電動機控制的理論基礎pemclab.cn.nctu.edu.tw/W3news/技術專欄/2007-05-17...2007/05/17...

32
台灣新竹交通大學前瞻電力電子中心 808實驗室 (電力電子系統與晶片設計實驗室) 國立交通大學 電機與控制工程研究所 編輯:鄒應嶼 教授 Advanced Power Electronics Center, NCTU, Taiwan 2007517電動機原理與驅動技術【專題導讀】 電動機控制的理論基礎

Transcript of 電動機控制的理論基礎pemclab.cn.nctu.edu.tw/W3news/技術專欄/2007-05-17...2007/05/17...

  • 台灣新竹‧交通大學‧前瞻電力電子中心 808實驗室 (電力電子系統與晶片設計實驗室)

    國立交通大學 電機與控制工程研究所

    編輯:鄒應嶼 教 授

    Advanced Power Electronics Center, NCTU, Taiwan

    2007年5月17日

    電動機原理與驅動技術【專題導讀】

    電動機控制的理論基礎

  • 台灣新竹交通大學前瞻電力電子中心808實驗室 (Power Electronics Systems and Chips Design Lab)電力電子系統與晶片、開關電源、綠色能源、數位電源、馬達驅動、伺服控制

    Integration of Power, Motor, and Motion Control

    Motor

    III

    III IVtorque

    speed

    Power Converter

    amperes

    volts

    RBSOA/FBSOA

    Four-QuadrantVoltage/AmpereControl

    Four-QuadrantTorque/SpeedControl

    Closed-LoopSpeed/PositionControl

    DSP-BasedDigital Controller Mechanical Load

    X

    Y

    CoordinatedMotion ProfileControl

    feed drivespindle driveelectrical carelectrical railway.. .. ..

    mP/DSP-Based Programmable Motion & Motor Control Techniques

    New Solutions of Motion Control Problems Using Advanced Technology!

  • 1

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    1/180

    【電動機原理與驅動技術】

    電動機控制的理論基礎

    Filename: \Filename: \C01 投影片:電動機控制\【電動機原理與驅動技術】01:電動機控制的理論基礎.ppt

    2007年5月17日

    鄒 應 嶼 教 授

    國立交通大學 電機與控制工程研究所

    LAB808NCTU

    Lab808: 電力電子系統與晶片實驗室Power Electronics Systems & Chips, NCTU, TAIWAN

    台灣新竹•交通大學•電機與控制工程研究所

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://powerlab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    2/180

    【義隆電子】電動機原理與驅動技術:課程大綱

    1. 電動機控制的理論基礎

    2. 直流電機的原理、特性、與驅動控制

    3. 交流感應電機的原理與特性

    4. 交流同步電機的原理與特性

    5. 交流驅動系統簡介

    6. 變頻器原理與交流脈寬調變技術

    7. dq模型與向量控制技術

    8. 交流伺服控制技術

    9. 無刷直流馬達的無感測驅動控制

    10. 交流感應馬達的無感測驅動控制

    3/180

    Motors for Modern Life

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    4/180

    Motor Applications in Modern Life

    Information TechnologyHouseholdsIndustry & ManufactureAutomobilesMedicineTransport etc. etc.

    Motor55%

    Other20%

    Lighting21%

    Computers4%

    Electrical Energy 2002

    Motors consume major electric energy!

    5/180

    Motors in a Household

    How many motors are typically used in a household???virtually countless!!! They are found in:

    refrigeratorcoffee mill dishwasher, washing machine food processor vacuum cleaner ventilator gardening machines video recorder CD player computer etc. etc.

    6/180

    Motor Applications in Modern Life

    Insight, HONDA, 2000

  • 2

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    7/180

    Emerging Motor Drive Opportunities

    Integrated Motor-Controller

    IPEM

    Currents

    Control

    ++

    ω & θ i

    Est LPF

    HFP

    μ - Processor

    IPEM

    Con

    trol

    SYSTEM DESIGNPOWER ELECTRONICSCONTROL FIRM/SOFTWAREDIGITAL IC DESIGNANALOG IC DESIGN

    POWER IC DESIGN

    8/180

    DVD-RW is the Core for Media Storage

    DVD-RW

    9/180

    Motor Drives for Computers

    Fan Motor for Switching Power Supply

    Fan Motor for CPU Cooling

    Spindle Motor for CD-ROMDC Motor for Open/Close

    Voice Coil Motor for Optical Pickup Head

    Spindle and Voice-Coil Motor for Hard Disk Drive

    Motors for Floppy Disk Drive10/180

    DVD系統方塊圖與主軸馬達控制與驅動IC

    夾片機構

    主軸馬達

    光碟片 光學

    讀取頭 長程尋軌馬達

    DMA

    記憶體

    微控制器

    IDE介面

    碟片傳送馬達

    控制電路

    主軸伺服

    聚焦伺服

    循軌伺服 尋軌伺服

    滑動機構

    DSP-Embedded Controller

    Driver Circuit

    DVD Servo Control IC

    影音處理

    驅動電路

    Sensorless Spindle Motor Drive IC

    主軸馬達驅動模組

    11/180

    DVD-Related Motor Driver ICs

    Single-chip direct PWMSpindle motor driver +Actuator driver

    LV8280TLV8200W

    * LA6505* LA6506* LA6507

    Spindle + actuator driver

    Spindle motor drives providingPrecise rotation

    LB11699HLB11698HLB1998LB1894M

    LB11999HLB11996HLB11995HLB11975

    Spindle Motor DriversUsing low-saturationVertical PNP transistors

    LB1938TLB1930M

    Spindle Motor Drivers

    4chBTLLA6564HLA6553LA6544H/MLA6543MLA6542M

    5chBTLLA6576LA6571

    Actuator Drivers

    High-output, high-gainActuator drives

    12/180

    無刷直流主軸馬達的結構

    Outer Rotor Slot StatorHall effect sensors

  • 3

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    13/180

    Sensorless Control & Drive IC for Slim-Type DVD Spindle Motor

    12

    34

    56

    78

    910

    1112

    1314

    15 16 17 18 19 20 21 22 23 24 25 26 27 28

    2930

    3132

    3334

    3536

    3738

    3940

    4142

    4344454647484950515253545556

    VO1F

    VO1R

    PGND1

    VO2F

    VO2R

    PVCC1

    PVCC1

    VO3F

    VO3R

    P GND1

    VO4F

    VO4R

    VO6F

    VO6R

    P GND3

    P VCC3

    VO5F

    VO5R

    SPRNF

    W

    P VCC2

    V

    P VCC2

    U

    SPRNF

    Vref

    CNF

    6

    CNF

    5

    CNF

    4

    CNF

    1

    CNF

    3

    CNF

    2

    IN2

    IN3

    IN1

    IN4

    IN5

    IN6

    INSP

    FG

    SW

    RNF

    FGHB

    HU

    P

    HU

    N

    HV

    P

    HV

    N

    HW

    P

    HW

    N

    VC

    C

    GN

    D

    SPC

    NF

    GV

    SW

    MU

    TE

    SB

    S TBY

    Pre D

    river

    Fed

    Lo

    gic

    Pre D

    river

    Fed

    Lo

    gic

    Pre

    Driv

    er

    Fed

    Lo

    gic

    Pre

    Driv

    er

    Fed

    Lo

    gic

    ST

    BY

    SB

    180

    deg

    MA

    TR

    IX

    OC

    C.

    Lim

    it

    Pre

    D

    river

    Pre

    D

    river

    Pre

    D

    river

    Pre D

    river

    Fed

    Lo

    gic

    Pre D

    river

    Fed

    Lo

    gic

    H .B .

    MUTE G VSW

    Thermal

    shut-down

    OS

    C

    FGSW

    MA

    TR

    IX

    14/180

    SANYO DENKI: Fan Motors

    15/180

    San Ace 120 3-Phase Brushless DC Fan Motor

    Sanyo Denki Co., Ltd. is pleased to announce the development of the new 120mm square, 38mm thick "San Ace 120"SG type DC cooling fan motor. This product, slated for release on March 1, 2005, is a high-efficiency DC cooling fan motor ideal for use in personal computers, server and network storage systems, communication instruments, and general-purpose industrial equipment. The San Ace 120 SG type cooling DC has achieved the lowest noise level and one of the highest airflow/static pressures in the industry.

    16/180

    Motor Drives for Home Appliances

    Refrigerators (Compressor Motor)Cooler (Compressor Motor)Washing Machine (Spindle Motor)Dust Cleaning MachineAir Cleaning MachineJuice Machine

    17/180

    Motor Drive ICs Inside the Intelligent Electronic Toys

    i-CybieAibo-2004

    18/180

    Motor Drive ICs Inside the Intelligent Home Appliances

    Crubo (VC-RP30W)Samsung Robot Vacuum CleanerRoomba

  • 4

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    19/180

    Motors in Automobiles

    Insight, HONDA, 2000

    20/180

    Segway to the Future

    July 15, 2005 (中國時報) Aug. 12, 2005 (攝於 美國 佛羅里達 Fort Myers Beach)

    21/180

    Motor Drives for Manufacturing Automation

    Palletizer Application

    Winder Application

    Cutter Application Blender Application

    Catcher/Stacker Application

    22/180

    Architecture of Motion Control and Motor Drive

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    23/180

    An Example: Motor Drive for Motion Control

    +

    xs Δ x

    x*i

    indirect position control

    +

    vs

    v*i

    M

    Feed force Fv PartFeed rate vi

    direct position control

    Table

    servomotor

    Speedandcurrentcontroller

    Positioncontrol

    TTacho

    positionfeedback

    unit

    Xi indirectxdirect

    E

    encoder

    24/180

    Composition of a Motion Control System

    tacho-generator

    encoder

    servo driveposition controller

    control box

  • 5

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    25/180

    Integration of Power, Motor, and Motion Control

    Motor

    III

    III IVtorque

    speed

    Power Converter

    amperes

    volts

    RBSOA/FBSOA

    Four-QuadrantVoltage/AmpereControl

    Four-QuadrantTorque/SpeedControl

    Closed-LoopSpeed/PositionControl

    DSP-BasedDigital Controller

    mP/DSP-Based Programmable Motion & Motor Control Techniques

    Mechanical Load

    X

    Y

    CoordinatedMotion ProfileControl

    New Solutions of Motion Control Problems Using Advanced Technology!

    feed drivespindle driveelectrical carelectrical railway.. .. ..

    26/180

    Control of Motor Drives

    Multiple Loop Control Structure of a Positioning Electrical Servo Drive

    *fT*fV

    *1X

    *nX

    POSITION

    VELOCITY

    TORQUE

    Pos Ve1 TM

    X1 V1 ε1

    PWMAmplifier

    ServoMotor

    LOADCurrent

    LoopController

    +

    _

    VelocityLoop

    Controller

    +

    _

    PositionLoop

    Controller

    +

    _Motion

    Controller

    Current FeedbackVelocity Feedback

    Position Feedback

    27/180

    Control Loops and Interfaces: Between Drive and Motion Control Units

    PWMAmplifier

    ServoMotor

    LOADCurrentLoop

    Controller

    +VelocityLoop

    Controller

    +_

    PositionLoop

    Controller

    +

    _Motion

    Controller

    Current Feedback

    Velocity FeedbackPosition Feedback

    TorqueLoop

    Controller

    Torqueestimator

    +

    _

    PWMControl

    Sensorsand

    Signal Conditioning Unit

    PWM for Power Switches ControlCurrent cmd.Torque cmd.Velocity cmd.Velocity cmd.

    Power Conversion ControlTorque (Current) ControlServo (Velocity, Position) ControlMotion (Interpolation, Ramping) Control

    28/180

    Motor Drive Controllers

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    29/180

    Omnirel: 25 Amp BLDC Motor Driver Module

    Applications:• Fans and Pumps• Hoists• Actuator SystemsFeatures:• Fully integrated 3-Phase Brushless DC Motor Control Subsystem

    includes power stage, non-isolated driver stage, and controller stage• MOSFET Output Stage• 25A Average Phase Current with 80V Maximum Bus Voltage• Internal Precision Current Sense Resistor (6W max. dissipation)• Speed and Direction Control of Motor• Brake Input for Dynamic Braking of Motor• Overvoltage/Coast Input for Shutdown of All Power Switches• Soft Start for Safe Motor Starting• Unique Hermetic or Plastic Ring Frame Power Flatpacks• Hermetic Package (3.10" x 2.10" x 0.385") F

    unct

    iona

    l Det

    ails

    of t

    he O

    M73

    93

  • 6

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    31/180

    Application Circuit Schematics Using the OM7393

    32/180

    IGBT Module for Motor Drive Applications

    Motor Controller (μP, DSP, or Control IC)

    Voltagedivider

    Temperatureamplifier

    Currentamplifier gate drive

    Powersupply+18 V+5 V

    +5 V isolated

    +5 V (iso)+5 V+5 V, +18 V

    + +

    Three-phaseac input

    Three-phaseac input

    Drive/controlsection

    Powerprintedcircuitboard

    Integrated PowerStage (IPS)

    Capacitors

    Precharge Relay

    33/180

    Integrated Power Conversion Components

    ActiveGate drive AGD AGD

    ActiveGate drive AGD AGD

    34/180

    Development of Integrated Motor Drives

    Discrete Input

    Discrete Output

    Analog Input

    RS232C

    Man Machine Interface

    IR1110 Soft Start

    IC

    Discrete I/O’s

    Analog I/O’s

    Serial Comm

    AC Drive Motion Profile Processing

    Micro controller or

    DSP

    High Speed Serial Communication

    OPTOs

    uP/DSP PWM

    AD/DA DIO

    IR2137 IR2237 Gate

    Drive and Protection

    IR2171 IR2271

    CURRENT FDBKIC

    5V.15V

    Power Supply

    Power Conversio

    n Processor

    AC MOTOR

    45V.15V

    600V and 1200V Gate Driver

    Switching Power Supply Controller

    SPI Communication and Isolator

    600V and 1200V Current Sensor

    Soft Start Converter Controller

    CPU/DSP, I/O, PWM, ADC

    35/180

    PIIPM50P12B004: Programmable Isolated IPMfrom International Rectifier

    PIIPM5012B004: EconoPack 2 outline compatible

    FEATURES:DSP (TMS320LF2406A) EmbeddedNPT IGBTs 50A, 1200V10us Short Circuit capabilitySquare RBSOALow Vce(on) (2.15Vtyp @50A, 25 °C)Positive Vce(on) temperature coefficientGen III HexFred TechnologyLow diode VF (1.78Vtyp @50A, 25 °C)Soft reverse recovery2mΩ sensing resistors on all phase outputs and DCbus minus railT/C < 50ppm/°C

    Embedded flyback SMPS for floating stages (single 15Vdc @ 300mA input required)

    TMS320LF2406A

    40MIPS

    DC Link Input

    Power Module

    Current sensecircuit

    IR 2213 based gate driver

    Encoder/Hall interface

    JTAG interface

    PI-IPM50P12B004

    RS

    422

    inte

    rface

    AC/DC motor

    36/180

    DSP-Controlled Brushless DC Motor

    Ref: David C Tam, “DSP-Based Brushless DC Motor Controller," International Rectifier, 1999.

  • 7

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    37/180

    Energy Saving High Power Quality BLDCM Drive

    Variable Output PFC Converter + PAM Inverter

    85-260 VAC50/60 Hz

    VariableOutput

    PFCConverter

    20 kHz

    10-400 VDC(PFC: 50-400V) PAM Inverter

    Cd

    110 V50/60Hz

    dcV

    PWM Inverter

    BLDC Motor

    150 VDC

    BLDC Motor

    38/180

    PFC-Controlled PAM/PWM Multi-Mode BLDC Motor Drive

    Co

    110/220V50/60Hz

    dcV

    PWM Inverter

    PMSM

    Buck-Boost Converter

    Lf

    ud • PWM Control• Inverter Control• Vector Control• Servo Control

    • Power Factor Control

    • DC-Link Regulation

    HallSensors

    Con

    trol I

    /O

    Encoder

    Ethernet/I2C NETWORKinterface

    I2C

    39/180

    Integral Motor

    風扇框架

    控制介面散熱風扇 功率驅動與控制模組

    行星散熱鰭直流鏈電容

    密閉自然散熱變頻馬達電容框架

    接線盒40/180

    Development of Integral Motor

    電控馬達生產廠商

    公司名稱 產品名稱 容量

    ABB Integral Motor 0.75-7.5Animate Smart Motor 0.15-7.5Baldor Integral Motor 0.75-7.5Danfoss Integral Motor 0.75-7.5Siemens Integral Motor 0.75-7.5

    Alldales Drive Systems Ltd.Little Cross, Church Street, Warnham, West Sussex, RH12 3QS, United Kingdomemail: [email protected]: (01403) 218787Fax: (01403) 218833

    41/180

    Integrated Vector Drive Servo System

    42/180

    IP Addressible Electronics-Controlled Integral Motor

    CONTROL

    COMMUNICATION POWER CONVERSION

    MOTOR DESIGN

    SYSTEM INTEGRATION

    IPEM

    Currents

    Control

    ++

    ω & θ i

    Est LPF

    HFP

    μ - Processor

    IPEM

    Con

    trol

    SYSTEM DESIGNPOWER ELECTRONICSCONTROL FIRM/SOFTWAREDIGITAL IC DESIGNANALOG IC DESIGN

    POWER IC DESIGN

    EMBEDDED SOFTWARE

    DIGITAL SIGNAL PROCESSING

    ANALOG SIGNAL PROCESSING

    POWER PROCESSING

  • 8

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    43/180

    2005年全球小電機總產量將超過80億台2003年09月29日 產經網中國電子報

    微小馬達(

  • 9

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    49/180

    Fundamentals of Electric Machinery

    Electrical Energy Conversion and Electrical DrivesBasic Physical Laws in Motor ControlElectromechanical Energy ConversionMechanical Interaction Between Motor and LoadStability Analysis of Motor-Load Static OperationMultiple Quadrant OperationMotor BrakingMoment of Inertia

    50/180

    Electrical Energy Conversion and Electrical Drives

    Advantages of Electrical Energy Conversion Process:generated from primary energy (chemical energy in fossil fuel, potential hydro energy, nuclear energy) in relatively efficient central generating stations,transported with low losses over long distances and distributed simply and at acceptable cost,converted into any final form at the point of destination.

    Primary Energy

    Power Station

    Transmission Distribution

    Power Electronics

    Final Energy Use

    Fossil

    Nuclear

    Solar

    Thermal Mechanical Electrical Electrical Mechanical

    Controlled Electrical Drives

    f0, U0 = const f1, U1 = variableHydro, Wind

    Solar (PV)

    MechanicalElectricalThermalChemical

    Electrical energy per capita and

    year 0.1-25 MWh

    51/180

    Control of Electrical Drives

    Due to the progress of automation and with a view to energy conservation, the need for control of electrical drives is likely to become more important in future.

    52/180

    Architecture of Motor Drive

    Controller

    PowerAmp Motor

    Load

    -50

    0

    50

    phase response

    10 0 101 102 103 104 10 5

    frequency(rad/sec)

    100

    101

    102

    103

    104

    105

    101

    102

    103

    magnitude response

    frequency(rad/sec)Man-Machine Interface Control Loop Design

    PowerSource

    53/180

    Power Conversion Process

    Input Power Power Conversion Output Power

    Passive Power ComponentsControl and Sensing Devices

    Active Power Devices

    battery

    mains

    Photo

    voltaic

    DCAC

    54/180

    Basic PWM Converter Topologies for Motor Drives

    Single-Ended Half-Bridge Full-Bridge

    Three-Phase Multi-Phase Multi-Level

  • 10

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    55/180

    Matrix Converter as a Power Processor

    (a) matrix converter (b) voltage source

    Power Processor

    InputsOutputs

    Utility source

    Voltage source

    . . .

    .

    .

    .

    56/180

    Matrix Converter Motor (MCM)

    SMPS

    IM3~

    Auxiliary circuit supply unit(gate-drivers, transducers, control)

    ab

    c

    A B C

    Clamp circuit

    Inpu

    t filt

    er

    line

    C

    motor

    Mat

    rix C

    onve

    rter

    Pow

    er S

    tage

    57/180

    Block Diagram of a PM DC Servo Motor Drive

    dcV

    T1

    T2

    T3

    T4−

    +

    va

    電流控制速度控制位置控制位置命令

    全橋式脈寬調變電壓放大器

    光電編碼器

    直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    ~

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    58/180

    Block Diagram of a Practical BLDC Position Servo Drive

    dcV

    T5

    T6

    電流控制

    &

    換相控制

    速度控制位置控制位置命令

    三相橋式脈寬調變電壓放大器

    光電編碼器

    無刷直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    ~

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    T3

    T4

    T1

    T2

    T 5 T 6

    濾波器

    59/180

    Block Diagram of a Practical BLDC Position Servo Drive

    dcV

    T5

    T6

    電流控制

    &

    換相控制

    速度控制位置控制位置命令

    三相橋式脈寬調變電壓放大器

    光電編碼器

    無刷直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    ~

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    T3

    T4

    T1

    T2

    T 5 T 6

    濾波器

    60/180

    Features of Electrical Drives

    Electric drives are available for any power, from 10-6 W in electronic watches to > 108 W for driving pumps in hydro storage plants.They cover a wide range of torque and speed, > 107 Nm, for an ore mill motor, > 105 RPM, for a centrifuge drive.Electric drives are adaptable to almost any operating conditions.Electric drives are operable at a moment's notice and can be fully loaded immediately.Electrical drives are easily controllable.Electrical drives can be designed to operate indefinitely in all four quadrants of the torque-speed-plane without requiring a special reversing gear.Qiet operation and long operating lifeElectrical motors are built in a variety of designs to make them compatible with the load. In special cases, such as machine-tools or the propulsion of tracked vehicles, linear electric drives are also available.

  • 11

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    61/180

    Basic Physical Laws in Motor Control

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    62/180

    Basic Physical Laws in Motor Control

    Newton,s Law of Rotation (Rotor Inertia) Torque, Work, and PowerMotion Profile of a Motor Drive Control System Ampere,s LawFaraday,s LawLenz, LawProduction of Induced Force on a WireInduced Voltage on a Conductor Moving in a Magnetic FieldElectromagnetic Energy Conversion

    63/180

    Newton’s Law

    (b) velocity

    (c) acceleration

    (a) position

    64/180

    Newton’s Law for Linear Motion

    dtdMv

    dtdvMMv

    dtdff LM +==− )(

    fM(t): driving force of the motor in the direction of the velocity vfL(t): load force opposing the motion

    M: massv: velocitys: position

    M·v: mechanical momentum

    Notes:Usually the forces are dependent on velocity v and position s, such as gravitational or frictional forces. The change of mechanical momentum needs a change of force.The motion object is considered as a lumped mass.

    Linear Motion

    M

    vs

    fM fL

    65/180

    Motion with Constant Mass

    dtdvMff LM 0=−

    Madt

    sdMff LM ==− 22

    0

    2

    2

    dtsd

    dtdva ==

    dtdMv

    dtdvMMv

    dtdff LM +==− )(

    If the mass is constant, M = M0 = constant,

    0

    dtdsv =

    where

    M

    vs

    fM fL

    66/180

    Torque, Work, and Power

    θ

    T

    Torque ( )

    Applying a force F to a lever withradius r will produce a torque of

    at the pivot point.

    N m⋅

    F r⋅

    T F rF r F r F r

    = ⋅=

    Σ ( )1 11 1 2 2 3 3- -

    Power (Watt)

    Power is defined as work done in a given time.

    P Wt

    Tt

    T= = ⋅ = ⋅θ ω [Watt ; Nm, rad / sec]

    Work (Joule)

    Work is defined as a torque actingthrough a given angulardisplacement.

    W T= ⋅ θ [Joule ; Nm , rad ]

    radius (r)

    force (F)pivot point

    F3

    r3

    F1

    r2

    F2

    r1

    T F r= ⋅ [N m ; N, m]

  • 12

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    67/180

    Rotational Motion of Lumped Masses

    ( )dtdJ

    dtdJJ

    dtd

    LM ωωωττ +==−

    Rotational Motion

    τM(t): driving torque of the motor in the direction of the angular velocity ωτL(t): load torque opposing the motion

    J: inertiaω: angular velocityε: angular position

    Jω: mechanical momentum

    Notes:It should be noted that τM is the internal or electrical motor torque, not identical with the torque available at the motor shaft. The difference between internal torque and shaft torque is the torque required for accelerating the inertia of the motor itself and overcoming the internal friction torque of the motor.

    J

    ω, τM

    τLε

    68/180

    Rotation with Constant Inertia

    If the inertia is constant, J = J 0 = constant,

    0

    ( )dtdJ

    dtd

    JJdtd

    LM ωω

    ωττ +==−dtd

    JoLMω

    ττ =−

    αεττ JdtdJoLM ==− 2

    2

    2

    2

    dtd

    dtda εω ==

    where

    dtdεω =

    J

    ω, τM

    τLε

    69/180

    Moment of Inertia

    dtddMr

    dtdvdMrdfrd aa

    ωτ 2===

    A rigid body of arbitrary shape, having the mass M, rotates freely about a vertical axis oriented in the direction of gravity. An element of the mass dM is accelerated in tangential direction by the force element dfa, which corresponds to an element dτa of the accelerating torque

    The total accelerating torque follows by integration

    ω

    dfa

    dM

    MVr

    dτa

    dMdtdrd

    M

    aa

    a ωτττ

    ∫∫ ==0

    2

    0

    70/180

    Moment of Inertia of a Rigid Body

    dtdJdMr

    dtd M

    aωωτ == ∫

    0

    2dMdtdrd

    M

    aa

    a ωτττ

    ∫∫ ==0

    2

    0

    In the assumption of a rigid body, all its mass elements move with the same angular velocity. The moment of inertia, referred to the axis of rotation, is defined as:

    ω

    dfa

    dM

    MVr

    dτa

    ]m[kg 20

    2 ⋅= ∫ dMrJM

    71/180

    Moment of Inertia of Concentric Cylinder

    drlrdVdM πσσ 2==

    ( )414230

    2

    22

    2

    1

    rrldrrldMrJr

    r

    M

    −=== ∫∫ σππσ

    r1, r2 : inner and outer radius of the hollow homogeneous cylinderτL(t): load torque opposing the motion

    l: lengthρ: mass densityV: volume of the cylinderJ: moment of inertia

    r1

    r2ρ

    72/180

    Inertia of a Solid Rotor

    stator

    rotor

    rotor

    Most motors have an inner rotor structure. If the rotor has a radius of 3cm and length of 6cm and it is made of aluminum (ρ=2.7 g/cm3), what is its moment of inertia? [Note: the density of iron is 7.9 g/cm3]

    ]cm[kg 0.2]cm[g 2.20610.30.67.222

    2244 ⋅≈⋅=××==π

    σπ

    lrJ r

    The calculated rotor inertia is about 2.0 kg·cm2, which is the inertia of a 0.5HP induction motor. The rotor inertia of a PM ac servo motor is about 10-30 % of an induction motor with same rating. Low rotor inertia is desirable for servo motors for have a higher acceleration rate.

    stator

    rotor

  • 13

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    73/180

    Inertia of a Cylinder with a Weight of G

    ( )2122 rrlgG −= πσ

    ( )222121 rrri +=

    22

    12

    2

    2 ir

    gGrr

    gGJ =+=

    weight G ri : radius of gyrationg : gravitational accelerationρ : mass densityJ : moment of inertia

    ( )414230

    2

    22

    2

    1

    rrldrrldMrJr

    r

    M

    −=== ∫∫ σππσ

    Notes:The moment of inertia increases with the 4th power of the outer radius. The moment of inertia of a cylinder is proportion to its weight and increases with the square of its radius of gyration.In applications of rotor with low inertia, the rotor has a shape of long cylinder with small radius.

    r1

    r2ρ

    l

    74/180

    Moment of Inertia of a Rod, Pivoted Out of Center

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛ −+=⎥

    ⎤⎢⎣

    ⎡+== ∫∫∫

    − 22

    0

    2

    0

    2

    0

    2 213112 l

    aMldrrdrrl

    MdMrJalaM

    In the above figure, a homogeneous thin rod of length l and mass M is pivoted around a point P, the distance of which from one end of the rod is a.With the mass element dM = (M/l) dr, we can derive the moment of inertia as

    The inertia can be expressed as a function of a and we can find the minimum inertia is obtained when the rod is pivoted at the center.

    (a) (b)

    J

    0 1

    3

    2Ml

    12

    2Ml

    21

    la

    a

    P

    M

    L-a

    75/180

    Linking Linear and Rotational Motion

    ωττ rvfrfr LLMM === and,

    ( )dtdrMMv

    dtdrLM

    ωττ 2==−

    2rMJe =

    Je : equivalent moment of inertia of the linearly moving mass

    M

    fMfL

    v

    τM , ω

    τL r

    76/180

    Effect of Gearing

    Why Gearing?Slow motion and high torque is required, such as traction, positioning robots, machine tools, etc.Maximum motor torque is limited by iron saturation (flux saturation) and heat (conductor losses). To increase the motor power density, a simple way is running the motor at high speed and then transfer to the required torque by a gear box.

    Effect of gearing on inertia.

    To simplify the analysis, we first assume the gear is idea, where two wheels are engaged at the point P with friction, backlash or slip. Assume the left wheel is the driving wheel,

    dtd

    JfrM 11111ω

    τ =−

    dtdJfr 2222

    ω=

    where f1 is the circumferential contact force exerted by wheel 2. Correspondingly, for wheel2 we have:

    2J

    2f

    1f

    1J

    1r2r

    P

    V

    11, Mτω

    77/180

    Gear as a Mechanical Transformer

    dtdJfrM 11111ωτ =−

    dtdJfr 2222

    ω=

    221121 , ωω rrff ==

    dtdJ

    dtdJ

    rrJ

    dtdJ

    rr

    dtdJ eM 1112

    2

    2

    11

    22

    2

    1111

    ωωωωτ =⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+=+=

    Torque of wheel 1 Torque of wheel 2

    Balance in force and velocity at the contact point:

    2

    2

    2

    112

    2

    1

    211 JN

    NJJJJ e ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+=⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    ωω

    where N1 and N2 are the numbers of gears of wheel 1 and 2, respectively.

    2J

    2f

    1f

    1J1r

    2r

    P

    V

    11, Mτω

    78/180

    Multiple Gear of a Hoist Drive

    Hoist drive with gear.

    [ ]23332

    1

    32

    2

    1

    211 rMJJJJ e +⎟⎟

    ⎞⎜⎜⎝

    ⎛+⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    ωω

    ωω

    331

    3111 Mgrdt

    dJ eM ωωωτ +=

    This effective inertia includes the equivalent inertia of the mass M3 being moved in vertical direction. Applying Newtons’s law and taking the load of the hoist into account, we can obtain:

    τM1 is the required motor torque for this geared hoist drive.

    MOTOR

    LossFreegear

    11, Mτω

    1J 2ω

    2J

    3ω 3J

    3M

    32r

    This example scows a multiple gear for a hoist drive, where J1, J2, and J3 are the moments of inertia of the different shafts. The total effective inertia referred to shaft 1 is:

  • 14

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    79/180

    Experimental Determination of Inertia

    rotor

    squirrel-cage induction motor

    The moment of inertia of a complex inhomogeneous body, such as the rotor of an electrical machine, containing iron, copper and insulating material with complicated shapes can in practice only be determined by approximation.The problem is even more difficult with mechanical loads, the constructional details of which are usually unknown to the user. Sometimes the moment of inertia is not constant but changes periodically about a mean value, as in the case of a piston compressor with crankshaft and connecting rods.

    2

    41 MDJ =

    D

    M is the mass of the cylinder rotor, it can be measured by its weight divided by the gravitational acceleration 9.8m/sec2.

    Estimation of the Rotor Inertia

    80/180

    Run-out Test for Inertia Measurement

    The RUN-OUT TEST involves two major steps: Measurement of the steady-state load torque-speed curve. Measurement of the velocity (time) response of the load when the drive power is switched off at an initial constant speed.

    ω

    t'Lτ)( 1

    ' ωτ L

    )(tωSteady-state load curve

    )(' ωτ L

    Coasting curve0ω

    ωdtd

    81/180

    Torque-Speed Curve Measurement

    dtdJpp LM

    ωω+=

    扭力計(torque meter) 慣性負載馬達 '

    Lm

    ω

    The motor connected load is running at a constant speed by a drive as shown in the above figure. When rotating at constant speed,

    0

    Now, the input power pM corresponds to the losses of the load, pM = pL. The load power which corresponds to the mechanical power should subtract those loss components, such as armature copper losses. The developed load torque can also be measured by a torque meter connected in the motor shaft.

    82/180

    Steady-State Torque Estimation

    ωωτ lossML

    pp −=)('

    : load torque at ωω : motor angular velocity

    pM : power supplying to the motorploss : power losses in the motor

    )(' ωτ L

    'Lτ

    ω1ω

    )( 1' ωτ L

    Notes:The motor losses consists of copper losses (I2R), core losses, and windage losses. The copper losses play a dominant factor in these losses and it takes about 85% in the motor losses. If the winding resistance of the motor is known, the copper losses can be calculated from the measurement of the RMS current of the motor windings.

    83/180

    Run-Out Measurement

    ω

    t

    扭力計(torque meter) 慣性負載馬達

    Measurement Procedure:1. Keep the motor running at a constant speed of ω0. 2. Suddenly turn off the drive power so that the motor-load set is decelerated by the loss torque with

    the speed measured as a function of time ω (t).3. The inertia can be calculated from the negative ratio of the load torque and deceleration at a

    specified angular velocity.

    dtdJLM

    ωττ =−

    The motor torque τM is turned-off at t=0,

    dtd

    JLω

    τ =−

    1

    '

    ωω

    ωτ

    =

    −≈

    dtdJ

    L

    84/180

    Calculation of the Inertia

    ω

    t'Lτ)( 1

    ' ωτL

    )(tω

    ωdtd

    Steady-state load curve

    )(' ωτ L

    Coasting curve0ω

    1

    '

    ωω

    ωτ

    =

    −≈

    dtdJ

    L

    1. Give a specified velocity

    2. Measure its corresponding load torque

    3. Calculate the deceleration rate at the specified velocity.

    4. Calculate the estimated inertia

    Notes:Graphical constructions, particularly when a differentiation is involved, are only of moderate accuracy. Therefore the inertia should be computed at different speeds in order to form an average.The accuracy requirements regarding inertia are modest; when designing a drive control system, an error of ±10% is usually acceptable without any serious effect.

  • 15

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    85/180

    Special Cases for Initial Measurement

    (a) Assuming the corrected loss torque to be approximately constant in a limited speed interval,

    then ω(t) resembles a straight line; the inertia is determined from the slope of this line.(a) If a section of the loss torque may be approximated by a straight line,

    a linear differential equation results,

    The solution is, with ω(t2) = ω2,

    Two special cases lead to particularly simple interpretations:

    21' for const, ωωωτ

  • 16

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    91/180

    Motion Profile of a Motor Drive Control System

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    92/180

    Motion Profile of a Motor Drive Control System

    (c)

    (a)

    (b)

    t

    t

    t

    s1

    s1)( sa )( sω )( sθ

    a(t) : angular acceleration ω(t) : angular velocityθ(t) : angular positionωm(t)

    θm(t)

    am (t)

    93/180

    Motion Profile

    t

    ωm(t)

    The motion profile (speed-time response) of a motor can be used to define as the motion requirement of a specific application.

    t

    θm(t)

    94/180

    Maximum Acceleration and Maximum Speed

    t

    ωm(t)

    am(max)(t)

    ωm(max)(t)

    Maximum SpeedMaximum AccelerationMaximum Deceleration

    A motion control system is usually limited by its:

    95/180

    The Motor Needs a Torque to Accelerate

    t

    ωm(t)

    The differential equation used for the description of the mechanical motion is:

    Motor Developed Electrical Torque

    eT

    Viscous friction torque

    Disturbance torque

    Load torque

    Available torque for acceleration

    dtdJTTBTT mmLdmmfeωω ++++= Motor static friction torque

    96/180

    Motor and Load Dynamics

    dtdJTTBTT mmLdmmfeωω ++++=

    _mωmT

    dT

    eT

    LJ1

    mB

    LB

    Load ModelingDisturbance

    Modeling

    s1

    mJ1

    s1 mθ

    Friction Modeling

    )( , mmTF θω

    fT LT

  • 17

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    97/180

    The Control Issues

    s1

    s1)( sa )(sω )(sθ

    pK+

    The proportional control of an double integrator plant is inherently unstable!

    acceleration velocity position

    The motion of a mechanical system is resulted from an acceleration, constant speed, and deceleration process. If the system is under very small damping (friction), it is inherent unstable!

    98/180

    Hierarchical Control Architecture of Motor Drive Control

    POSITION

    VELOCITY

    TORQUE

    TorqueController

    MVelocityController

    PositionController

    Torquecommand

    Velocitycommand

    Positioncommand

    FeedbackProcessor

    Power Conversion (Current & PWM) ControlTorque (Field-Oriented and Commutation) ControlServo (Position & Velocity) ControlMotion (Interpolation & Ramping (Acc./Dec)) Control

    99/180

    Motor Output Mechanical Power

    Controller

    PowerAmp Motor

    LoadPowerSource

    rad/sec]Nm, ;[Watt mmmmm TtT

    tWP ωθ ⋅=⋅==

    Watts 746HP 1 ==mP (rad/s) 104.7 6021000 RPM 1000 ≈×= π

    mP

    cmKgw 1m/secKg 1Nm 1 2 ⋅≈⋅=

    Nm 0.1Nm 098.0Kgm/sec 098.0m01.09.8m/secKg 1cm Kgw 1 22 ≈==××=⋅100/180

    Constant Power and Torque-Speed Operation Area

    ωm

    T

    1mP

    2mP

    ωm(max)

    Tm(max)

    101/180

    Maximum Power Rate

    Power Rate =TP

    ΔΔ

    (b)

    (a)

    (a)

    t

    t

    t

    ωm(t)

    Pm(t)

    τm (t)The maximum power rate determines the minimum time for a motor drive system for a given step change of output power.

    ωm

    T

    1mPωm(max)

    Tm(max) 102/180

    Torque and Back EMF

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

  • 18

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    103/180

    Basic Relations of Electrical and Magnetic Field

    Faraday’s Law

    Ampere’s Law

    terminalcharacteristics

    Corecharacteristics

    ( )tv ( ) ( )ttB Φ,

    ( ) ( )tFtH ,( )ti

    Magnetic CircuitsElectrical Circuits104/180

    Magnetic Field

    Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits. The magnetic field B is defined in terms of force on moving charge in the Lorentz force law. The interaction of magnetic field with charge leads to many practical applications. Magnetic field sources are essentially dipolar in nature, having a north and south magnetic pole. The SI unit for magnetic field is the Tesla, which can be seen from the magnetic part of the Lorentz force law Fmagnetic = qvB to be composed of (Newton x second)/(Coulomb x meter). A smaller magnetic field unit is the Gauss (1 Tesla = 10,000 Gauss).

    105/180

    Right-Handed System and Left-Handed System

    x

    y

    z

    y

    x

    z

    Right-Handed SystemLeft-Handed System 106/180

    Magnetic Field of Current: Right-Handed Rule

    The magnetic field lines around a long wire which carries an electric current form concentric circles around the wire. The direction of the magnetic field is perpendicular to the wire and is in the direction the fingers of your right hand would curl if you wrapped them around the wire with your thumb in the direction of the current.

    107/180

    Ampere’s Law

    B H= μ

    H = magnetic field intensity (Ampere-turns/m)μ = magnetic permeability of material (Wb/A.m, or Henery/m)B = magnetic flux density (Tesla, Weber/m2)

    μ μμr = 0

    μ0 = permeability of free space

    μ π074 10= × − H / m

    μr = relative permeability (between 2000-6000 for general ferromagnetic materials used in electrical machines)

    H l I⋅ =∫ dD=10 mm

    l=50 mmN=30

    WD=1.0 mmWire diameter

    I

    a

    b c

    d

    ∫⎩⎨⎧

    =⋅I

    Id

    enclosenot doescontour if ,0 enclosescontour if ,I

    lH

    108/180

    Permeability

    Ampere,s Law H l I⋅ =∫ d

    H = magnetic field intensity (Ampere-turns/m)μ = magnetic permeability of material (Wb/A.m, or Henry/m)B = magnetic flux density (Tesla, Weber/m2)

    μ μμr = 0

    μ0 = permeability of free space

    μ π074 10= × − H / m

    μr = relative permeability (between 2000-6000 for general ferromagnetic materials used in electrical machines)

    perm eability = =μBH

    In magnetics, permeability is the ability of a material to conduct flux. The magnitude of the permeability at a given induction is a measure of the ease with which a core material can be magnetized to that induction. It is defined as the ratio of the flux density B to the magnetizing force H. Manufacturers specify permeability in units of Gauss per Oersted (G/Oe).

    cgs: = 1 gaussoersted oersted

    μ 0410⎡

    ⎣⎢⎤⎦⎥

    = ×tesla mks: = 4 henrry

    meterμ π0

    710× ⎡⎣⎢

    ⎤⎦⎥

  • 19

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    109/180

    Properties of Ferromagnetic Materials

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    00 200 400 600 800 1000

    H, A-turn/m

    B, Wb/m2

    B H= μ μr 0

    Ferromagnetic materials, composed of iron and alloys of iron with cobalt, tungsten, nickel, aluminum, and other metals, are by far the most common magnetic materials.Transformers and electric machines are generally designed so that some saturation occurs during normal, rated operating conditions.

    DC Excitation

    i

    N

    Φ

    110/180

    磁通量單位:韋伯 (Wb)

    磁通量的國際制(SI)單位,紀念德國物理學家韋伯而命名。簡稱韋﹐用Wb表示。

    韋伯定義如下﹕令通過單匝線圈的磁通量在 1秒鐘內均勻地減小到零。如果在該線圈中激發產生的感應電動勢為1伏特,則原來通過該線圈的磁通量為 1韋伯。即1Wb=1V.s。

    韋伯是國際單位制的導出單位﹐用基本單位表示的關係式為:

    米2‧千克‧秒-2 ‧安培-1 (m 2 ‧kg‧s-2‧A-1)。

    1882年西門子在英國科學進展協會上第一次提出以『韋伯』作為磁通量單位,1895年得到英國科學進展協會承認,1948年得到國際計量大會的承認。

    韋伯和 CGS電磁系中的磁通量單位馬克斯威之間的換算關係為﹕

    1韋伯相當於108馬克斯威。

    [1 Wb = 108 Maxwell]

    111/180

    B-H Curve and Permeability

    Relation between B- and H-fields.

    H

    iB

    Bs

    HsLinear region

    BΔHΔ

    HB

    ΔΔ

    =Δμ

    HB

    HB

    =ΔΔ

    =μBΔ

    HHB r 0μμμ ==

    Magnetic intensity H, [A-turns/m]

    112/180

    Hysteresis Curves of a Ferromagnetic Core in AC Excitation

    H

    B

    Hysteresis Loop

    H

    B

    Br

    -Hc

    Residual Flux Density

    Coercive Force

    Magnetization or B-H Curve

    area hysteresis loss∝

    saturation

    113/180

    Magnetization Curve of a Ferromagnetic Core

    The relationship between B and H for a ferromagnetic material is both nonlinear and multivalued. In general, the characteristics of the material cannot be described analytically. They are commonly presented in graphical form as a set of emperically determined curves based on test samples of the material using methods presented by the American Society for Testing and Materials (ASTM).

    (b) AC magnetization B-H curve for M-5 grain-oriented electrical steel 0.03 cm thick (Armco Inc.)

    (a) DC magnetization B-H curve for M-5 grain-oriented electrical steel 0.03 cm thick (Armco Inc.)

    2.42.22.01.81.61.41.21.00.80.60.40.20

    1 10 100 1000 10,000 100,000

    B, W

    b/m

    2

    H, A. turns/m

    DC Magnetization

    H, A. turns/m

    1.8

    1.6

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0

    B, W

    b/m

    2

    -10 0 10 20 30 40 50 70 90 110 130 150 170

    Scal

    e ch

    ange

    AC Magnetization

    114/180

    Flux Density or B-Field

    Determination of the magnetic field direction via the right-hand in (a) the general case and (b) a specific example of a current-carrying coil wound on a toroidal core.

    i

    H

    (a) (b)

    H-field

    i

    Cross-sectional area A

    BA=φ

    HHB r 0μμμ ==

  • 20

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    115/180

    Continuity of Flux

    A1 A2

    A3

    φ1 φ2φ3

    dABA∫∫=φ 0surface) (closed == ∫∫ dABAφ

    ∑ =k

    k 0φ

    0or 0 321332211 =++=++ φφφABABAB

    116/180

    Magnetic Reluctance and Permeance

    Reluctance

    Mean path length lCross-sectional

    area A

    Permeability μ

    i

    N

    Al

    μ=ℜ

    ℜ=

    ℜℑ

    =Niφ

    ∫ ==⋅ NiHld lH

    lNiH =

    AB

    lNiH φμμ ===

    ℜℑ=

    ⎟⎠

    ⎞⎜⎝

    ⎛==

    Al

    Nil

    ANi

    μ

    μφ

    Magnetic-motive force (mmf) Ni=ℑ

    Permeanceℜ

    =Ρ1

    117/180

    Self Inductance

    Amp (I)

    Weber-turns (λ=Nφ)

    Li

    Mean path length lCross-sectional

    area A

    Permeability μ

    i

    N

    For a magnetic circuit that has a linear relationship between φ and i because of material of constant permeability or a dominating air gap, we can define the λ-i relationship by the the self-inductance (or inductance) L as

    iN

    iL φλ == μφ

    lANi

    = QlAN

    lANi

    iN

    iL μμλ 2===

    where λ =Nφ, the flux linkage, is in weber-turns. Inductance is measured in henrys or weber-turns per amp.

    118/180

    Energy Stored in a Core

    Mean path length l Cross-sectional area A

    Permeability μ

    I

    N: number of turns

    lANL μ2=

    The energy stored in the core:

    ∫∫ ===tt

    L LIdiLiPdtE 02

    0 21''

    The energy density (energy/volume) is:

    μ

    μμη

    2

    211

    2

    22

    222221

    B

    NlB

    lAN

    AlAlLI

    B

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛==

    The energy stored in the core:

    coreBL VLIE η==2

    21

    Vcore: volume of the core

    119/180

    Electrical-Magnetic Analogy

    Magnetic Circuit Electric Circuitmmf NiFlux φreluctance ℜpermeability μ

    viR1/ρ, where ρ=resistivity

    +_

    Φ

    i

    N

    Φ

    ℑ ℜ

    120/180

    Equivalent Electrical Circuit of a Magnetic Circuit

    Reluctance

    )H :(unit 1-Al

    μ=ℜ

    +_

    Φ

    i

    N

    Φ

    ℑ ℜ

    ANi

    μφ1

    =ℜ=

    ∑∑ =ℜm

    mmk

    k iNφ

    0=∑k

    ρ/:law sOhm'

    AlR

    iv

    ==

    ∑∑ =m

    mk

    k vRi :law voltage sKirchhoff'

    0 :lawcurrent sKirchhoff' =∑k

    ki

    Magnetic Electrical

    Inductance

    ℜ===

    2Ni

    Ni

    L φλ

  • 21

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    121/180

    Magnetic Circuits of a Gapped Core

    mean flux path in the ferromagnetic material

    N1gAirgap: Hg

    i1

    l1 = mean path length

    Core: H1

    i1 in

    H

    (a) (b)

    122/180

    Modeling of a Simple Magnetic Circuit

    ∫ =⋅ IlH dH dl H dl Niia

    b

    gb

    a+ =∫ ∫

    Hi : Magnetic field intensity in the ferromagnetic materialHg : Magnetic field intensity in the air gap

    magnetic motive force (mmf)(unit: Ampere-turns)

    H l H l Nii i g g+ =

    mean flux path in theferromagnetic material

    v

    +

    _

    li

    i

    ab

    N

    lg mean flux path in the air gap

    123/180

    Modeling of a Simple Magnetic Circuit

    B H= μ B lB

    l Niii

    ig

    ggμ μ+ =

    Φ = ⋅∫ B SA dFlux

    The surface integral of flux density is equal to the flux.

    If the flux density is uniformly distributed over the cross-sectional area, then

    Φ i i iB A= Φ g g gB A=

    The streamlines of the flux density are closed, therefore Φ Φi g=

    lA

    lA Ni

    i

    i i

    g

    g gμ μΦ Φ+ =

    ii

    ii A

    =ℜgg

    gg A

    =ℜ

    Nigigi =ℜ+ℜΦ=Φℜ+Φℜ )(

    124/180

    Modeling of the Air-Gap

    gRNi

    Φ

    v

    +

    _

    li

    i

    ab

    N

    lg

    mean flux path in the air gap

    mean flux path in theferromagnetic material

    cR

    In general, cg RR >>

    125/180

    Inductance of a Slot-Cutted Ferrite Core

    L NB Ai

    N Al

    c c c

    g

    = =2

    v

    +

    _

    i

    ab

    N

    126/180

    Control of the Stator Magnetic Field

    ωm

    r

    v

    +

    _

    i

    N

    )( BLiFvvv

    ×=

    FrT ×=

    Stator flux densityRotor winding current

    N S

    B

    BN

    S

  • 22

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    127/180

    Faraday’s Law - Change of Flux (Sept. 23, 1831)

    Induced voltage from a time-changing magnetic field

    Faraday,s Law states that if a flux pass through a turn of a coil of wire, a voltage will be induced in the turn of wire that is directly proportional to the rate of change in the flux with respect to time.

    Faraday,s Law

    eN

    ind voltage induced in the coil = number of turns of wire in coil

    = flux passing through coil = N is the flux linkage of the winding

    =

    φλ φ

    e N ddt

    ddtind

    = − = −φ λ

    N turns

    φ

    inde

    128/180

    Lenz’ Law - Polarity of Induced Voltage

    Lenz, Law

    eind

    i

    direction of i required

    dtdNe φ−=ind

    The meaning of Lenz,s law:

    (1) A coil enclosing an increasing magnetic flux;(2) determining the resulting voltage polarity.

    Lenz,s law states that the direction of the voltage buildup in the coil is such

    that if the coil ends were short-circuited, it would produce current that would cause a flux opposing the original flux change.

    N turns

    Direction ofopposing fluxincreasing

    +

    _

    N turns

    129/180

    Production of Induced Force on a Wire

    )( BLiFvvv

    ×=

    Lv

    Bv

    Fv

    θN S

    Bv

    Lvi

    Fv

    θsinBLiFvvv

    =

    A current-carrying conductor in a magnetic field experiences a force acting upon it.

    F : force (Newton)B : magnetic flux density (Tesla, Weber/m2)L : length of the conductor (meter)i : current in the conductor (Ampere)

    130/180

    Production of Induced Force on a Current-Conducting Wire

    I

    F

    BI

    N S

    B

    B

    ωm

    a

    b

    c

    dvcd r vab

    B

    I

    )( BLiFvvv

    ×=

    rFT ⋅=

    131/180

    Important Concepts in Electromechanical Motion

    In all electromechanical devices, if mechanical motion is occurred, either translational or rotational, this motion will reflect into electric system either as a change of flux linkages in the case of an electromagnetic system or as a change of charge in the case of an electrostatic system.

    If the magnetic system is linear, then the change in flux linkages results owing to a change in the inductance.

    The inductances of the electric circuits associated with the electromechanical motion devices are functions of the mechanical motion.

    132/180

    Electromechanical Energy Conversion

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

  • 23

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    133/180

    Electromechanical Energy Conversion

    CouplingField

    MechanicalSystem

    ElectricalSystem

    Electromechanical systems are comprised of an electrical system, a mechanical system, and a means whereby the electrical and mechanical systems can interact.This interaction can take place through any and all electromagnetic and electrostatic fields which are common to both systems and energy is transferred from one system to the other as a result of this interaction.There are energy losses, energy stored, and energy transferred in the electrical systems, coupling fields, and mechanical systems.

    Energy FlowMotor

    Generator

    134/180

    Electromechanical Energy Conversion

    W W W WE e eL eS= + +

    W W W WM m mL mS= + +from Energy Conservation Principle: in the coupling field we found

    W W W W W W W Ef fL E eL eS M mL mS+ = − − + − −( ) ( )

    W W W Wf fL e m+ = +which may also be written as:

    Σ ΣΣ

    WeL WmLWfL

    WM

    WmSWf

    WmWeWE+

    _+ + +

    _

    __

    _ _

    WeSElectricalSystem

    MechanicalSystem

    CouplingField

    135/180

    Electromechanical Energy Conversion

    The process of converting electrical energy to mechanical energy (or vice versa) isindependent of:(1) the loss of energy in either the electrical or the mechanical systems (WeL and WmL) ,(2) the energies stored in the electric or magnetic fields which are not common to both

    systems (WeS),(3) the energies stored in the mechanical system (WmS).

    If the losses in the coupling field can be neglected:

    W W Wf e m= +

    if there is no loss

    Σ ΣΣ

    WeL WmLWfL

    WM

    WmSWf

    WmWeWE+

    _+ + +

    _

    __

    _ _

    WeS

    WfL=0

    136/180

    _

    Study of an Elementary Electromechanical System

    v

    +

    _e f+i

    r L

    Φx

    x0

    M

    K

    D

    ffe

    KD

    v

    r

    efL

    Φ

    applied voltagecurrentresistance of the current-carrying conductorinductance of the electromechanical systemvoltage drop across the coupling fieldflux in the coupling fielddeveloped electromechanical forceexternal mechanical forcemass of the moving weightequilibrium positionposition of the moving massspring constantdamping coefficient

    i

    x0x

    M

    Electrical equation of the electrical system;

    Mechanical equation of the mechanical system;

    v ri L didt ef= + +

    f M d xdt

    D dxdt K x x fe= + + − −2

    2 0( )

    ffe

    K

    D

    137/180

    Operating Modes and Motor-Load Torque-Speed Characteristics

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    138/180

    Operating Modes of an Electrical Drive

    Motor Load

    ω, τMτM = Motor torqueτL = Load torque

    τL

    V (ω)

    fM (τM)

    Driving

    Driving

    Braking

    Braking

    vv

    v v

    fMfM

    fM fM

    ωm

    T0

    I

    ωm1 Maximumpower

    Maximumtorque

    −ωm3

    −ωm2

    3SIII IV

    II

    D

    C

    A

    B

    F

    E

    TL

    TL

    2S

    1S

    Maximumspeed

  • 24

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    139/180

    馬達與負載之扭矩方程式

    Motor Load

    TLT

    ωm

    T T J ddtL

    m= +ω

    Motor Developed Torque = Load Torque + Dynamic Torque

    J = load inertia referred to the motor shaft, Kg - m2

    ωm = instantaneous angular velocity of the motor shaft, N - mT = motor developed torque, N - m

    TL = load torque referred to the motor shaft, N - m

    ωmSpeed

    Torque Tm

    ωmSpeed

    Torque TL

    140/180

    Compositions of Load Torque

    Load Torque TL = Friction Torque TF + Windage Torque TW + Work Torque TM

    ωm

    Torque

    0 Ts

    TvTc

    TcTv

    Ts

    ωm

    TF0

    Friction torque and its components

    Friction Torque TF = Viscous Friction Tv + Columb Friction Tc + Static Friction Ts

    T T B T CL M m c m= + + +ω ω 2

    can be neglected

    windage torquecoulomb friction

    viscous friction

    141/180

    Examples of Load Torque Characteristics

    ωm

    TL

    ωm

    TL

    ωm

    T

    Pd1Pd2

    0

    Pd1Pd2

    ωm

    T

    Pd1Pd2

    0

    Pd3S1S2

    A*B*

    AB

    C*C

    ωm

    TL0

    A

    A*

    B

    B*

    C

    0TL

    ωm lowspeed

    highspeed

    (a) Fan and centrifugal pumps (b) Traction excluding gravity (c) Coiler drives

    (d) Diesel-electric locomotive (e) Excavators (f) Hoist

    142/180

    Examples of Motor Torque Characteristics

    split-series motorstraight-series motor

    Speed

    Torque

    DC servo motor shunt motor compound motor

    Induction motor

    Speed

    Torque

    Speed

    Torque

    Speed

    Torque

    Speed

    Torque

    Speed

    Torque

    143/180

    扭矩轉速曲線下的穩態穩定平衡點

    ( ) ( ) ( ) 0=Δ+−Δ++Δ+ TTTTdt

    dJ eLemmωω

    ( ) 0=Δ−Δ+ TTdt

    dJ Lmω

    ( ) 0=Δ⎥⎦

    ⎤⎢⎣

    ⎡−+

    Δm

    m

    Lm

    ddT

    ddT

    dtdJ ω

    ωωω

    ( )t

    ddT

    ddT

    Jomm

    mm

    L

    e⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−

    Δ=Δ ωωωω1

    0>−mm

    L

    ddT

    ddT

    ωω

    Lee TT = 0=dtd mω與

    mmd

    dTT ωω

    Δ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=Δ m

    m

    LL d

    dTT ωω

    Δ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=Δ與

    穩態平衡工作點必須符合之條件

    ωm

    Torque

    A

    B

    C

    Load torque TL1

    Motor torque T

    Load torque TL2

    0

    Speed

    144/180

    多象限扭矩─轉速曲線在不同之轉速設定與負載特性

    ωm

    T0

    III

    Maximumpower

    Maximumtorque

    TL

    TL

    III IV

    Speedsettings

    Base speed

    Base speed

    Maximum speed1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

  • 25

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    145/180

    Four-Quadrant Operation & Torque-Speed Trajectories

    ωm

    T0

    I

    ωm1 Maximumpower

    Maximumtorque

    −ωm3

    −ωm2

    3SIII

    IV

    II

    D

    C

    A

    B

    F

    E

    TL

    TL

    2S

    1S

    Maximumspeed

    146/180

    多象限工作區的速度變化扭矩─轉速曲線圖:(a)減速 (b)反轉 (c)加速

    III

    ωm

    T

    ωm1

    ωm2

    S1

    S20

    A

    B

    C

    Maximumpower

    Maximumtorque

    TLωm

    T0

    III

    ωm1 S1A

    B

    C

    Maximumpower

    Maximumtorque

    TL

    −ωm1

    −ωm2

    F

    E

    D

    TL

    2S

    3SIII IV

    III

    ωm

    T

    ωm1

    ωm2

    S1

    S20

    A

    B

    C

    TL

    Maximumpower

    Maximumtorque

    (a)

    (b)

    (c)

    147/180

    不同『馬達─負載扭矩轉速曲線』的工作點

    ωm

    Torque0

    B

    TL2T

    ATL1

    ωm

    Torque0TL1

    CTL2

    T

    D

    ωm

    Torque0

    TLF

    T

    E

    ωm

    Torque0

    T

    G

    TLH

    (a) (b)

    (c) (d) 148/180

    馬達剎車 (Motor Braking)

    再生剎車(regenerative braking)

    馬達剎車 機械式剎車

    電氣式剎車 動態剎車(dynamic braking)

    149/180

    馬達與驅動器的多象限操作

    Multiple quadrant operation of electrical motors and drives.

    reversebraking

    torque

    forwardmotoring

    reversemotoring

    forwardbreaking

    III

    III IV

    speed ωm

    T0

    III

    Maximumpower

    Maximumtorque

    TL

    TL

    III IV

    Speedsettings

    Base speed

    Base speed

    Maximum speed1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    150/180

    Typical Torque-Speed Operating Curves of Servo Motor

  • 26

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    151/180

    馬達的功率轉換、損失分析與選擇

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    152/180

    Power Flow of DC Generator

    I2R losses

    P conversion

    AAm IE=ωτ indmP ωτ appin =

    Core lossesMechanical

    lossesStray losses

    LTVVP =out

    153/180

    Power Flow of DC Motor

    I2R losses

    P conversion

    mAAIE ωτ ind=mP ωτ landout =

    Core lossesMechanical

    losses

    Stray losses

    LTVVP =in

    154/180

    Servo Motor Selection: Direct Drive

    155/180

    Servo Motor Selection: Calculation of Inertia

    156/180

    Servo Motor Selection: Gear Drive

    mT JNJ

    J += 21

    NeT

    Tm 1=

  • 27

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    157/180

    Servo Motor Selection: RMS Torque

    Tttt dPeLaP

    rms⋅+⋅+⋅

    =222 ττττ

    啟動 行進 剎車

    時間 (sec)

    V Nt M( )

    t a t e td

    循環週期 T

    停止

    158/180

    Motor Sizing and Selection

    Load Torque-Speed Characteristics Cost, Efficiency, Volume, Performance Considerations Motor Type Selection Motor Torque-Speed Operation AreaTypical Motion Profile Calculated RMS TorqueLoss AnalysisTemperature Rise & Winding Insulation ClassMaximum Power Rate

    159/180

    馬達與驅動器的分類與應用

    電力電子系統與晶片設計實驗室

    Power Electronics Systems & Chips Lab.交通大學 • 電機與控制工程研究所

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    160/180

    馬達之分類

    馬 達

    串激式、並激式、分激式馬達

    永磁式直流馬達

    直流馬達

    交流馬達

    步進馬達

    其他: 如音圈馬達、超音波馬達、微型馬達等

    同步式 (轉子永磁型、轉子電激型)

    感應式 (轉子鼠籠型、轉子繞線型)

    永磁式

    磁阻式

    磁阻式 (開關式、同步式)旋轉型

    線型

    線性直流馬達

    線性交流馬達

    線性步進馬達

    161/180

    Classification of AC Motors

    AC MOTOR

    Sinusoidal-fed Rectangular-fed

    Brushless DC SwitchedreluctanceInduction Synchronous

    Squirrel-cage

    Wound-rotor

    Wound-rotor

    PMrotor Reluctance

    Surface-mounted

    Interior-mounted

    162/180

    伺服馬達之分類

    永磁式交流伺服馬達

    (無刷式直流伺服馬達,永磁式同步馬達)

    感應式交流伺服馬達

    伺服馬達

    有刷式 永磁式直流伺服馬達

    無刷式

  • 28

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    163/180

    Motor Construction Possibilities

    rotor

    stator rotor

    stator

    rotor

    stator

    rotor

    stator

    (a) (b)

    (c) (d)164/180

    DC Servo Motor

    165/180

    Structure and Functional Description of a PM DC Motor

    Environmentally protected models-Explosion Proof and Wash Down Duty

    Permanent magnet fields are more efficient, smaller, lighter and offer wider speed range than comparable wound field motors

    Long life, constant force brush springs with field replaceable brushes

    Rugged, fused commutator

    TEFC and TENV configurations

    Conduit box (gasketed) -large wiring compartment for easy termination

    NEMA or metric mounting

    Large sealed bearings are standard

    Class H insulation

    Polyester impregnated armature for electrical and mechanical integrity

    Patented anti-cog magnets for smooth low speed operation. High overcurrent capacity and dynamic braking without demagetization

    166/180

    Decomposition of a BLDC Servo Motor

    167/180

    State of the Art: AC Servos

    High Speed Spindle(Siemens)

    DSD Servo (Baumüller)High Torque Motor

    (Baumüller)Spindle Motor (Franz Kessler)

    168/180

    Typical Specs. of PM AC Servo Motors

  • 29

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    169/180

    PM AC Servo Motor

    S

    N

    A B C

    θ

    sin ω et

    sin ( )ω πet +23

    sin ( )ω πet +43

    electroniccommutator

    Vm sin θ

    Vm sin( )θπ

    +23

    Vm sin( )θπ

    +43

    V tm esin( )ω θ+

    V tm ecosω V tm esinω

    V tm esin( )ω θ+

    Three Phase, 2-Pole Motor

    Permanent Magnet Rotor

    a r

    ar'

    brb r'

    cr

    c r'

    a s

    as'

    bs

    b s'

    c s

    cs'

    S N

    N

    S

    170/180

    AC Induction Motor

    aluminum bars for carrying induced current

    Squirrel Cage Rotor Lamination(cutaway view)

    shaft hole

    steel lamination plate

    Rotor current induced by stator fieldUses 3-phase power inverter

    ar

    a r'

    br

    b r'

    cr

    cr'

    rotor

    stator

    stator axisrotor axis

    a s

    as'

    bs

    b s'

    c s

    c s'

    171/180

    Photos of a Squirrel-Cage Induction Motor

    (a) squirrel-cage induction motor and (b) its inside structure.

    (a) (b)

    172/180

    Switched Reluctance Motor

    steel rotor

    Three Phase 6/4 Motor

    these coils on now

    these coils on next

    rotationdirection

    Classical SR Drive Converter

    motor coils in series with switching devices

    ♦ rotation produced to minimize the magnetic reluctance (resistance)

    173/180

    Hybrid Step Motor

    MS connector termination for motor and optical encoder. Flying leads and terminal board via conduit termination also standard.

    Optional line driver encoders-200 to 1024 PPR.

    Rare earth rotor magnets provide high demagnetization resistance.

    Sigmax® technology in K series adds flux concentrating rare earth stator magnets for even higher torque and acceleration than N series.

    Large diameter rotor coupled with optimum magnetic design produces highest torque and acceleration-both N and K series.

    Long life bearings withstand high radial and axial forces.

    Straight key. Other options available. Optional shaft sizes and special designs (spline, for example) available.

    Rugged, square frame housinglessdesign provides NEMA and IP65 splash proof construction.

    Standard NEMA mounting.

    174/180

    驅動器的種類

    直流伺服驅動器

    泛用型變頻器

    向量控制變頻器

    永磁式交流伺服驅動器

    感應式交流伺服驅動器

    無感測變頻器

    無感測向量控制變頻器

    泛用型向量控制交流驅動器

  • 30

    課程講義:【電動機原理與驅動技術】01:電動機控制的理論基礎交通大學 808-電力電子實驗室 May 2007

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電力電子系統晶片、數位電源、DSP控制、馬達與伺服控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronics Systems & Chips Lab., NCTU, Taiwan

    175/180

    Block Diagram of a PM DC Servo Motor Drive

    dcV

    T1

    T2

    T3

    T4−

    +

    va

    電流控制速度控制位置控制位置命令

    全橋式脈寬調變電壓放大器

    光電編碼器

    直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    ~

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    176/180

    Block Diagram of a Practical BLDC Position Servo Drive

    dcV

    T5

    T6

    電流控制

    &

    換相控制

    速度控制位置控制位置命令

    三相橋式脈寬調變電壓放大器

    光電編碼器

    無刷直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    ~

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    T3

    T4

    T1

    T2

    T 5 T 6

    濾波器

    177/180

    交流驅動器的發展趨勢

    泛用型交流伺服驅動器

    專用型交伺服流驅動器

    專用型無感測變頻器

    泛用型變頻器

    交流驅動器的發展趨勢 Universal Auto-Tuning AC Drive

    178/180

    Inverters for 3-Phase Motor Drive Applications

    Voltage (Line to Neutral)

    Current (Line)

    179/180

    References

    [1] DC Motors, Speed Controls, Servo Systems, including Optical Encoders, An Engineering Handbookby Electro-Craft Corporation, Hopkins, MN, Fifth Edition, 1980.

    [2] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice Hall, February 15, 2001.[3] Werner Leonhard, Control of Electrical Drives, 3nd edition, Springer Verlag, January 15, 2001. [4] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems,

    IEEE Press and Wiley Inter-Science, 2002.

    [5] Ned Mohan, Advanced Electric Drives: Analysis, Control and Modeling using Simulink, MNPERE, Oct. 2000.

    [6] Ned Mohan, First Course on Power Electronics and Drives, MNPERE, July 15, 2003.[7] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Pr, USA,

    September 1996.

    [8] Chee-Mun Ong, Dynamic Simulation of Electric Machinery: Using MATLAB/Simulink, Prentice Hall, 1998.

    [9] Edied by: B. K. Bose, Power Electronics and Variable Frequency Drives – Technology and Applications, IEEE Press, 1997.

    [10] P. C. Sen, Principles of Electric Machines and Power Electronics, Second Edition, John Wiley & Sons, 1997.

    [11] J. Chapman, Electric Machinery Fundamentals, McGraw-Hill, 1991.[12] A. E. Fitzgerald, C.K. Jr., and S.D. Umans, Electric Machinery, McGraw-Hill Book Company, 1983.

    180/180

    References

    [13] Vincent Del Toro, Electromechanical Devices for Energy Conversion and Control Systems, Prentice-Hall, 1976.

    [14] G. Rizzoni, Principles and Applications of Electrical Engineering, International Student Edition, Richard Irwin, Inc., 1993; ISBN 0-256-12969-X

    [15] A. Hughes, Electric Motors & Drives - fundamentals, types & applications, Heinemann Newnes, 1990, ISBN 0-434-90795-2

    [16] T. Kenjo, Electric Motors and their Control, Oxford University Press, 1991 (re-printed: 1993, 1994, 1996, 1998); ISBN 0 19 856240 3

    [17] B. C. Kuo and J. Tal, DC Motors and Control Systems, 1978.