DSP Lecture 13-14

download DSP Lecture 13-14

of 17

Transcript of DSP Lecture 13-14

  • 7/30/2019 DSP Lecture 13-14

    1/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    EE 802-Advanced Digital SignalProcessing

    Dr. Amir A. Khan

    Office : A-218, SEECS

    9085-2162; [email protected]

  • 7/30/2019 DSP Lecture 13-14

    2/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    Lecture Outline

    Discrete Fourier Transform (DFT)

  • 7/30/2019 DSP Lecture 13-14

    3/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    Discrete Fourier Transform

    Discrete Fourier Transform (DFT) not same as DTFT

    DFT results from sampling of DTFT (at pre-defined frequencies),

    generally for an aperiodic finite duration discrete sequence

    Extension of Discrete Fourier Series (DFS)

    Aperiodic Discrete

    Why DFT? Efficient algorithms exist for DFT computation (Fast Fourier Transform)

  • 7/30/2019 DSP Lecture 13-14

    4/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    be a periodic sequence with periodNso that

    Discrete Fourier Series-Revisit

    [ ]x n [ ] [ ]x n x n rN

    12 / 2 /

    0

    1 1[ ]Nj N kn j N kn

    k N k

    x n X k e X k eN N

    Fourier Series : representation of signal as sum of complex exponentials

    Periodicity of discrete time exponentials implies sum is finite duration

    For convenience we define : 2 /j N

    NW e

    Analysis equation

    Synthesis equation 1

    0

    1[ ]

    Nkn

    N

    k

    x n X k WN

    1

    0

    [ ]N

    kn

    N

    n

    X k x n W

    DFS Pair

    ][~

    ][~ kXnxDFS

  • 7/30/2019 DSP Lecture 13-14

    5/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    Discrete Fourier Series-Examples

    1[ ] 0r

    n rNx n n rN

    else

    1

    2 /

    0

    1[ ]

    Nj N kn

    r k

    x n n rN eN

    [ ] [ ]r

    Y k N k rN

    10

    0

    1[ ] [ ] 1

    Nkn

    N N

    k

    y n N k W WN

    Periodic impulse train

    Coefficients form periodic impulse train

    Coefficients constant

    Sequence constant

    DUALITY

    Refer to your DSP Oppenheim Book for Summary of DFS properties

  • 7/30/2019 DSP Lecture 13-14

    6/17

    Lectures 13-14 EE-802 ADSP SEECS-NUST

    Relationship between DTFT/DFS

    Periodic /Finite Duration signals Relationship between DTFT and DFS for periodic sequences

    Periodic impulse train : strength proportional to DFS coefficients

    2 2j

    k

    kX e X k

    N N

    Consider a finite length signal x[n] spanning from 0 to N-1

    Convolve with periodic impulse train

    [ ] [ ] [ ] [ ]r r

    x n x n p n x n n rN x n rN

    2

    2 2

    2 2

    j j j j

    k

    kj

    j N

    k

    kX e X e P e X e

    N N

    kX e X e

    N N

    2

    2

    kj

    jNk

    N

    X k X e X e

    Fourier Transform

    DFS coeffs. correspond to sampling of

    DTFT (in freq. domain) @every 2 /N

  • 7/30/2019 DSP Lecture 13-14

    7/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    Relationship between DTFT/DFS

    Periodic /Finite Duration signals (Ex.)

    1, 0 4

    0 , otherwise

    n

    x n

    42

    0

    sin 5 / 2

    sin / 2

    j j n j

    nX e e e

    x n represents one cycle of the following periodic signal

    4 4

    2 /10

    10

    0 0

    j knkn

    n n

    X k W e

    54 /1010

    10

    sin / 21

    sin /101

    kj k

    k

    kWX k e

    kW

    2 /10k Substitute

    (4 /10)

    sin / 2[ ]

    sin /10j k

    kX k e

    k

    DFS coeffs.

  • 7/30/2019 DSP Lecture 13-14

    8/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    Sampling the Fourier Transform

    Time Domain : Periodic signal from finite duration sequence

    Frequency-domain: Performing the sampling operation

    Performing reverse operation : sampling of DTFT

    2 /2 /

    j N kj

    N kX k X e X e

    2 / 2 /j N k j N k

    z eX k X z X e

    Sampling the z-transform

    1

    0

    1[ ] [ ]

    N

    knN

    kx n X k W

    N

    Inverse DFS

    *r r

    x n x n n rN x n rN

    Sampling of DTFT (aperiodic sequence) in frequency domain

    generates a periodic repetition of the aperiodic sequence with period N

    Periodicity of sequence evident from moving around unit circle

  • 7/30/2019 DSP Lecture 13-14

    9/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    Sampling the Fourier Transform-Time Aliasing

    r

    rNnxnx ][][~ One-period

    Im(z)

    Re(z)

    12

    2

    Im(z)

    Re(z)

    DFS DTFT

  • 7/30/2019 DSP Lecture 13-14

    10/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    Sampling the Fourier Transform-Time Aliasing

    r

    rNnxnx ][][~ One-period

    Im(z)

    Re(z)

    7

    2

    Im(z)

    Re(z)

    DFS DTFT

    X

    X

    Aliasing in Time-Domain

  • 7/30/2019 DSP Lecture 13-14

    11/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    Summary

    Samples of Fourier Transform of an aperiodic sequencex[n]can be

    thought of as Fourier Series Coeffs. of periodic sequence obtained

    by summing periodic replicas ofx[n]

    Ifx[n]is finite duration and we take sufficient number of samples

    of its Fourier Transform (greater than or equal to its length), thenx[n]

    is recoverable from the periodic sequence

    To recover or representx[n], it is therefore not necessary to knowX(ej )

    at all the frequencies

    Using DFS for purpose of recovering/representing a finite duration

    sequence leads to DFT

    ][~ nx

    ][~ nx

  • 7/30/2019 DSP Lecture 13-14

    12/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    DFT-Fourier Representation ofFinite

    Duration Sequences

    Consider a finite length sequence x[n] of length N

    Corresponding periodic sequence

    To maintain duality between time and frequency

    Fourier coefficients to associate with finite duration sequence x[n]

    one period of

    0 outside of 0 1x n n N

    r

    x n x n rN

    mod NN

    X k X k X k

    mod N Nx n x n x n

    No-overlap between the summation terms

    [ ] 0 1[ ]

    0 otherwise

    x n n Nx n

    One period of ][~ nx

    ][~

    kX

    [ ] 0 1[ ]

    0 otherwise

    X k k NX k

  • 7/30/2019 DSP Lecture 13-14

    13/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    DFT-Analysis and Synthesis Equations

    12 /

    0

    1

    [ ]

    Nj N kn

    kx n X k eN

    12 /

    0[ ]

    Nj N kn

    nX k x n e

    DFS Pair

    12 /

    0

    [ ] 0 1

    0

    Nj N kn

    n

    x n e k NX k

    else

    1

    2 /

    0

    10 1

    [ ]

    0

    Nj N kn

    k

    X k e n Nx n N

    else

    PERIODIC

    ONE PERIOD ONLY

    DFT

    x n X k

    1

    0

    [ ] ( ) , 0 1N

    kn

    N

    n

    X k x n W k N

    1

    0

    1[ ] ( ) , 0 1

    Nkn

    N

    k

    x n X k W n NN

    Analysis equation Synthesis equation

  • 7/30/2019 DSP Lecture 13-14

    14/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    DFT-Ex: Rectangular Pulse

    Minimum Value of N ?

    Minimum Value ofN = 5

    42 /5

    0

    2

    2 /5

    1

    1

    5 0, 5, 10,...0

    j k n

    n

    j k

    j k

    X k e

    e

    e

    kelse

    DFS

    Required DFT

  • 7/30/2019 DSP Lecture 13-14

    15/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    DFT-Ex: Rectangular Pulse

    Minimum Value of N ?

    Minimum Value ofN = 5

    42 /5

    0

    2

    2 /5

    1

    1

    5 0, 5, 10,...0

    j k n

    n

    j k

    j k

    X k e

    e

    e

    kelse

    DFS

    Required N = 5-point DFT

  • 7/30/2019 DSP Lecture 13-14

    16/17Lectures 13-14 EE-802 ADSP SEECS-NUST

    DFT-Ex: Rectangular Pulse N = 10

    4

    2 /10

    0

    j kn

    n

    X k e

    2 /10 5

    2 /10

    1

    1

    j k

    j k

    e

    e

    4 /10 sin / 2

    sin /10j k ke

    k

    Required N = 10-point DFT

    DFT not same as

    prev. example althoughDTFT is same

  • 7/30/2019 DSP Lecture 13-14

    17/17

    DFT- Frequency Interpretation

    1

    0

    [ ] ( ) , 0 1N

    kn

    Nn

    X k x n W k N

    DFT determines the spectral content of input at Nequally spaced frequency points What are the exact frequencies in the DFT spectrum?

    depends on the number of DFT points N and

    on the sampling frequencyfs

    , at which the original signal was sampled

    X[k] : frequency content at discrete radial frequency: (rad/sample)

    or cycles/sample

    In real frequency terms (Hz) :

    kN

    k

    2

    N

    kfk

    Nkff sanalysis

    In case your sampling frequency is not specified or not known, we talk of normalized

    frequency (scale from -0.5 to 0.5)