    Basecollector junction forward-biased

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    5/46

    TRANSISTOR DC BIAS CONFIGURATIONS

    Fixed-Bias Configuration

    Emitter-Bias Configuration

    Voltage-Divider Bias Configuration

    Collector Feedback Configuration

    Emitter-Follower Configuration Common-Base Configuration

    Miscellaneous Bias Configurations

    5

    ECE-312,

    Lec#3,

    Oct2

    014

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    6/46

    Fixed-Bias Configuration

    6

    ECE-312,

    Lec#3,

    Oct2

    014

    Fixed-bias circuit.

    DC equivalent ct.

    Baseemitter loop. Collectoremitter loop.

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    7/46

    Fixed-Bias Configuration Example

    7

    ECE-312,

    Lec#3,

    Oct2

    014

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    8/46

    Fixed-Bias Configuration ...

    Transistor Saturation

    8

    ECE-312,

    Lec#3,

    Oct2

    014

    Determining ICsatfor the fixed-bias configuration. Determining ICsat

    Saturation regions:

    (a) Actual(b) approximate.

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    9/46

    Fixed-Bias Configuration ...

    9

    ECE-312,

    Lec#3,

    Oct2

    014

    Load Line Analysis

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    10/46

    Emitter-Bias Configuration

    10

    ECE-312,

    Lec#3,

    Oct2

    014

    Base-Emitter Loop

    DC equivalent ct

    BJT bias circuit with emitter resistor.

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    11/46

    Emitter-Bias Configuration

    11

    ECE-312,

    Lec#3,

    Oct2

    014

    Collector-Emitter Loop

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    12/46

    Emitter-Bias Configuration Improved bias stability (check example 4.5)

    12

    ECE-312,

    Lec#3,

    Oct2

    014

    The addition of the emitter resistor to

    the dc bias of the BJT provides

    improved stability, that is, the dc bias

    currents and voltages remain closer to

    where they were set by the circuit

    when outside conditions, such astemperature and transistor beta,

    change.

    Saturation Level

    Load Line Analysis

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    13/46

    Voltage-Divider Configuration

    13

    ECE-312,

    Lec#3,

    Oct2

    014

    Exact Analysis

    Voltage-dividerbias configuration.

    DC components of the

    voltage-divider configuration.

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    14/46

    Voltage-Divider Configuration

    14

    ECE-312,

    Lec#3,

    Oct2

    014

    Approximate Analysis Transistor Saturation

    Load-Line Analysis

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    15/46

    Voltage-Divider Configuration Example

    15

    ECE-312,

    Lec#3,

    Oct2

    014

    AhmadEl-Banna

  • 7/23/2019 ECE312_lec03

    16/46

    Collector Feedback Configuration

    16

    ECE-312,

    Lec#3,

    Oct2

    014

    DC bias circuit with

    voltage feedback.

    BaseEmitter Loop

    CollectorEmitter Loop

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    17/46

    Collector Feedback Configuration

    17

    ECE-312,

    Lec#3,

    Oct2

    014

    Saturation Conditions

    Using the approximation IC = IC

    Load-Line Analysis

    Continuing with the approximation

    IC = IC results in the same load

    line defined for the voltage-divider

    and emitter-biased configurations.

    The level of IBQ is defined by the

    chosen bias configuration.

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    18/46

    Emitter-Follower Configuration

    18

    ECE-312,

    Lec#3,

    Oct2

    014

    i/p ct

    o/p ct

    dc equivalent ct

    Common-collecter

    (emitter-follower) configuration.

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    19/46

    Common-Base Configuration

    19

    ECE-312,

    Lec#3,

    Oct2

    014

    i/p ct

    Determining VCB & VCE

    Common-base configuration

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    20/46

    MISCELLANEOUS BIAS CONFIGURATIONS

    20

    ECE-3

    12,

    Lec#3,

    Oct2

    014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    21/46

    Summary Table

    21

    ECE-3

    12,

    Lec#3,

    Oct2

    014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    22/46

    Summary Table..

    22

    ECE-3

    12,

    Lec#3,

    Oct2

    014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    23/46

    DESIGN OPERATION 23ECE-3

    12,

    Lec#3,

    Oct2

    014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    24/46

    Design Operations

    24

    ECE-3

    12,

    Lec#3,

    Oct2

    014

    Discussions thus far have focused on the analysis of existing networks.

    All the elements are in place, and it is simply a matter of solving for the

    current and voltage levels of the configuration.

    The design process is one where a current and/or voltage may be

    specified and the elements required to establish the designated levels

    must be determined.

    The design sequence is obviously sensitive to the components that are

    already specified and the elements to be determined. If the transistor

    and supplies are specified, the design process will simply determine

    the required resistors for a particular design.

    Once the theoretical values of the resistors are determined, thenearest standard commercial values are normally chosen and any

    variations due to not using the exact resistance values are accepted as

    part of the design.

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    25/46

    Design Operations Example

    25

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    26/46

    Design Operations Example..

    26

    ECE-3

    12,

    Lec#3,

    Oct2014

    Design of a Current-Gain-Stabilized (Beta-Independent) Circuit

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    27/46

    VARIOUS BJT CIRCUITS

    MULTIPLE BJT NETWORKS

    CURRENT MIRRORS

    CURRENT SOURCE CIRCUITS

    Bipolar Transistor Constant-Current Source

    Transistor/Zener Constant-Current Source

    PNP TRANSISTORS

    TRANSISTOR SWITCHING NETWORKS

    27

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    28/46

    MULTIPLE BJT NETWORKS

    28

    ECE-3

    12,

    Lec#3,

    Oct2014

    RC coupling

    Darlington configuration

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    29/46

    MULTIPLE BJT NETWORKS..

    29

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    30/46

    MULTIPLE BJTNETWORKS

    30

    ECE-3

    12,

    Lec#3,

    Oct2014

    Feedback Pair

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    31/46

    MULTIPLE BJT NETWORKS.

    31

    ECE-3

    12,

    Lec#3,

    Oct2014

    Direct Coupled

    Ahm

    adEl-Banna

  • 7/23/2019 ECE312_lec03

    32/46

    CURRENT MIRRORS

    32

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    33/46

    CURRENT SOURCE CIRCUITS

    33

    ECE-3

    12,

    Lec#3,

    Oct2014

    Bipolar Transistor

    Constant-Current Source

    Transistor/Zener

    Constant-Current Source

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    34/46

    pnpTRANSISTORS

    34

    ECE-3

    12,

    Lec#3,

    Oct2014

    TRANSISTOR SWITCHING

    NETWORKS

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    35/46

    TRANSISTOR SWITCHING NETWORKS..

    35

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    36/46

    TROUBLESHOOTING TECHNIQUES 36ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    37/46

    TROUBLESHOOTING TECHNIQUES For an on transistor, the voltage VBE should be in the neighborhood of 0.7 V.

    For the typical transistor amplifier in the active region, VCE is usually about 25% to

    75% of VCC .

    37

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    38/46

    BIAS STABILIZATION

    The stability of a system is a measure of the sensitivity of a network

    to variations in its parameters.

    In any amplifier employing a transistor the collector current IC is

    sensitive to each of the following parameters:

    38

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    39/46

    BIAS STABILIZATION .. S(Ico)

    39

    ECE-3

    12,

    Lec#3,

    Oct2014

    fixed-bias configuration

    the level of IC would continue

    to rise with temperature, with

    IB maintaining a fairly constant

    valuea very unstable situation.

    emitter-bias configuration

    there is a reaction to an increase

    in IC that will tend to oppose the

    change in bias conditions.

    feedback configuration

    a stabilizing effect as described for

    the emitter-bias configuration.

    voltage-divider bias

    The most stable of the

    configurations

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    40/46

    BIAS STABILIZATION .. S(VBE)& S()

    40

    ECE-3

    12,

    Lec#3,

    Oct2014

    For fixed-bias

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    41/46

    PRACTICAL APPLICATION

    BJT Diode Usage and Protective Capabilities

    Relay Driver

    Light Control

    Maintaining a Fixed Load Current

    Alarm System with a CCS

    Voltage Level Indicator

    Logic Gates

    41

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    42/46

    Practical Application

    42

    ECE-3

    12,

    Lec#3,

    Oct2014

    BJT Diode Usage and Protective Capabilities

    Relay Driver

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    43/46

    Practical Application..

    43

    ECE-3

    12,

    Lec#3,

    Oct2014

    Maintaining a Fixed Load Current

    Light Control

    Ahm

    adEl-Banna

    a

  • 7/23/2019 ECE312_lec03

    44/46

    PracticalApplication

    44

    ECE-3

    12,

    Lec#3,

    Oct2014

    Alarm System with a CCS

    Voltage Level Indicator

    Ahm

    adEl-Bann

    a

  • 7/23/2019 ECE312_lec03

    45/46

    PracticalApplication.

    45

    ECE-3

    12,

    Lec#3,

    Oct2014

    Logic Gates

    Ahm

    adEl-Bann

    a

  • 7/23/2019 ECE312_lec03

    46/46

    For more details, refer to:

    Chapter 4 at R. Boylestad, Electronic Devices and Circuit Theory,

    11thedition, Prentice Hall.

    The lecture is available online at:

    https://speakerdeck.com/ahmad_elbanna

    For inquires, send to:

    [email protected]

    [email protected]

    46

    ECE-3

    12,

    Lec#3,

    Oct2014

    Ahm

    adEl-Bann

    https://speakerdeck.com/ahmad_elbannamailto:[email protected]:[email protected]:[email protected]:[email protected]://speakerdeck.com/ahmad_elbannahttps://speakerdeck.com/ahmad_elbanna