Đa thức đối xứng và ứng dụng trong đại số.pdf

download Đa thức đối xứng và ứng dụng trong đại số.pdf

of 81

Transcript of Đa thức đối xứng và ứng dụng trong đại số.pdf

  • I HC THI NGUYN

    TRNG I HC KHOA HC

    PHM VN TH

    MT S TNH CHT CA A THC

    I XNG V NG DNG

    TRONG I S

    LUN VN THC S TON HC

    Chuyn ngnh : PHNG PHP TON S CP

    M s : 60. 46. 40.

    Ngi hng dn khoa hc: TS. NGUYN VN MINH

    THI NGUYN 2012

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mc lc

    M u 3

    1 Khi nim c bn v a thc i xng 5

    1.1 a thc i xng hai bin . . . . . . . . . . . . . . . . . . 5

    1.1.1 Cc khi nim c bn . . . . . . . . . . . . . . . . . 5

    1.1.2 Tng ly tha v cng thc Waring . . . . . . . . . 6

    1.1.3 Cc nh l v a thc i xng hai bin . . . . . . 9

    1.2 a thc i xng ba bin . . . . . . . . . . . . . . . . . . . 11

    1.2.1 Cc khi nim c bn . . . . . . . . . . . . . . . . . 11

    1.2.2 Tng ly tha v tng nghch o . . . . . . . . . . 12

    1.2.3 Qu o ca n thc . . . . . . . . . . . . . . . . . 14

    1.2.4 Cc nh l ca a thc i xng ba bin . . . . . . 16

    1.2.5 a thc phn i xng . . . . . . . . . . . . . . . . 19

    2 ng dng tnh cht ca a thc i xng gii mt s

    bi ton i s 21

    2.1 Mt s bi tp tnh ton . . . . . . . . . . . . . . . . . . . 21

    2.2 Phn tch a thc thnh nhn t . . . . . . . . . . . . . . . 24

    2.3 Phng trnh i xng v phng trnh hi quy . . . . . . . 27

    2.4 Gii h phng trnh . . . . . . . . . . . . . . . . . . . . . 33

    2.4.1 H phng trnh i xng hai n v ng dng . . . . 33

    2.4.2 H phng trnh i xng ba n . . . . . . . . . . . 37

    2.5 Tm nghim nguyn ca cc phng trnh i xng . . . . . 42

    2.6 Chng minh cc ng thc . . . . . . . . . . . . . . . . . . 44

    2.7 Chng minh bt ng thc . . . . . . . . . . . . . . . . . . 50

    3 a thc i xng n bin v ng dng 58

    3.1 Cc khi nim . . . . . . . . . . . . . . . . . . . . . . . . . 58

    3.2 Biu din cc tng ly tha qua cc a thc i xng c s 60

    3.3 Cc nh l ca a thc i xng nhiu bin . . . . . . . . 63

    1S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3.4 a thc phn i xng nhiu bin . . . . . . . . . . . . . . 66

    3.5 Phng trnh v h phng trnh . . . . . . . . . . . . . . . 68

    3.6 Chng minh ng thc. Phn tch a thc thnh nhn t . 72

    Kt lun 79

    Ti liu tham kho 80

    2S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • M u

    Cc bi ton i s lun chim mt v tr quan trng i vi ton ph

    thng, cng l lnh vc m cc nh nghin cu sng to ra rt y

    v hon thin. Tnh i xng trong i s l mt trong nhng phn quan

    trng ca i s s cp, cng l bi ton quen thuc trong cc ti liu lin

    quan n i s s cp, cc k thi hc sinh gii quc gia v quc t.

    Trong qu trnh gii nhiu bi ton i s hoc dng trc tip hoc

    dng gin tip mi nhn ra l bi ton lin quan n a thc i xng,

    nu gii mi bi ton ny mt cch n l s gp khng t kh khn v

    tnh hiu qu khng cao khi gii cc bi ton cng loi. Vic nm bt c

    y khi nim v cc tnh cht c bn ca a thc i xng, thng qua

    p dng gii mt s bi ton lin quan n a thc i xng l vn

    c nhiu ngi quan tm.

    Lun vn ny gii thiu cc khi nim, tnh cht ca a thc i xng

    v cc ng dng c bn gii cc bi ton i s thng gp trong chng

    trnh ton s cp. Lun vn "Mt s tnh cht ca a thc i xng v

    ng dng trong i s" gm c phn m u, ba chng ni dung, kt

    lun v ti liu tham kho.

    Chng 1. Cc khi nin c bn v a thc i xng.

    Trong chng ny tc gi trnh by cc khi nim, tnh cht ca a thc

    i xng hai bin, ba bin. Mt ng gp nh c ngha trong chng

    ny l H qu 1.1 ca cng thc Newton. Cng thc ny thng c s

    dng trong cc bi ton tnh gi tr biu thc.

    Chng 2. ng dng tnh cht ca a thc i xng gii mt s bi

    ton i s.

    Chng ny tc gi trnh by cc ng dng ca a thc i xng bng

    cc v d minh ha c th. Cc ng dng ny rt ph bin trong cc ti

    liu v i s trong chng trnh ton ph thng.

    3S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 3. a thc i xng n bin v ng dng.

    Chng ny tc gi trnh by cc kin thc ca a thc i xng n bin

    v mt s ng dng ph bin thng gp.

    Lun vn nghin cu mt phn rt nh ca i s v thu c mt s

    kt qu nht nh. Tuy nhin, lun vn chc chn cn nhiu thiu xt, nn

    rt mong c s gp ca cc thy c, cc bn ng nghip v c gi

    quan tm n ni dung lun vn lun vn ca tc gi c hon thin

    hn.

    Lun vn c hon thnh ti trng i hc Khoa hc - i hc Thi

    Nguyn di s hng dn ca TS. Nguyn Vn Minh. Tc gi xin by t

    lng bit n su sc ti s quan tm ca thy, ti cc thy c trong Ban

    Gim hiu, Phng o to v Khoa Ton - Tin trng i hc Khoa hc.

    ng thi tc gi xin cm n ti S GD - T tnh Yn Bi, Ban Gim

    hiu, cc bn ng nghip ti trng THPT Hong Vn Th huyn Lc

    Yn - Yn Bi v gia nh to iu kin cho tc gi hc tp v hon

    thnh bn lun vn ny.

    Thi Nguyn, ngy 10 thng 06 nm 2012.

    Tc gi

    Phm Vn Th

    4S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 1

    Khi nim c bn v a thc ixng

    1.1 a thc i xng hai bin

    1.1.1 Cc khi nim c bn

    nh ngha 1.1 (Theo [2]). Mt n thc f(x,y) ca cc bin c lp x,

    y (trng hp chung nht c th l cc s phc) c hiu l hm s c

    dng

    f(x, y) = aklxkyl,

    trong akl 6= 0 l mt s (hng s), k, l l nhng s nguyn khng m.S akl c gi l h s, cn k+l c gi l bc ca n thc f(x,y) v

    c k hiu l

    deg[f(x, y)] = deg[axkyl] = k + l.

    Cc s k, l tng ng c gi l bc ca n thc i vi cc bin x, y.

    Nh vy, bc ca n thc hai bin bng tng cc bc ca cc n thc

    theo tng bin.

    Chng hn: 3x4y2 v x2y l cc n thc theo x, y vi bc tng ng

    bng 6 v 3.

    nh ngha 1.2 (Theo [2]). Hai n thc ca cc bin x, y c gi l

    ng dng (tng t), nu chng ch c h s khc nhau. Nh vy, hai n

    thc c gi l ng dng, nu chng c dng: Axkyl, Bxkyl(A 6= B).nh ngha 1.3 (Theo [2]). Gi s Axkyl v Bxmyn l hai n thc ca

    cc bin x, y. Ta ni rng n thc Axkyl tri hn n thc Bxmyn theo

    th t ca cc bin x, y, nu k > m, hoc k = m v l > n.

    5S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng hn: n thc 3x4y2 tri hn n thc 3x2y7, cn n thc x4y5

    tri hn n thc x4y3.

    nh ngha 1.4 (Theo [2]). Mt hm s P(x,y) c gi l mt a thc

    theo cc bin s x, y, nu n c th biu din c di dng tng ca hu

    hn cc n thc. Nh vy, a thc P(x,y) theo cc bin s x, y l hm s

    c dng

    P (x, y) =

    k+l

  • Nh vy

    sk = 1sk1 2sk2. (1.1)Cng thc (1.1) c gi l cng thc Newton, n cho php tnh sk theo

    sk1 v sk2.Vi m=1, m=2, nh l 1.1 ng v

    s1 = x+ y = 1,

    s2 = x2 + y2 = (x+ y)2 2xy = 21 22.

    Gi s nh l ng cho m < k. Khi sk1 v sk2 ln lt l cc athc bc k-1, k-2 ca 1 v 2. Theo cng thc (1.1) ta suy ra sk l a

    thc bc k ca 1 v 2. Theo nguyn l quy np ta c iu phi chng

    minh.

    H qu 1.1. Vi m > n, ta c

    sm+n = sm.sn n2 .smn. (1.2)Tht vy,

    sm+n = xm+n + ym+n = (xm + ym)(xn + yn) xnyn(xmn + ymn) =

    sm.sn n2 .smnS dng cng thc (1.1) v cc biu thc ca s1, s2 chng minh trn,

    ta nhn c cc biu thc sau

    s1 = x+ y = 1,

    s2 = 21 22,

    s3 = 31 312,

    s4 = 41 4212 + 222,

    s5 = 51 5312 + 5122.

    Vic tnh cc tng ly tha sk theo cng thc lp (1.1) khng c thun

    tin v phi bit trc cc tng sk v sk1. i khi ta cn c biu thc skch ph thuc vo 1 v 2. Cng thc tng ng c tm ra nm 1779

    bi nh ton hc ngi Anh E.Waring.

    nh l 1.2 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s 1 v 2 theo cng thc

    1

    ksk =

    [k/2]m=0

    (1)m (k m 1)!m! (k 2m)!

    k2m1

    m2 , (1.3)

    trong [k/2] k hiu l phn nguyn ca k/2.

    7S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng minh. Ta chng minh cng thc (1.3) bng phng php quy np.

    Vi k=1, k=2 cng thc tng ng c dng

    s1 = 1,1

    2s2 =

    1

    221 2.

    Nh vy, vi k=1, k=2 cng thc (1.3) ng. Gi s cng thc Waring

    ng cho s1, s2, ...., sk1. chng minh cng thc ng cho sk ta sdng cng thc (1.1). Ta c

    1

    ksk =

    1

    k[1sk1 2sk2] =

    =k 1k

    1.m=0

    (1)m (k m 2)!m! (k 2m 1)!

    k2m11

    m2

    k 1k

    2.n

    (1)n (k n 3)!n! (k 2n 2)!

    k2n21

    n2 =

    =1

    k

    m

    (1)m (k m 2)! (k 1)m! (k 2m 1)!

    k2m1

    m2

    1k

    n

    (1)n (k n 3)! (k 2)n! (k 2n 2)!

    k2n21

    n+12

    Trong tng th hai thay n+1 bi m. Khi hai tng c th kt hp thnh

    mt nh sau:

    1

    ksk =

    1

    k

    (1)m (k m 2)! (k 1)m! (k 2m 1)!

    k2m1

    m2

    1k

    m

    (1)m1 (k m 2)! (k 2)(m 1)! (k 2m)!

    k2m1

    m2 =

    1

    k

    m

    (1)m (k m 2)![

    k 1m! (k 2m 1)! +

    k 2(m 1)! (k 2m)!

    ]k2m1

    m2 .

    S dng cng thc

    1

    (m 1)! =m

    m!,

    1

    (k 2m 1)! =k 2m

    (k 2m)! ,

    ta c

    (k 1)(k 2m)m!(k 2m)! +

    (k 2)mm!(k 2m)! =

    k(k m 1)m!(k 2m)! .

    Cui cng, v

    (k m 1).(k m 2)! = (k m 1)!nn ta c cng thc cn phi chng minh:

    8S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1ksk =

    [k/2]m=0

    (1)m (k m 1)!m! (k 2m)!

    k2m1

    m2 ,

    Cng thc Waring cho biu thc ca sn = xn + yn theo

    1 = x+ y, 2 = xy sau ys1 = 1;s2 =

    21 22;

    s3 = 31 312;

    s4 = 41 4212 + 222;

    s5 = 51 5312 + 5122;

    s6 = 61 6412 + 92122 232;

    s7 = 71 7512 + 143122 7132;

    s8 = 81 8612 + 204122 162132 + 242;

    s9 = 91 9712 + 275122 302132 + 9142;

    s10 = 101 10812 + 356122 504132 + 252142 252;

    .......................................................................

    1.1.3 Cc nh l v a thc i xng hai bin

    nh l 1.3 (Theo [2]). Mi a thc i xng P(x,y) ca cc bin x, y u

    c th biu din c di dng a thc p(1, 2) theo cc bin 1 = x+ y

    v 2 = xy, ngha l

    P (x, y) = p(1, 2) (1.4)

    Chng minh. Trc ht ta xt trng hp n thc, trong ly tha ca

    x v y cng bc, ngha l n thc dng axkyk. Hin nhin l

    axkyk = a(xy)k = ak2 .

    Tip theo, xt n thc dng bxkyl(k 6= l). V a thc l i xng, nn cs hng dng bxlyk. xc nh, ta gi s k < l v xt tng hai n thc

    trn

    b(xkyl + xlyk) = bxkyk(xlk + ylk) = bk2slk.

    Theo cng thc Waring slk l mt a thc ca cc bin 1, 2, nn nhthc ni trn l mt a thc ca 1, 2.

    V mi a thc i xng l tng ca cc s hng dng axkyk v

    b(xkyl + xlyk), nn mi a thc i xng u biu din c dng a

    thc theo cc bin 1 v 2.

    9S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.4 (Tnh duy nht (Theo [2])). Nu cc a thc (1, 2) v

    (1, 2) khi thay 1 = x + y, 2 = xy cho ta cng mt a thc i xng

    P(x,y), th chng phi trng nhau, ngha l (1, 2) (1, 2) .Chng minh. t (1, 2) = (1, 2) (1, 2). Khi theo gi thitta c:

    (x+ y, xy) = (x+ y, xy) (x+ y, xy) = P (x, y) P (x, y) = 0.Ta s chng t rng (1, 2) 0. D thy rng, sau khi m ngoc thbiu thc

    f (x, y) := (x+ y)k(xy)l

    l mt a thc ca cc bin x, y v c s hng tri nht theo th t cc

    bin x, y l xk+lyl.

    Gi s (1, 2) c dng

    (1, 2) =k,l

    Aklk1

    l2.

    tm s hng tri nht, ta chn trong (1, 2) cc s hng c k+l l

    ln nht. Tip theo, trong cc s hng ni trn, chn ra cc s hng vi

    gi tr ln nht ca l. V d, nu

    (1, 2) = 3412 42132 + 142 6122 + 1132 71 + 52 + 8

    th s hng c chn s l 142.

    Nh vy, gi s chn c n thc Am1 n2 . Khi , nu thay

    1 = x+ y, 2 = xy, th s hng tri nht ca s l Axm+nyn. Tht vy,

    gi s Bk1l2 l n thc ty khc vi Ax

    m+nyn. Khi theo cch chn

    c hoc m+n > l+l, hoc m+n = k+l, nhng n > l. Trong c hai trng

    hp th Axm+nyn tri hn Bxk+lyl.

    Vy chng t rng Axm+nyn l n thc tri nht ca (x + y, xy), nn

    (x+ y, xy) 6= 0,x, y nu (1, 2) 6= 0. Vy, ta c (1, 2) 0.V d 1.1. Biu din a thc sau theo cc a thc i xng c s

    f (x, y) = x5+3x3y2x3y3+2xy47x2y2+y5+3x2y35xy35x3y+2x4y= x3y3 7x2y2 + (x5 + y5)+ 3 (x3y2 + x2y3)+ 2 (xy4 + x4y)

    5(xy3 + x3y

    )=

    = x3y37x2y2+(x5 + y5)+3x2y2 (x+ y)+2xy (y3 + x3)5xy (y2 + x2)= 32 722 + s5 + 3221 + 22s3 52s2 =

    = 32722+(515312+5122)+3122+22(31312)52(2122)= 51 3312 5212 + 2122 32 + 322.

    10S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1.2 a thc i xng ba bin

    1.2.1 Cc khi nim c bn

    nh ngha 1.9 (Theo [2]). Mt n thc (x, y, z) ca cc bin x, y, z

    c hiu l hm s c dng

    (x, y, z) = aklmxkylzm,

    trong k, l,m N c gi l bc ca cc bin x, y, z;s aklm R = R\ {0} c gi l h s ca n thc, cn s k+l+m gil bc ca n thc (x, y, z).

    nh ngha 1.10 (Theo [2]). Mt hm s P(x,y,z) ca cc bin x, y, z

    c gi l mt a thc, nu n c th c biu din dng tng hu hn

    cc n thc:

    P (x, y, z) =

    k+l+mnaklmx

    kylzm.

    Bc ln nht ca cc n thc trong a thc c gi l bc ca a thc.

    nh ngha 1.11 (Theo [2]). a thc P(x,y,z) c gi l i xng ca

    cc bin x, y, z, nu n khng thay i vi mi hon v ca x, y, z, ngha

    l

    P (x, y, z) = P (x, z, y) = P (y, x, z) = P (y, z, x) = P (z, y, x) = P (z, x, y).

    Chng hn cc a thc di y l nhng a thc i xng theo cc

    bin x, y, z

    x4 + y4 + z4 2x2y2 2x2z2 2y2z2;(x+ y)(x+ z)(y + z);

    (x y)2(y z)2(z x)2.

    nh ngha 1.12 (Theo [2]). a thc i xng P(x,y) c gi l thun

    nht bc m, nu:

    P (tx, ty, tz) = tmP (x, y, z),t 6= 0nh ngha 1.13 (Theo [2]). Cc a thc

    1 = x+ y + z, 2 = xy + yz + zx, 3 = xyz,

    c gi l cc a thc i xng c s ca cc bin x, y, z.

    11S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1.2.2 Tng ly tha v tng nghch o

    nh ngha 1.14 (Theo [2]). Cc a thc sk = xk+yk+zk, (k = 0, 1, ...),

    c gi l tng ly tha bc k ca cc bin x, y, z.

    nh l 1.5 (Cng thc Newton (Theo [2])). Vi mi k Z, ta c hthc

    sk = 1sk1 2sk2 + 3sk3 (1.5)Chng minh. Tht vy, ta c

    1sk1 2sk2 + 3sk3 =

    = (x+ y + z)(xk1 + yk1 + zk1)

    (xy + xz + yz)(xk2 + yk2 + zk2) + xyz(xk3 + yk3 + zk3) =

    = (xk + yk + zk + xyk1 + xk1y + xzk1 + xk1z + yzk1 + yk1z)

    (xk1y + xyk1 + xk1z + xzk1 + yk1z + yzk1+

    +xyzk2 + xyk2z + xk2yz) + (xk2yz + xyk2z + xyzk2) =

    = xk + yk + zk = sk.

    nh l 1.6 (Theo [2]). Mi tng ly tha sk = xk + yk + zk u c th

    biu din c di dng mt a thc bc n theo cc bin 1, 2, 3.

    Chng minh. Ta chng minh nh l bng phng php quy np. Ta c

    s0 = 3, s1 = x+ y + z = 1s2 = x

    2 + y2 + z2 = (x+ y + z)2 2(xy + yz + zx) = 21 22.Nh vy, nh l ng vi n = 0, n = 1, n = 2. Gi s nh l ng vi

    n = k 1, n = k 2, n = k 3(k > 3). Khi , theo cng thc Newton,nh l cng ng vi n = k.

    Cng thc (1.5) cho php biu din cc tng ly tha sk theo cc a

    thc i xng c s 1, 2, 3, nu bit trc cng thc biu din ca

    sk1, sk2. nh l sau cho ta cng thc biu din trc tip sk theo cc athc i xng c s 1, 2, 3.

    12S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.7 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s theo cng thc

    1

    ksk =

    l+2m+3n=k

    (1)klmn (l +m+ n 1)!l!m!n!

    l1m2

    n3 . (1.6)

    Cng thc (1.6) c chng minh bng phng php quy np vi s tr

    gip ca cng thc (1.5). Nh cng thc Waring chng ta c th tm c

    cc cng thc sau

    Biu thc ca sn = xn + yn + zn tnh theo 1, 2, 3.

    s0 = 3;s1 = 1;s2 =

    21 22;

    s3 = 31 312 + 33;

    s4 = 41 4212 + 222 + 413;

    s5 = 51 5312 + 5122 + 5213 523;

    s6 = 61 6412 + 92122 232 + 6313 12123 + 323;

    s7 = 71 7512 + 143122 7132 + 7413 212123 + 7123 + 7223;

    s8 = 81 8612 + 204122 162132 + 242 + 8513 323123+

    +122123 + 241

    223 8223;

    s9 = 91 9712 + 275122 302132 + 9142 + 9613454123 + 5421223 + 183123 9323 271223 + 333;

    s10 = 101 10812 + 356122 504132 + 252142 252 + 10713605123 + 10031223 + 254123 401323 6021223 + 10133 + 152223;

    .......................................................................

    nh ngha 1.15 (Theo [2]). Cc biu thc

    sk = xk + yk + zk =1

    xk+

    1

    yk+

    1

    zk, (k = 1, 2, ...)

    c gi l tng nghch o ca cc bin x, y, z.

    Do cng thc (1.5) ng vi k Z, nn nu trong cng thc thayk bi 3 k, ta c

    sk =23s1k 1

    3s2k +

    1

    3s3k (1.7)

    S dng cng thc (1.7) c th tm c cc biu thc ca cc tng nghch

    o theo cc a thc i xng c s. Chng hn:

    13S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s1 =23s0 1

    3s1 +

    1

    3s2 =

    23.3 1

    3.1 +

    1

    3(21 22) =

    23

    ;

    s2 =23s1 1

    3s0 +

    1

    3s1 =

    23.23 13.3 +

    1

    31 =

    22 21323

    ;

    s3 =23s2 1

    3s1 +

    1

    3s0 =

    23.22 213

    23 13.23

    +1

    3.3 =

    =32 3123 + 323

    33;

    s4 =23s3 1

    3s2 +

    1

    3s1 =

    =23.32 3123 + 323

    33 13.22 213

    23+

    1

    3.23

    =

    =42 41223 + 4223 + 22123

    43

    1.2.3 Qu o ca n thc

    nh ngha 1.16 (Theo [2]). a thc i xng vi s cc s hng ti

    thiu, mt trong cc s hng ca n l n thc xkylzm c gi l qu

    o ca n thc xkylzm v c k hiu l O(xkylzm).

    R rng l tm qu o ca n thc xkylzm cn phi b sung vo n

    thc tt c cc hon v ca x, y, z. Vi k 6= l 6= m, ta c:O(xkylzm) = xkylzm + xkymzl + xlykzm + xlymzk + xmykzl + xmylzk.

    V d 1.2 (Theo [5]). Ta c

    O(x5y2z) = x5y2z + x5yz2 + x2y5z + x2yz5 + xy5z2 + xy2z5;

    O(x3y) = O(x3yz0) = x3y + xy3 + x3z + xz3 + y3z + yz3.

    Nu trong n thc xkylzm c hai s m no bng nhau, chng hn

    k = l 6= m, thO(xkykzm) = xkykzm + xkymzk + xmykzk

    Chng hn: O(xyz5) = xyz5 + xy5z + x5yz,

    O(xy) = xy + yz + zx,

    O(x3y3) = x3y3 + x3z3 + y3z3.

    Cc trng hp ring ca qu o:

    14S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • O(x) = O(xy0z0) = x+ y + z = 1,

    O(xy) = O(xyz0) = xy + yz + zx = 2,

    O(xyz) = xyz = 3, O(xk) = O(xky0z0) = xk + yk + zk = sk, k N.

    nh l 1.8 (Theo [2]). Qu o ca mi n thc biu din c di

    dng a thc theo cc n thc i xng c s.

    Chng minh. Trc ht ta c O(xk) = sk, nn theo nh l (1.6), O(xk)

    biu din c theo cc a thc i xng c s.

    Trng hp qu o c dng O(xkyl). Ta c cng thc

    O(xkyl) = O(xk)O(xl)O(xk+l)(k 6= l). (1.8)Tht vy, ta c

    O(xk)O(xl)O(xk+l) = (xk+yk+zk)(xl+yl+zl)(xk+l+yk+l+zk+l) =

    = (xk+l + yk+l + zk+l) + (xkyl + xlyk + xkzl + xlzk + ykzl + ylzk)(xk+l + yk+l + zk+l) =

    = xkyl + xlyk + xkzl + xlzk + ykzl + ylzk = O(xkyl).

    Nu k = l th cng thc (1.8) c thay bi cng thc sau:

    O(xkyk) =1

    2[(O(xk))2 O(x2k)]. (1.9)

    T (1.8) v (1.9), suy ra cc qu o O(xkyl) biu din c di dng

    a thc theo cc bin 1, 2, 3.

    Cui cng, nu n thc xkylzm ph thuc vo c ba bin x, y, z, ngha

    l k 6= l 6= m 6= 0, th n thc xkylzm s chia ht cho ly tha vi s mno ca xyz. V vy trong a thc O(xkylzm) c th a ly tha vi

    s m no ca xyz = 3 ra ngoi ngoc, khi trong ngoc ch l qu

    o ph thuc vo s bin t hn ba. Do , qu o O(xkylzm) biu din

    c di dng a thc ca 1, 2, 3.

    Bng cch trn ta d dng nhn c cc cng thc sau:

    15S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Qu o O(xkyl) biu din dng a thc theo 1, 2, 3.O(xy) = 2;O(x2y) = 12 33;O(x3y) = 212 222 13;O(x2y2) = 22 213;O(x4y) = 312 3122 213 + 523;O(x3y2) = 1

    22 2213 23;

    O(x5y) = 412 42122 33 + 7123 + 232 323;O(x4y2) = 21

    22 232 2313 + 4123 323;

    O(x3y3) = 32 + 323 3123;

    .......................................................................

    S dng cc cng thc biu din ca tng nghch o theo cc a thc c

    s, d dng tm c cc qu o O(xkyk). Tht vy, ta c

    sk =1

    xk+

    1

    yk+

    1

    zk=ykzk + xkzk + xkyk

    xkykzk=O(xkyk)

    k3.

    Suy ra

    O(xkyk) = k3sk;O(x2y2) = 23s2 =

    22 213;

    O(x3y3) = 33s3 = 32 3123 + 323;

    O(x4y4) = 43s4 = 42 41223 + 4223 + 22123;

    1.2.4 Cc nh l ca a thc i xng ba bin

    nh l 1.9 (Theo [2]). Mi a thc i xng ba bin x, y, z u c th

    biu din di dng a thc theo cc bin 1 = x+y+z, 2 = xy+yz+zx,

    3 = xyz.

    Chng minh. Gi s f(x, y, z) l a thc i xng v axkylzm l mt

    trong cc s hng ca f(x, y, z). Do tnh i xng, cng vi s hng trn,

    f(x, y, z) cha qu o O(xkylzm) vi tha s chung l a. Nh vy ta c

    f(x, y, z) = a.O(xkylzm) + f1(x, y, z), (1.10)

    trong f1(x, y, z) l a thc i xng no vi t s hng hn. i vi

    f1(x, y, z) ta li c cng thc tng t nh cng thc (1.9). Theo mt s

    hu hn bc ni trn, ta c th phn tch a thc f(x, y, z) thnh tng

    cc qu o. Theo nh l (1.8), mi qu o li l mt a thc theo cc

    a thc i xng c s, do mi a thc i xng c th biu din c

    dng a thc theo cc a thc i xng c s.

    16S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.10 (nh l duy nht (Theo [2])). Nu cc a thc (1, 2, 3)

    v (1, 2, 3) khi 1 = x + y + z, 2 = xy + yz + zx, 3 = xyz cho ta

    cng mt a thc i xng P(x,y,z), th chng phi trng nhau, ngha l

    (1, 2, 3) (1, 2, 3) .Chng minh. thun tin ta t

    t1 = 1, t2 = 2, t3 = 3; x1 = x, x2 = y, x3 = z.

    (t1, t2, t3) = (t1, t2, t3) (t1, t2, t3).Theo gi thit ta c

    (1, 2, 3) = P (x1, x2, x3) P (x1, x2, x3) = 0.1 = x1 + x2 + x3, 2 = x1x2 + x1x3 + x2x3, 3 = x1x2x3

    Ta chng minh l a thc khng, ngha l ng nht bng khng. t

    Q(x1, x2, x3) = (x1 +x2 +x3, x1x2 +x1x3 +x2x3, x1x2x3) = (1, 2, 3).

    R rng Q(x1, x2, x3) l a thc i xng. Ta vit li (t1, t2, t3) dng

    (t1, t2, t3) = 0(t1, t2) + 1(t1, t2)t3 + 2(t1, t2)t23 + ...+ m(t1, t2)t

    m3

    v k hiu 1, 2 l nhng a thc i xng c s ca cc bin x1, x2. D

    thy rng

    k(x1, x2, 0) = k(x1, x2) (k=1, 2), 3(x1, x2, 0) = 3(x1, x2) = 0.

    Theo iu kin ca bi ton ta c

    Q(x1, x2, x3) = 0(1, 2)+1(1, 2)3+2(1, 2)23+...+m(1, 2)

    m3 =

    0, x1, x2, x3.Khi th

    R(x1, x2) := Q(x1, x2, 0) = 0(1, 2) = 0,x1, x2.V R(x1, x2) l a thc i xng hai bin, nn theo nh l tnh duy nht

    ca a thc i xng hai bin (1.4) suy ra 0 ng nht bng khng. Nh

    vy ta c

    Q(x1, x2, x3) = 3[1(1, 2) + 2(1, 2)3 + ...+ m(1, 2)m13 ] = 0,

    x1, x2, x3.v 3 6= 0, nn a thcQ(x1, x2, x3) = 1(1, 2) + 2(1, 2)3 + ...+ m(1, 2)

    m13 = 0,

    x1, x2, x3.

    17S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Lp lun tng t nh trn suy ra 1 ng nht bng khng. Tng t c

    2, 3, ..., m l nhng a thc khng. Vy l a thc khng.

    biu din mt a thc i xng qua cc a thc i xng c s, mt

    cch tng qut, ta tin hnh theo cc bc nh trong chng minh nh l

    (1.9). Tuy nhin, trong trng hp a thc l thun nht, ta c th dng

    phng php " h s bt nh". C s ca phng php ny l mnh

    sau.

    Mnh 1.1 (Theo [2]). Cho fm(x, y, z) l mt a thc i xng thun

    nht bc m. Khi fm(x, y, z) c biu din qua cc a thc i xng c

    s theo cng thc

    fm(x, y, z) =

    i+2j+3k=m

    aijki1

    j2

    k3 , (i, j, k N).

    Mnh 1.1 c suy ra t cc nh l ca a thc i xng vi

    1, 2, 3 ln lt c bc l 1, 2, 3 i vi cc bin x, y, z. Di y l mt

    s trng hp ring ca mnh .

    f1(x, y, z) = a11;

    f2(x, y, z) = a121 + a22;

    f3(x, y, z) = a131 + a212 + a33;

    f4(x, y, z) = a141 + a2

    212 + a3

    22 + a413;

    f5(x, y, z) = a151 + a2

    312 + a31

    22 + a4

    213 + a523;

    trong , ai(i = 1, 2, ...) l cc hng s c xc nh duy nht (theo nh

    l 1.10) v tm cc h s ny, ta cho x, y, z nhn cc gi tr c th thch

    hp no .

    V d 1.3. Biu din a thc sau y theo cc a thc i xng c s

    f(x, y, z) = x4 + y4 + z4 2x2y2 2x2z2 2y2z2.Li gii. Ta c

    f(x, y, z) = O(x4) 2O(x2y2) == (41 4212 + 222 + 413) 2(22 213) = 41 4212.

    V d 1.4. Biu din a thc sau y theo cc a thc i xng c s

    f(x, y, z) = (x y)2(y z)2(z x)2.Li gii. Do f(x, y, z) l a thc thun nht bc 6, nn theo mnh (1.1)

    ta c

    18S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • f(x, y, z) = a161 + a2

    412 + a3

    21

    22 + a4

    32 + a5

    313 + a6

    23 + a7123.

    Nhn xt rng, f(x, y, z) c bc cao nht i vi tng bin l 4, nn

    a1 = a2 = 0. tm cc h s cn li, ta cho (x,y,z) ln lt cc gi tr

    (0, 1,1), (0, 1, 1), (1, 1,2), (1, 1, 1), (1, 1, 1), ta tm c a3 = 1,a4 = 4, a5 = 4, a6 = 27, a7 = 18. Vy ta c kt qu

    f(x, y, z) = 2122 432 4313 2723 + 18123.

    1.2.5 a thc phn i xng

    nh ngha 1.17 (Theo [2]). a thc phn i xng l a thc thay i

    du khi thay i v tr ca hai bin bt k.

    V d: Cc a thc x y v x4y2 y4x2 + x4y y4x+ x3y2 x2y3, lcc a thc phn i xng hai bin, cn a thc (x y)(x z)(y z) la thc phn i xng ba bin n gin.

    nh l 1.11 (nh l Benzout (Theo [2])). Gi s f(t) l a thc bc

    n > 1 . Khi s d trong php chia ca a thc cho t a bng f(a). athc f(t) chia ht cho t a khi v ch khi f(a) = 0 .Chng minh. Tht vy, thc hin php chia a thc f(t) cho ta, ta c

    f(t) = g(t)(t a) + r(t).V t a c bc bng 1, nn a thc d r(t) c bc bng khng, ngha lr(t)=r l hng s. Trong ng thc trn cho t = a, ta c r = f(a). T

    suy ra f(t) chia ht cho t a khi v ch khi f(a) = 0.nh l 1.12 (Theo [2]). Mi a thc phn i xng hai bin f(x, y) u

    c dng:

    f(x, y) = (x y)g(x, y), (1.11)trong g(x, y) l a thc i xng theo cc bin x, y.

    Chng minh. Ta thy rng f(x, y) l a thc phn i xng th

    f(x, x) = 0, v theo nh ngha ta c

    f(x, y) = f(y, x).Trong ng thc trn t y = x, th f(x, x) = f(x, x), suy ra f(x, x) = 0.Ta k hiu Fy(x) = f(x, y) l a thc ch theo bin x (coi y l tham s).

    Theo nhn xt trn, ta c Fy(y) = 0. Theo nh l Bezout, a thc Fy(x)

    chia ht cho x y, do f(x, y) chia ht cho x y, ngha l c19S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • f(x, y) = (x y)g(x, y),trong g(x, y) l a thc no . Trong cng thc (1.11) i ch ca x

    v y ta c

    f(y, x) = (y x)g(y, x),V theo gi thit f(x, y) = f(y, x) v cng v x y = (y x) , nn tac:

    f(x, y) = (x y)g(y, x), (1.12)T (1.11) v (1.12), suy ra g(x, y) l a thc i xng theo cc bin x,y.

    nh l 1.13 (Theo [2]). Mi a thc phn i xng ba bin f(x, y, z)

    u c dng

    f(x, y, z) = (x y)(x z)(y z)g(x, y, z),trong g(x, y, z) l a thc i xng theo cc bin x, y, z.

    nh l (1.13) c chng minh tng t nh l (1.12). Trong a thc

    phn i xng, cc a thc x y v T = (x y)(x z)(y z) ng vaitr rt quan trng v c gi l cc a thc phn i xng n gin nht

    tng ng i vi a thc phn i xng hai bin v ba bin.

    i vi a thc phn i xng thun nht, ta c kt qu sau.

    Mnh 1.2 (Theo [2]). Cho fm(x, y, z) l mt a thc i xng thun

    nht bc m. Khi

    f3(x, y, z) = aT (x, y, z),

    f4(x, y, z) = aT (x, y, z)1,

    f5(x, y, z) = T (x, y, z)(a21 + b2),

    f6(x, y, z) = T (x, y, z)(a31 + b12 + c3), trong a, b, c l cc

    hng s.

    nh ngha 1.18 (Theo [2]). Bnh phng ca a thc phn i xng n

    gin nht gi l bit thc.

    Nh vy, trong trng hp hai bin, bit thc ca cc bin x, y l

    (x, y) = (x y)2cn trong trng hp ba bin, th bit thc ca cc bin x, y, z l

    (x, y) = T 2 = (x y)2(x z)2(y z)2.D thy rng : (x, y) = 21 42. Theo v d (1.3), ta c

    (x, y, z) = 4313 + 2122 + 18123 432 2723, (1.13)trong 1, 2, 3 l cc a thc i xng c s.

    20S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 2

    ng dng tnh cht ca a thc ixng gii mt s bi ton i s

    2.1 Mt s bi tp tnh ton

    Bi 2.1. Cho x+1

    x= a. Tnh M = x13 +

    1

    x13.

    ( thi HSG lp 8, tnh Thi Nguyn nm 1997 - 1998).

    Li gii. S dng cng thc Waring ta tnh s13 = x13 +

    1

    x13theo 1 =

    x+1

    x= a;2 = x.

    1

    x= 1 c:

    M = s13 = 13.6

    m=0

    (1)m (13m 1)!m! (13 2m)!

    132m1

    m2 =

    = 131 13111 2 + 659122 1567132 + 1825142 913152 + 13162 == a13 13a11 + 65a9 156a7 + 182a5 91a3 + 13a.Bi 2.2. Tm hai ch s tn cng ca phn nguyn s (

    29 +

    21)2010.

    Li gii. t

    a = (

    29 +

    21)2 = 50 + 2

    609,

    b = (

    2921)2 = 50 2609,sn = a

    n + bn.

    Ta c s1 = 1 = 100, 2 = ab = 64. Theo cng thc Newton th

    sn+2 = 1sn+1 2snhay

    sn+2 = 100sn+1 64sn

    21S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do s1 = 100 nn sn+2 chia ht cho 100, vi n l 3,5,7,... (n l s l). Suy

    ra s1005 = (

    29 +

    21)2010 + (

    2921)2010 chia ht cho 100.Do 0 < (

    2921)2010 < 1, nn 2 ch s tn cng ca phn nguyn ca

    s (

    29 +

    21)2010 l 99.

    Bi 2.3. Cho dy s Un = (3 +

    5

    2)n + (

    352

    )n 2 (n = 1, 2, 3, ..., n)1. Tnh 5 s hng u ca dy.

    2. Lp cng thc tnh Un+2 theo Un+1 v Un.

    Li gii. t a = (3 +

    5

    2); b = (

    352

    ); sn = an + bn.

    Ta c s1 = 1 = a+ b = 3;2 = a.b = 1; s2 = 21 22.

    p dng cng thc Newtn sn+2 = 1sn+1 2sn. Ta cs3 = 1s2 2s1 = 3.7 1.3 = 18s4 = 1s3 2s2 = 3.18 1.17 = 37s5 = 1s4 2s3 = 3.37 1.18 = 93

    M Un = sn 2 nn U1 = 1;U2 = 5;U3 = 16;U4 = 35;U5 = 91. Dosn = Un+2 nn bng cch thay vo cng thc Newtn sn+2 = 1sn+12snta c

    Un+2 + 2 = 3(Un+1 + 2) 1.(Un + 2)hay

    Un+2 = 3Un+1 Un + 2Bi 2.4. Cho cc s thc dng a, b tha mn: a100 + b100 = a101 + b101 =

    a102 + b102. Tnh a2008 + b2008.

    Li gii. t s1 = 1 = a + b = 3;2 = a.b; sn = an + bn. S dng cng

    thc Newtn ta c s102 = 1.s101 2.s100 m s102 = s101 = s100 nn1 2 = 1 hay a+ b ab 1 = 0 (a 1)(b 1) = 0 a = b = 1 do s2008 = a

    2008 + b2008 = 2.

    Bi 2.5. Cho x1, x2 l nghim ca phng trnh x2 2x 2 = 0. Tnh

    x71 + x72.

    Li gii. t sn = xn1 +x

    n2 , ta c s1 = 1 = 2;2 = 2; s2 = 2122 = 8,

    nn theo cng thc Newtn sn+2 = 1sn+1 2sn ta c s3 = 20; s4 = 56T h qu ca cng thc Newtn sm+n = smsn n2 smn vi m > n cs7 = s4s3 32s1 = 56.20 (2)3.2 = 1136.Bi 2.6 (Vit Nam, 1975 (Theo [2])). Khng gii phng trnh x3x+1 =0, hy tnh tng cc ly tha bc tm ca cc nghim.

    22S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Li gii. Gi x1, x2, x3 l cc nghim ca phng trnh cho. Theo cng

    thc Vite, ta c 1 = x1 + x2 + x3 = 0, 2 = x1x2 + x2x3 + x1x3 =

    1, 3 = x1x2x3 = 1. S dng cng thc Waring, ta cx81 + x

    82 + x

    83 = s8 = s8 =

    81 8612 + 204122 162132 + 242 + 8513

    323123 + 122123 + 241223 8223 = 10.

    Bi 2.7. Tm a thc bc 7 c h s nguyn nhn x = 7

    3

    5+ 7

    5

    3lm

    nghim.

    Li gii. t a = 7

    3

    5; b = 7

    5

    3.

    t sn = an + bn, ta c s1 = 1 = a+ b = x, 2 = ab = 1.

    Theo cng thc Waring c

    s7 = 71 7512 + 143122 7132

    35

    +5

    3= x7 7x5 + 14x3 7x

    15x7 105x5 + 210x3 105x 34 = 0.Vy a thc bc 7 cn tm l 15x7 105x5 + 210x3 105x 34.Bi 2.8. Cho x1, x2 l nghim ca phng trnh x

    2 6x + 1 = 0.Chngminh rng sn = x

    n1 + x

    n2 , n N l s nguyn khng chia ht cho 5.

    Li gii.

    Ta chng minh sn Z bng phng php quy np.Vi n=0 c s0 = 2 ZVi n=1 c s1 = 6 ZGi s sk, sk+1 Z, (k N) ta cn chng minh sk+2 Z.Tht vy, do s1 = 1 = 6, 2 = 1 m sk+2 = 1sk+1 2skhay sk+2 = 6sk+1 sk. Vy sk+2 Z.T kt qu sk+2 = 6sk+1 sk m

    sk+1 = 6sk sk1nn

    sk+2 = 6(6sk sk1) sk = 35sk 5sk1 sk1,do sk+2 chia ht cho 5 khi v ch khi sk1 chia ht cho 5 m s0 = 2;s1 = 6; s2 = 34 khng chia ht cho 5 nn sn khng chia ht cho 5.

    23S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.2 Phn tch a thc thnh nhn t

    Lun vn trnh by hai phng php phn tch a thc i xng thnh

    nhn t. Phng php th nht ta biu din a thc cho theo cc a

    thc i xng c s 1, 2. Phng php th hai l phng php h s bt

    nh.

    Cc Bi tp trong mc ny c trch dn t [5].

    Bi 2.9. Phn tch a thc sau thnh nhn t

    f(x, y) = 2x4 + 7x3y + 9x2y2 + 7xy3 + 2y4

    Li gii.Ta c

    f(x, y) = 2(x4 + y4) + 7xy(x2 + y2) + 9x2y2 = 2s4 + 71s2 + 922

    Thay s2 = 21 22, s4 = 41 4212 + 222 vo biu thc trn ta c

    f(x, y) = 241 212 22a thc trn c bc hai i vi 2 v c cc nghim l: 2 = 221, 2 = 21,do

    f(x, y) = (221 2)(21 2) = (x2 xy + y2)(2x2 + 3xy + y2).Bi 2.10. Phn tch a thc sau thnh nhn t

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4.Li gii. Ta c

    f(x, y) = 3(x4 + y4) 8xy(x2 + y2) + 14x2y2 = 3s4 82s2 + 1422Thay s2 =

    21 22, s4 = 41 4212 + 222 vo biu thc trn ta c

    f(x, y) = 341 20212 + 3622y l mt a thc bc hai theo 2 v khng c nghim (nghim thc). V

    vy ta khng th phn tch a thc thnh tch hai nh thc theo 2, ta vn

    dng phng php h s bt nh th biu din a thc cho dng

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4

    = (Ax2 +Bxy + Cy2)(Cx2 +Bxy + Ay2) (2.1)

    ng thc (2.1) tha mn vi mi x, y, nn ta s tm cc h s A, B, C

    bng phng php h s bt nh nh sau:

    Vi x=y=1, ta c

    24S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 4 = (A+B + C)2

    suy ra

    A+B + C = 2Nhn xt rng cc h s A, B, C c xc nh chnh xc n du ca

    chng, v nu thay i du ca tt c cc s ny thnh ngc li th ng

    thc (2.1) khng thay i. V vy, khng lm mt tnh tng qut, ta c

    A+B + C = 2

    Tip theo, vi x = 1, y = 1, ta c36 = (AB + C)2 suy ra A+B + C = 6.

    Tip theo, vi x = 0, y = 1 , ta c AC = 3

    Vy xc nh cc h s A, B, C ta gii cc h phng trnh{A+B + C = 2AB + C = 6AC = 3

    v

    {A+B + C = 2AB + C = 6AC = 3

    H phng trnh th nht cho ta nghim A = 1, B = 2, C = 3. H thhai v nghim (nghim thc). Vy ta c kt qu

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4 == (x2 2xy + 3y2)(3x2 2xy + y2).

    Tip sau y, ta t 1, 2, 3 l cc a thc i xng c s ca b ba

    s x, y, z hoc a, b, c. Chng hn, vi b ba s x, y, z ta c 1 = x+ y+ z,

    2 = xy + xz + yz, 3 = xyz.

    Bi 2.11. Phn tch a thc sau thnh nhn t

    f(x, y, z) = (x+ y)(y + z)(z + x) + xyz

    Li gii. Ta c

    f(x, y, z) = (1 z)(1 x)(1 y) + 3 =

    = 31 21(x+ y + z) + 1(xy + yz + zx) 3 + 3 =

    = 31 31 + 12 3 + 3 = 12 =

    = (x+ y + z)(xy + yz + zx).

    25S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.12. Phn tch a thc sau thnh nhn t

    f(a, b, c) = (a+ b+ c)3 (b+ c a)3 (c+ a b)3 (a+ b c)3

    Li gii. Ta c

    f(a, b, c) = 31 (1 2a)3 (1 2b)3 (1 2c)3 =

    = 231 + 621(a+ b+ c) 121(a2 + b2 + c2) + 8(a3 + b3 + c3) =

    = 231 + 631 121s2 + 8s3 =

    = 231 + 631 121(21 22) + 8(31 312 + 33) =

    = 243 = 24abc

    Vy

    f(a, b, c) = (a+ b+ c)3 (b+ ca)3 (c+a b)3 (a+ b c)3 = 24abc.Bi 2.13. Phn tch a thc sau thnh nhn t

    f(x, y, z) = 2x2y2 + 2y2z2 + 2z2x2 x4 y4 z4.Li gii. Ta c

    f(x, y, z) = 2O(x2y2)s4 = 2(22213)(414212 +222 +413) =

    = 41 + 4212 813 = 1(31 + 412 83)

    Ta thy, a thc trn l a thc bc bn i vi 1 v chia ht cho 1. Hn

    na, a thc cho l hm chn i vi x, y, z nn khi ta thay x bi -x

    ( hoc y bi -y, hoc z bi -z) th a thc khng thay i, nhng x+y+z tr

    thnh -x+y+z (hoc x-y+z hoc x+y-z), do a thc cng chia ht cho

    -x+y+z , x-y+z , x+y-z. Cng v a thc cho bc bn, nn ta c:

    f(x, y, z) = (x+ y + z)(x+ y + z)(x y + z)(x+ y z).Ptrong P l hng s no .

    Hng s P c xc nh bng phng php h s bt nh, bng cch cho

    x = y = z = 1, ta c 3 = 3P hay P=1.

    Vy ta c kt qu:

    f(x, y, z) = (x+ y + z)(x+ y + z)(x y + z)(x+ y z).

    26S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.3 Phng trnh i xng v phng trnh hi quy

    a thc i xng l cng c hu hiu gii cc phng trnh i s

    bc cao, c bit l phng trnh h s i xng v phng trnh hi quy.

    nh ngha 2.1 (Theo [2]). a thc

    f(z) = a0zn + a1z

    n1 + ...+ an; (a0 6= 0)c gi l a thc i xng, nu cc h s cch u hai u bng nhau,

    ngha l

    a0 = an, a1 = an1, a2 = an2, ...

    Phng trnh ca a thc i xng c gi l phng trnh i xng.

    Chng hn, cc a thc sau y l a thc h s i xng :

    9z6 18z5 73z4 + 164z3 73z2 18z + 9,z8 + 4z6 10z4 + 4z2 + 1,10z6 + z5 47z4 47z3 + z2 + 10z.

    nh l 2.1 (Theo [2]). a thc f(z) bc n l a thc i xng khi v ch

    khi

    znf(1

    z) = f(z), z 6= 0. (2.2)

    Chng minh. Gi s f(z) c dng

    f(z) = a0zn + a1z

    n1 + ...+ an. (2.3)

    Vi z 6= 0, trong (2.3) thay z bi 1z, ta c

    znf(1

    z) = anz

    n + an1zn1 + ...+ a1z + a0. (2.4)

    So snh (2.3) v (2.4) ta thy h thc (2.2) xy ra khi v ch khi

    a0 = an, a1 = an1, a2 = an2, ...

    ngha l f(z) l a thc i xng. nh l c chng minh.

    nh ngha 2.2 (Theo [2]). Cc a thc

    a0z2n +a1z

    2n1 + ...+an1zn+1 +anzn +an1zn1 + ...+n1a1z+na0,a0z

    2n+1 + a1z2n + ...+ an1zn+2 + anzn+1 + anzn + 2an1zn1 + ...+

    2n1a1z + 2n+1a0,

    27S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • trong a0 6= 0 v 6= 0 c gi l cc a thc hi quy. Phng trnhca a thc hi quy c gi l phng trnh hi quy.

    Khi = 1 th a thc hi quy tr thnh a thc h s i xng. V d,

    phng trnh

    2x5 + 6x4 2x3 + 4x2 48x 64 = 0l phng trnh hi quy = 2, cn phng trnh

    4x6 + 5x5 3x4 + 10x3 9x2 + 45x+ 108 = 0l phng trnh hi quy = 3.

    nh l 2.2 (Theo [2]). Mi a thc hi quy bc chn 2k

    f(z) =

    a0z2k + a1z

    2k1 + ...+ ak1zk+1 + akzk +ak1zk1 + ...+k1a1z+ka0,

    u biu din c dng f(z) = zkh(), trong = z +

    z, h() l

    mt a thc no theo bin v c bc k.

    Mi a thc hi quy bc l f(z) u c dng f(z) = (z + )g(z), trong

    g(z) l a thc hi quy bc chn.

    Chng minh. Trc ht xt a thc h s i xng f(z) c bc 2k. Vi

    z 6= 0 ta bin i f(z) nh sau:

    f(z) = zk[a0(zk +

    k

    zk) + a1(z

    k1 +k1

    zk1) + ...+ ak1(z +

    z) + ak].

    t = z +

    z, sk = z

    k +k

    zk. Ta s chng t rng sk l a thc bc k

    theo . Tht vy, nu t x = z, y =

    zth ta c = x + y = 1, =

    xy = 2, sk = xk + yk. Do theo nh l 1.1, cc tng ly tha sk l cc

    a thc bc k theo cc bin 1, 2, hay l theo cc bin v , ngha l

    ch theo bin .

    Li xt a thc i xng bc l 2k+1:

    f(z) = a0z2k+1 + a1z

    2k + ...+ ak1zk+2 + akzk+1 + akzk + 2ak1zk1 +...+ 2k1a1z + 2k+1a0,

    Vi z 6= 0 ta bin i f(z) nh sau:f(z) = a0(z

    2k+1 + 2k+1) + a1z(z2k1 + 2k1) + ...+ akzk(z + k).

    28S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • S dng hng ng thc

    z2m+1 + 2m+1 = (z + )(z2m z2m1+ ...+ z22m2 z2m1 + 2m),ta c

    a0(z2k+1 +2k+1) = a0(z+)(z

    2k z2m1+ ...+ z22k2 z2k1 +2k),a1z(z

    2k1 + 2k1) = a1(z + )(z2k1 z2m2+ ... z22k3 + z2k2,..............................................................

    akzk(z + ) = ak(z + )z

    k.

    Cng tng v cc ng thc trn v a ra ngoi du ngoc nhn t chung

    z + , ta c

    f(z) = (z + )g(z),

    trong g(z) l tng ca cc a thc

    a0(z2k z2m1+ ...+ z22k2 z2k1 + 2k),

    a1(z2k1 z2m2+ ... z22k3 + z2k2,

    ..................................................

    akzk.

    D dng thy g(z) l a thc hi quy bc 2k. nh l c chng minh.

    Bi 2.14 (Theo [5]). Gii phng trnh

    9z6 18z5 73z4 + 164z3 73z2 18z + 9 = 0.Li gii. Phng trnh cho l phng trnh i xng bc 6. V z = 0

    khng phi l nghim ca phng trnh nn chia hai v ca phng trnh

    cho z3 v bin i phng trnh ny v dng

    9(z3 +1

    z3) 18(z2 + 1

    z2) 73(z + 1

    z) + 164 = 0

    S dng cc cng thc

    z +1

    z= , z2 +

    1

    z2= 2 2, z3 + 1

    z3= 3 3

    ta a c phng trnh trn v dng

    93 182 100 + 200 = 0.Nghim ca phng trnh ny l

    = 2, = 103, =

    10

    3.

    29S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do , tm nghim ca phng trnh cho, ta c cc phng trnh

    z +1

    z= 2, z +

    1

    z= 10

    3, z +

    1

    z=

    10

    3.

    T cc phng trnh trn ta tm c cc gi tr ca x l nghim ca

    phng trnh l:

    z = 1, z = 13, z = 3.

    Bi 2.15 (Theo [5]). Gii phng trnh

    2x11 + 7x10 + 15x9 + 14x8 16x7 22x6 22x5 16x4 + 14x3++15x2 + 7x+ 2 = 0.

    Li gii. y l phng trnh i xng bc l. Theo nh l 2.2, phng

    trnh cho tng ng vi phng trnh

    (x+1)(2x10+5x9+10x8+4x720x62x520x4+4x3+10x2+5x+2) = 0Nh vy, phng trnh cho c phn r thnh hai phng trnh

    x+ 1 = 0

    2x10 + 5x9 + 10x8 + 4x7 20x6 2x5 20x4 + 4x3 + 10x2 + 5x+ 2 = 0Phng trnh th nht c nghim x=-1.

    Phng trnh th hai l phng trnh i xng bc 10. V x = 0 khng phi

    l nghim ca phng trnh nn chia hai v ca phng trnh cho x5 v

    bin i phng trnh ny v dng

    2(x5 +1

    x5) + 5(x4 +

    1

    x4) + 10(x3 +

    1

    x3) + 4(x2 +

    1

    x2) 20(x+ 1

    x) 2 = 0

    S dng cc cng thc

    x+1

    x= , x2 +

    1

    x2= 2 2, x3 + 1

    x3= 3 3,x4 + 1

    x4= 4 42 + 2,

    x5 +1

    x5= 5 53 + 5,

    ta a c phng trnh trn v dng

    25 + 54 162 40 = 0 (2 + 5)(3 8) = 0.Nghim ca phng trnh ny l

    = 0, = 52, = 2.

    30S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do , tm nghim ca phng trnh cho, ta c cc phng trnh

    x+1

    x= 0, x+

    1

    x= 5

    2, x+

    1

    x= 2.

    T cc phng trnh trn ta tm c cc gi tr ca x l nghim ca

    phng trnh cho l:

    x = 1, x = 12, x = 2.

    Bi 2.16 (Theo [2]). Gii phng trnh

    2x8 9x7 + 20x6 33x5 + 46x4 66x3 + 80x2 72x+ 32 = 0.Li gii. y l phng trnh bc 8 truy hi vi = 2 v c th vit li

    phng trnh dng

    2x8 9x7 + 20x6 33x5 + 46x4 33.2x3 + 20.22x2 9.23x+ 2.24 = 0.R rng x = 0 khng phi l nghim ca phng trnh cho. Chia hai v

    ca phng trnh cho x4 v bin i v dng

    2(x4 +16

    x4) 9(x3 + 8

    x3) + 20(x2 +

    4

    x2) 33(x+ 2

    x) + 46 = 0.

    t = x+

    x= x+

    2

    x. Khi

    x2 +4

    x2= 2 4, x3 + 8

    x3= 3 6, x4 + 16

    x4= 4 82 + 8.

    Nn phng trnh cui c dng

    24 93 + 42 + 21 18 = 0.Phng trnh ny c cc nghim l

    = 1, = 2, = 3, = 32, .

    Nh vy phng trnh cho tng ng vi t hp cc phng trnh:

    x+2

    x= 1, x+

    2

    x= 2, x+

    2

    x= 3, x+

    2

    x= 3

    2, .

    Gii cc phng trnh trn ta tm c nghim ca phng trnh cho l

    x = 1, x = 2.

    31S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.17 (IMO, 1982, Hungari ngh (Theo [2])). Hy xc nh tt c

    cc tham s a sao cho phng trnh

    16x4 ax3 + (2a+ 17)x2 ax+ 16 = 0.c bn nghim thc lp thnh mt cp s nhn.

    Li gii. D thy rng x = 0 khng phi l nghim ca phng trnh

    cho. Vi x 6= 0, phng trnh cho tng ng vi

    16(x2 +1

    x2) a(x+ 1

    x) + 2a+ 17 = 0.

    t t = x+1

    x. Khi |t| 2 v phng trnh trn tr thnh

    16t2 at+ 2a 15 = 0.Trc ht ta tm iu kin cn ca tham s a. Gi s phng trnh

    cho c 4 nghim thc lp thnh mt cp s nhn. Khi phng trnh

    cui cng phi c hai nghim t1, t2, trong t1 cho hai nghim x1,1

    x1,

    cn nghim t2 cho hai nghim x2,1

    x2. Khng mt tnh tng qut, ta gi s

    |x1| 1, |x2| 1. Khi c cp s nhn x1, x2, 1x2,

    1

    x1. Theo tnh cht

    ca cp s nhn ta c

    x1x2

    = x22 x1 = x32 x1 +1

    x1= x32 +

    1

    x32 t1 = t32 3t2.

    Mt khc, theo nh l Vite ta c

    t1 + t2 =a

    16, t1t2 =

    2a 1516

    .

    T ta tm c a=170. Vi a=170 phng trnh cho tr thnh

    16x4 170x3 + 357x2 170x+ 16 = 0.Phng trnh ny c bn nghim thc lp thnh mt cp s nhn l :

    8, 2,1

    2,1

    8.

    Vy gi tr ca tham s a l a=170.

    32S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.4 Gii h phng trnh

    2.4.1 H phng trnh i xng hai n v ng dng

    Bi 2.18 (Theo [5]). Gii h phng trnh x5 + y5

    x3 + y3=

    31

    7x2 + xy + y2 = 3

    Li gii. Vi iu kin x, y 6= 0. t x+ y = 1, xy = 2. Ta cx2 + y2 = s2 =

    21 22, x3 + y3 = s3 = 31 312,

    x5 + y5 = s5 = 51 5312 + 5122

    Do ta c h{7(51 5312 + 5122) = 23(31 312),21 2 = 3.

    T h phng trnh ny, thc hin php th v gii phng trnh ta tm

    c

    {1 = 12 = 2 hoc

    1 = 6

    7

    2 =15

    7

    Khi x, y l cc nghim ca cc h phng trnh

    {x+ y = 1xy = 2 hoc

    x+ y = 6

    7

    xy =15

    7

    Gii cc h phng trnh ny ta c cc nghim ca h cho l{x1 = 2,y1 = 1, ;

    {x2 = 1,y2 = 2,

    {x3 = 2,y3 = 1,

    ;

    {x4 = 1,y4 = 2.

    Bi 2.19 (Theo [5]). Gii h phng trnh{x+ y = ax4 + y4 = a4

    Li gii. t x+ y = 1, xy = 2.

    Ta c

    33S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • x4 + y4 = s4 = 41 4212 + 222

    Do ta c h {1 = a,41 4212 + 222 = a4.

    T h phng trnh ny, thc hin php th v gii phng trnh ta tm

    c {1 = a2 = 0;

    hoc

    {1 = a2 = 2a

    2.

    Khi x, y l cc nghim ca cc h phng trnh{x+ y = axy = 0 hoc

    {x+ y = axy = 2a2

    Gii cc h phng trnh ny ta c cc nghim ca h cho l{x1 = a,y1 = 0,

    ;

    {x2 = 0,y2 = a.

    Bi 2.20 (Theo [5]). Gii h phng trnhx

    a+y

    b= 1

    a

    x+b

    y= 4

    Li gii. Phng trnh cho khng phi l l h i xng, tuy nhin bng

    cch tx

    a= u,

    y

    b= v ta c h i xng{

    u+ v = 11

    u+

    1

    v= 4

    t u+ v = 1, uv = 2, ta c h phng trnh{1 = 112

    = 4 {1 = 1

    2 =1

    4

    T ta c h phng trnh{u+ v = 1

    u.v =1

    4

    u =

    1

    2

    v =1

    2

    x =

    a

    2

    y =b

    2

    34S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.21 (Theo [4]). Gii h phng trnh{x5 y5 = 3093x y = 3

    Li gii. Phng trnh cho khng phi l l h i xng, tuy nhin bng

    cch t y = z ta c h i xng{x5 + z5 = 3093x+ z = 3

    t x+ z = 1, xz = 2, ta c h phng trnh{51 5312 + 5122 = 30931 = 3

    {1 = 32 = 10 hoc

    {1 = 32 = 19

    T ta c x, y l nghim ca cc h phng trnh{x+ z = 3xz = 10 hoc

    {x+ z = 3xz = 19

    Gii cc h phng trnh trn ta c{x1 = 5z1 = 2 ;

    {x2 = 2z2 = 5.

    T ta c nghim ca h phng trnh cho l{x1 = 5y1 = 2

    ;

    {x2 = 2y2 = 5.

    Bi 2.22 (Theo [3]). Gii h phng trnh{4y3 1 +x = 3

    x2 + y3 = 82.

    Li gii. tx = u, 4

    y3 1 = v ta c h phng trnh{

    u+ v = 3u4 + (v4 + 1) = 82

    Gii h phng trnh trn, ta c{u1 = 3v1 = 0

    ;

    {u2 = 0v2 = 3.

    T ta c nghim ca h phng trnh cho l

    35S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • {x1 = 9y1 = 1

    ;

    {x2 = 0y2 =

    3

    83.

    Bi 2.23 (Theo [3]). Gii phng trnh

    5

    1

    2+ x+ 5

    1

    2 x = 1

    Li gii. t 5

    1

    2+ x = u, 5

    1

    2 x = v. Khi ta c h{u+ v = 1u5 + v5 = 1

    Gii h phng trnh trn, tm c

    {u1 = 1,v1 = 0;

    {u2 = 0v2 = 1.

    T kt qu trn v u5 =1

    2+ x tm c cc nghim ca phng trnh

    cho l x1 =1

    2, x2 = 1

    2.

    Vy nghim ca phng trnh cho l x1 =1

    2, x2 = 1

    2.

    Bi 2.24 (Theo [3]). Gii phng trnh

    x+ 2

    17 x2 + x 217 x2 = 9Li gii. t 2

    17 x2 = y. Khi ta c h{

    x2 + y2 = 17x+ y + xy = 9

    Gii h phng trnh trn,tm c

    {x1 = 1,y1 = 4;

    {x2 = 4y2 = 1.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 = 1, x2 = 4.

    Vy nghim ca phng trnh cho l x1 = 1, x2 = 4.

    Bi 2.25 (Theo [4]). Gii phng trnh

    x.19 xx+ 1

    .(x+19 xx+ 1

    ) = 84.

    Li gii. t19 xx+ 1

    = y th 19 x = xy + y. Khi ta c h{x+ y + xy = 19xy(x+ y) = 84

    36S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Gii h phng trnh trn,tm c{x1 = 3,y1 = 4;

    {x2 = 4y2 = 3.

    {x3 = 6 +

    29,

    y3 = 6

    29;

    {x4 = 6

    29

    y4 = 6 +

    29.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 = 3, x2 = 4, x3 = 6 +

    29, x4 = 6

    29.

    Vy nghim ca phng trnh cho l

    x1 = 3, x2 = 4, x3 = 6 +

    29, x4 = 6

    29.

    Bi 2.26 (Theo [5]). Gii phng trnh

    x+xx2 1 =

    35

    12.

    Li gii. Vi iu kin |x| > 1,t 1x

    = u,

    x2 1x

    = v . Khi ta c h{u2 + v2 = 11

    u+

    1

    v=

    35

    12

    Gii h phng trnh trn,tm cu1 =

    4

    5,

    y1 =3

    5;

    u2 =

    3

    5

    v2 =4

    5.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 =3

    5, x2 =

    4

    5.

    Vy nghim ca phng trnh cho l x1 =3

    5, x2 =

    4

    5.

    2.4.2 H phng trnh i xng ba n

    Gi s P(x,y,z), Q(x,y,z), R(x,y,z) l cc a thc i xng. Xt h

    phng trnh {P (x, y, z) = 0Q(x, y, z) = 0R(x, y, z) = 0

    (2.5)

    Bng cch t

    x+ y + z = 1, xy + yz + zx = 2, xyz = 3,.

    37S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • trn c s cc nh l 1.9, 1.10 ta a h 2.5 v dng{p(1, 2, 3) = 0q(1, 2, 3) = 0r(1, 2, 3) = 0

    (2.6)

    H phng trnh (2.6) thng n gin hn h (2.5) v c th d dng

    tm c nghim 1, 2, 3. Sau khi tm c cc gi tr ca 1, 2, 3, cn

    phi tm cc gi tr ca cc n s x, y, z. iu ny d dng thc hin c

    nh nh l sau y

    nh l 2.3 (Theo [2]). Gi s 1, 2, 3 l cc s thc no . Khi

    phng trnh bc ba

    u3 1u2 + 2u 3 = 0 (2.7)v h phng trnh {

    x+ y + z = 1,xy + xz + yz = 2,xyz = 3.

    (2.8)

    lin h vi nhau nh sau: nu u1, u2, u3 l cc nghim ca phng trnh

    (2.7), th h (2.8) c cc nghim{x1 = u1,y1 = u2,z1 = u3;

    {x2 = u1,y2 = u3,z2 = u2;

    {x3 = u2,y3 = u1,z3 = u3;{

    x4 = u2,y4 = u3,z4 = u1;

    {x5 = u3,y5 = u1,z5 = u2;

    {x6 = u3,y6 = u2,z6 = u1.

    v ngoi ra khng cn cc nghim no khc. Ngc li, nu x=a, y=b, z=c

    l nghim ca h (2.8) th cc s a, b, c l nghim ca phng trnh (2.7).

    Chng minh. Gi s u1, u2, u3 l cc nghim ca phng trnh (2.7). Khi

    ta c ng nht thc

    u3 1u2 + 2u 3 = (u u1)(u u2)(u u3).T ta c cc h thc Vite:{

    u1 + u2 + u3 = 1,u1u2 + u1u3 + u2u3 = 2,u1u2u3 = 3.

    Suy ra u1, u2, u3 l nghim ca h (2.8). Ngoi ra cn nm nghim na

    nhn c bng cch hon v cc gi tr ca cc n s. Vn h (2.8)

    khng cn nghim no khc c chng t nh sau

    Gi s x=a, y=b, z=c l nghim ca h (2.8), ngha l

    38S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • {a+ b+ c = 1,ab+ bc+ ca = 2,abc = 3.

    Khi ta c

    u3 1u2 + 2u 3 = u3 (a+ b+ c)u2 + (ab+ bc+ ca)u abc =(u a)(u b)(u c).

    iu chng t rng cc s a, b, c l nghim ca phng trnh bc ba

    (2.7). nh l c chng minh.

    nh l 2.4 (Theo [2]). Gi s 1, 2, 3 l cc s thc cho. cc s

    x, y, z xc nh bi h phng trnh (2.8) l cc s thc, iu kin cn v

    l

    4 = 4313 + 2122 + 18123 432 273 0. (2.9)Ngoi ra, cc s x, y, z l khng m th

    1 0, 2 0, 3 0.Chng minh. Gi s x, y, z l nghim ca h (2.8). Khi theo nh l

    (2.3) x, y, z l cc nghim ca phng trnh (2.7). Phng trnh (2.7) c

    nghim thc khi v ch khi bit thc ca n khng m, ngha l (2.9) c

    tha mn. Ngoi ra, nu cc s x, y, z khng m, th hin nhin i 0(i=1,2,3). Ngc li, nu i 0 (i=1,2,3) v (2.9) c tha mn, thphng trnh (2.7) khng th c nghim m. Tht vy, trong (2.7) thay

    u=-v ta c phng trnh

    v3 + 1v2 + 2v + 3 = 0 (2.10)

    V i 0 (i=1,2,3), nn phng trnh (2.10) khng th c nghim dng,do phng trnh (2.7) khng th c nghim m. T suy ra x, y, z l

    cc s khng m. nh l c chng minh.

    Bi 2.27 (Theo [5]). Gii h phng trnhx3 + y3 + z3 =

    73

    8,

    xy + yz + zx = x+ y + z,xyz = 1.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh

    39S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s3 =

    31 312 + 33 =

    73

    8,

    2 = 1,3 = 1.

    Gii h phng trnh ny ta tm c 1 = 2 =7

    2, 3 = 1. Theo nh l

    (2.3), ta c x, y, z l nghim ca phng trnh

    u3 72u2 +

    7

    2u 1 = 0 (u 1)(u2 5

    2u+ 1) = 0

    Nghim ca phng trnh ny l u1 = 1, u2 = 2, u3 =1

    2. T suy ra

    nghim ca h cho l cc b (x, y, z):

    (1, 2,1

    2), (2, 1,

    1

    2), (2,

    1

    2, 1), (1,

    1

    2, 2), (

    1

    2, 1, 2), (

    1

    2, 2, 1).

    Bi 2.28 (Theo [5]). Gii h phng trnhx+ y + z =

    13

    3,

    1

    x+

    1

    y+

    1

    z=

    13

    3,

    xyz = 1.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh 1 =

    13

    3,

    23

    =13

    3,

    3 = 1.

    Gii h phng trnh ny ta tm c 1 = 2 =13

    3, 3 = 1. Theo nh l

    (2.3), ta c x, y, z l nghim ca phng trnh

    u3 133u2 +

    13

    3u 1 = 0 (u 1)(u2 10

    3u+ 1) = 0

    Nghim ca phng trnh ny l u1 = 1, u2 = 3, u3 =1

    3. T suy ra

    nghim ca h cho l cc b (x, y, z):

    (1, 3,1

    3), (3, 1,

    1

    3), (3,

    1

    3, 1), (1,

    1

    3, 3), (

    1

    3, 1, 3), (

    1

    3, 3, 1).

    40S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.29 (Theo [2]). Gii h phng trnh{x+ y + z = a,x2 + y2 + z2 = b2,x3 + y3 + z3 = a3.

    trong a, b l cc s thc cho trc.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh {1 = a,21 22 = b2,31 312 + 33 = a3.

    Gii h phng trnh ny ta tm c1 = a,

    2 =1

    2(a2 b2),

    3 =1

    2a(a2 b2).

    Theo nh l (2.3), ta c x, y, z l nghim ca phng trnh

    u3 au2 + 12

    (a2 b2)u 12a(a2 b2) = 0

    (u a)[u2 + 12

    (a2 b2)] = 0

    T phng trnh trn, ta c

    a) Nu |a| > |b|, th phng trnh trn ch c mt nghim thc u=a, do h cho khng c nghim thc. Trong phm vi s phc, th phng trnh c

    cc nghim u1 = a, u2 = i

    a2 b2

    2, u3 = i

    a2 b2

    2, trong i l n v

    o. Khi h cho c nghim (x,y,z) l b s (a, i

    a2 b2

    2,i

    a2 b2

    2)

    v tt c cc hon v ca n.

    b) Nu |a| |b| , th phng trnh trn c ba nghim thc u1 = a, u2 =b2 a2

    2, u3 =

    b2 a2

    2. Khi h phng trnh cho c nghim

    (x,y,z) l b s (a,

    b2 a2

    2,

    b2 a2

    2)v tt c cc hon v ca n.

    41S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.5 Tm nghim nguyn ca cc phng trnh i

    xng

    Bi 2.30 (Theo [2]). Tm nghim nguyn ca phng trnh

    x3 + y3 + 1 = 3xy

    Li gii. t 1 = x+ y, 2 = xy. Phng trnh tr thnh

    31 312 + 1 = 32 (1 + 1)(21 1 + 1 32) = 0.Trng hp 1: 1 + 1 = 0, ta c x + y + 1 = 0, phng trnh c v s

    nghim nguyn (x Z, y = 1 x).Trng hp 2: 21 1 + 1 32 = 0. Ta vit phng trnh ny di dng

    21 1 + 1 = 32T vic t 1 = x + y, 2 = xy, th iu kin tn ti hai s x, y l

    1 42. S dng iu kin ny ta c

    21 1 + 1 3

    421 21 41 + 4 0

    (1 2)2 0 1 = 2 2 = 1.

    Trong trng hp ny ta c h{x+ y = 2,xy = 1.

    H ny lun c nghim nguyn duy nht l x = y = 1. Nh vy, nghim

    ca phng trnh cho l{x = 1,y = 1;

    {x Z,y = 1 x.

    Bi 2.31. Tm nghim nguyn ca phng trnh

    x+ y = x2 xy + y2

    Li gii. t 1 = x+ y, 2 = xy. Phng trnh tr thnh

    1 = s2 22 1 = 21 32 21 1 = 32.T vic t 1 = x + y, 2 = xy, th iu kin tn ti hai s x, y l

    1 42. S dng iu kin ny ta c42S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21 1 3

    421 21 41 0 0 1 4

    Mt khc, t phng trnh

    21 1 = 32. (21 1)2 = 122 + 1

    thy 122 + 1 l s chnh phng, nn t chn c

    +) 1 = 2 = 0, phng trnh c nghim nguyn: x = y = 0.

    +) 1 = 1, 2 = 0, phng trnh c cc nghim nguyn l{x = 1,y = 0;

    {x = 0,y = 1.

    +) 1 = 2, 122 + 1 = 9, phng trnh khng c nghim nguyn.

    +) 1 = 3, 2 = 2, phng trnh c cc nghim nguyn l{x = 1,y = 2;

    {x = 2,y = 1.

    +) 1 = 4, 2 = 4, phng trnh c cc nghim nguyn l{x = 2,y = 2;

    Vy phng trnh cho c cc nghim nguyn l:{x = 0,y = 0;

    {x = 0,y = 1. ;

    {x = 1,y = 0. ;

    {x = 1,y = 2. ;

    {x = 2,y = 1. ;

    {x = 2,y = 2.

    Bi 2.32 (Theo [1]). Tm cc nghim nguyn dng ca h phng trnh{x+ y = z,x3 + y3 = z2.

    Li gii.t 1 = x+ y, 2 = xy. H phng trnh tr thnh{1 = z,s3 = z

    2. {1 = z,31 312 = z2.

    Th phng trnh th nht vo phng trnh th hai, ta c

    31 312 = 21 1(21 1 32) = 0Trng hp 1: 1 = 0 z = 0 x = y, r rng khng tha mn, donghim cn tm nguyn dng.

    Trng hp 2:

    43S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21 1 32 = 0Tng t bi tp 2.30, d dng tm c cc nghim nguyn dng ca h

    l {x = 2,y = 1,z = 3;

    {x = 1,y = 2,z = 3

    ;

    {x = 2,y = 2z = 2.

    2.6 Chng minh cc ng thc

    Bi 2.33. Cho x+ y = 1, x3 + y3 = a, x5 + y5 = b. Chng minh rng

    5a(a+ 1) = 9b+ 1

    Li gii. t 1 = x+ y = 1, 2 = xy. Ta c:

    x3 + y3 = a 31 312 = a 2 =1 a

    3

    V

    x5 + y5 = s5 = 51 5312 + 5122

    nn

    b = 1 5.1 a3

    + 5.(1 a)2

    9

    hay

    5a(a+ 1) = 9b+ 1

    Bi 2.34 (Theo [5]). Chng minh ng nht thc

    (x+ y)3 + 3xy(1 x y) 1 = (x+ y 1)(x2 + y2 xy + x+ y + 1).Li gii. Theo cng thc Waring, ta c

    (x+ y)3 + 3xy(1 x y) 1 = 31 + 32(1 1) 1 == 31 + 32 312 1.

    Mt khc, cng c

    (x+ y 1)(x2 + y2 xy + x+ y + 1) = (1 1)(21 32 + 1 + 1) == 31 312 + 21 + 1 21 + 32 1 1 =

    = 31 + 32 312 1.T hai h thc trn, ta c iu phi chng minh.

    44S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.35 (Theo [5]). Chng minh ng nht thc

    (x+ y)7 x7 y7 = 7xy(x+ y)(x2 + xy + y2)2.Li gii. Theo cng thc Waring, ta c

    (x+ y)7 x7 y7 = 71 s7 = 71 (71 7512 + 143122 7132) == 7512 143122 + 7132 = 712(41 2212 + 22) =

    = 712(21 2)2 = 7xy(x+ y)(x2 + xy + y2)2.

    Bi 2.36 (Theo [5]). Chng minh ng nht thc

    (x+ y + z)(xy + yz + zx) xyz = (x+ y)(y + z)(z + x).Li gii. S dng cc cng thc qu o, khai trin v phi, ta c

    (x+ y)(y + z)(z + x) = x2y + x2z + y2x+ y2z + z2x+ z2y + 2xyz =

    = O(x2y) + 23 = (12 33) + 23 = 12 3 == (x+ y + z)(xy + yz + zx) xyz.

    Bi 2.37 (Theo [5]). Chng minh rng, nu

    x+ y + z = xy + yz + zx = 0.

    th

    3(x3y3 + y3z3 + z3x3) = (x3 + y3 + z3)2.

    Li gii. S dng cc cng thc qu o, khai trin v phi vi lu iu

    kin ca bi l 1 = 0, 2 = 0, ta c

    3(x3y3 + y3z3 + z3x3) = 3O(x3y3) = 3(32 + 323 3123) = 923.

    Tng t vi v tri, ta c

    (x3 + y3 + z3)2 = s23 = (31 312 + 33)2 = 923.

    T cc khai trin trn, suy ra iu phi chng minh.

    Bi 2.38 (Theo [2]). Chng minh rng, nu cc s thc x, y, z, a, b, c

    tha mn cc h thc{x+ y + z = a+ b+ c,x2 + y2 + z2 = a2 + b2 + c2,x3 + y3 + z3 = a3 + b3 + c3.

    th vi mi s t nhin n:

    45S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • xn + yn + zn = an + bn + cn.

    Li gii. K hiu 1, 2, 3 l cc a thc i xng c s theo cc bin x,

    y, z; cn 1, 2, 3 l cc a thc i xng c s theo cc bin a, b, c. S

    dng cc cng thc Waring, theo gi thit ta c

    1 = 1,

    21 22 = 21 22,31 312 + 33 = 31 312 + 33,

    Suy ra

    1 = 1,2 = 2,3 = 3,

    Khi vi mi a thc (t1, t2, t3) ta c

    (t1, t2, t3) = (1, 2, 3).

    Gi s f(x,y,z) l mt a thc i xng v theo nh l duy nht f(x, y, z) =

    (1, 2, 3), f(a, b, c) = (1, 2, 3). T suy ra f(x, y, z) = f(a, b, c).

    Trong trng hp ring ta c

    xn + yn + zn = an + bn + cn.

    Bi 2.39 (Theo [5]). Chng minh rng nu a + b + c = 0, th cc ng

    sau y ng

    1. a3 + b3 + c3 = 3abc;

    2. a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a) = 0;

    3. a2(b+c)2+b2(c+a)2+c2(a+b)2+(a2+b2+c2)(ab+bc+ca) = 0;

    4. a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) =1

    2(a2 + b2 + c2)2;

    5.a5 + b5 + c5

    5=a3 + b3 + c3

    3.a2 + b2 + c2

    2= abc.

    a2 + b2 + c2

    2;

    6.a7 + b7 + c7

    7=a5 + b5 + c5

    5.a2 + b2 + c2

    2=a4 + b4 + c4

    2.a3 + b3 + c3

    3;

    7.a7 + b7 + c7

    7.a3 + b3 + c3

    3= (

    a5 + b5 + c5

    5)2,

    8. (a7 + b7 + c7

    7)2 = (

    a5 + b5 + c5

    5)2.a4 + b4 + c4

    2Li gii. K hiu 1, 2, 3 v sk tng ng l cc a thc i xng c s

    v tng ly tha ca cc bin a, b, c. Theo cng thc Waring ta c

    46S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cng thc tnh sk = xk + yk + zk, theo 2 3 khi c 1 = 0

    a+ b+ c = s1 = 1 = 0;a2 + b2 + c2 = s2 = 22;a3 + b3 + c3 = s3 = 33;a4 + b4 + c4 = s4 = 2

    22;

    a5 + b5 + c5 = s5 = 523;a6 + b6 + c6 = s6 = 3

    23 232;

    a7 + b7 + c7 = s7 = 7223;

    a8 + b8 + c8 = s8 = 242 8223;

    a9 + b9 + c9 = s9 = 333 9323;

    a10 + b10 + c10 = s10 = 252 + 152223;.........................................................

    Li gii.

    1. Theo cng thc trn, hin nhin ng.

    2. Theo cng thc trn v kt qu bi 2.28, hin nhin ng.

    3. a2(b+ c)2 + b2(c+ a)2 + c2(a+ b)2 + (a2 + b2 + c2)(ab+ bc+ ca) =

    = 2O(a2b2) + 2O(a2bc) + s22 = 222 2.0 + (22)2 = 0;

    4. T cng thc trn, ta c

    a4 + b4 + c4 = s4 = 222

    2(a2b2 + b2c2 + c2a2) = 2.O(a2b2) = 2(22 213) = 2221

    2(a2 + b2 + c2)2 =

    1

    2s22 =

    1

    2(22)2 = 222

    T suy ra iu phi chng minh.

    5.a3 + b3 + c3

    3.a2 + b2 + c2

    2= 2.3 = a

    5 + b5 + c5

    5=

    = 3.22

    2= abc.

    a2 + b2 + c2

    2;

    6.a5 + b5 + c5

    5.a2 + b2 + c2

    2= (23).(2) = 223 =

    a7 + b7 + c7

    7=

    =2222.3 =

    a4 + b4 + c4

    2.a3 + b3 + c3

    3;

    7.a7 + b7 + c7

    7.a3 + b3 + c3

    3= 223.3 = (23)

    2 = (a5 + b5 + c5

    5)2,

    8.(a7 + b7 + c7

    7)2 = (223)

    2 = (23)2.22 = (

    a5 + b5 + c5

    5)2.a4 + b4 + c4

    2.

    Bi 2.40 (Theo [5]). Chng minh ng nht thc

    (a+ b)7 a7 b7(a+ b)3 a3 b3 =

    7

    6[(a+ b)4 + a4 + b4].

    47S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Li gii. t x = a, y = b, z = a b. Khi 1 = a+ b+ (a b) = 0,nn theo cng thc Waring ta c

    (a+ b)7 a7 b7(a+ b)3 a3 b3 =

    z7 x7 y7z3 x3 y3 =

    s7s3

    =722333

    =7

    322.

    Ta bin i v phi ca ng thc cn chng minh nh sau:

    7

    6[(a+ b)4 + a4 + b4] =

    7

    6[(z)4 + a4 + b4] = 7

    6s4 =

    7

    6.222 =

    7

    3.22.

    T suy ra iu phi chng minh.

    Phng php trnh by trn thng c p dng khi trong bi ton

    c cc hiu ab, bc, ca. Khi nu t x = ab, y = bc, z = cath 1 = x + y + z = 0. Trong trng hp ny cc cng thc Waring i

    vi tng ly tha tr nn n gin hn rt nhiu. Xt cc v d sau.

    Bi 2.41 (Theo [5]). Chng minh ng nht thc

    (b c)3 + (c a)3 + (a b)3 3(b c)(c a)(a b) = 0.Li gii.

    t x = a b, y = b c, z = c a th 1 = x + y + z = 0 v ng thccn chng minh tr thnh

    x3 + y3 + z3 3xyz = s3 33 = 33 33 = 0.Bi 2.42 (Theo [5]). Chng minh ng nht thc

    25[(b c)7 + (c a)7 + (a b)7].[(b c)3 + (c a)3 + (a b)3] =21[(b c)5 + (c a)5 + (a b)5]2.

    Li gii. t x = a b, y = b c, z = c a th 1 = x + y + z = 0 vng thc cn chng minh tr thnh

    25(x7 + y7 + z7).(x3 + y3 + z3) = 21(x5 + y5 + z5)2

    hay

    25s7.s3 = 21s25

    S dng cc cng thc ca tng ly tha vi ch 1 = 0, ta c

    25s7.s3 = 25.7223.33 = 525(23)

    2; 21s25 = 21(523)2 = 525(23)2

    T suy ra iu phi chng minh.

    48S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.43 (Theo [5]). Vi a+ b+ c = 2p, chng minh rng

    1. a(p b)(p c) + b(p a)(p c) + c(p a)(p b)++2(p a)(p b)(p c) = abc.

    2. (p a)3 + (p b)3 + (p c)3 + 3abc = p3Li gii

    1. Khai trin v phi, s dng cng thc Waring vi ch

    1 = a+ b+ c = 2p, ta c

    p2(a+ b+ c) 2p(ab+ ac+ bc) + 3abc++2[p3 p2(a+ b+ c) + p(ab+ ac+ bc) abc] =

    = (12

    )21 12 + 33 + 2(31

    8+122 3) = 3 = abc.

    2. Vit ng thc cn chng minh nh sau

    (a+ b+ c

    2)3 + (

    a b+ c2

    )3 + (a+ b c

    2)3 + 3abc = (

    a+ b+ c

    2)3.

    Theo kt qu ca bi 2.12, suy ra iu phi chng minh.

    Bi 2.44 (Theo [5]). Chng minh rng, nu xy + yz + zx = 1, th

    x

    1 x2 +y

    1 y2 +z

    1 z2 =4xyz

    (1 x2)(1 y2)(1 z2) .

    Li gii. Bin i biu thc cho, ta nhn c biu thc sau

    x(1 y2)(1 z2) + y(1 z2)(1 x2) + z(1 x2)(1 y2) = 4xyz.S dng cc cng thc ca tng ly tha v qu o vi ch

    2 = xy + yz + zx = 1 bin i v phi ng thc trn ta c

    O(x)O(x2y) +O(x2y2z) = 1 (1 33) + 3 = 4xyz.Bi 2.45 (Theo [2]). Chng minh rng, nu

    1

    a+

    1

    b+

    1

    c=

    1

    a+ b+ c,

    th vi mi s l n, ta c

    (1

    a+

    1

    b+

    1

    c)n =

    1

    an + bn + cn=

    1

    (a+ b+ c)n.

    Li gii. T gi thit ca bi ton, ta c

    23

    =1

    1,

    49S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • hay

    12 3 = 0,Theo kt qu ca bi 2.11 ta c ng thc

    (a+ b)(a+ c)(b+ c) = 0,

    T ng thc trn, ta c

    a = b, a = c, b = c.Thay vo ng thc cn chng minh, ta thy ng thc

    (1

    a+

    1

    b+

    1

    c)n =

    1

    an + bn + cn=

    1

    (a+ b+ c)n.

    lun ng vi mi s l n.

    2.7 Chng minh bt ng thc

    Vi hai s thc x, y, t x+ y = 1, xy = 2. Khi ta c

    (x+ y)2 0 (x+ y)2 4xy 0 21 42 0.Mnh 2.1 (Theo [2]). Cho x, y R. t x+ y = 1, xy = 2. Khi

    1 42. (2.11)ng thc xy ra khi v ch khi x = y.

    Gi s cn chng minh bt ng thc f(x, y) 0 (vi mi x 0, y 0hoc x + y = a, ty thuc vo bi ton), trong f(x, y) l a thc i

    xng. Trc ht ta biu din f(x, y) theo 1, 2. Sau trong a thc va

    nhn c thay 2 bi 1 bng cch t 2 =1

    4(21 z) vi z 0. Hoc

    cng c th biu din 1 bi 2 bng cch vit 21 = z + 42.

    Bi 2.46 (Theo [2]). Chng minh rng, nu a,b v c l ba s thc tha

    mn iu kin a+ b c 0, th

    a2 + b2 c2

    2, a4 + b4 c

    4

    8, a8 + b8 c

    8

    128

    Li gii. t a+ b = 1, ab = 2.Ta c

    50S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s2 = a2 + b2 = 21 22 = 21 2.

    1

    4(21 z) =

    1

    221 +

    1

    2z,

    v z 0 v theo gi thit 1 c 0, nn s2 12c2, ngha l

    a2 + b2 c2

    2

    Vn dng bt ng thc trn , ta c

    a4 + b4 = (a2)2 + (b2)2 12

    (1

    2c2)2 c

    4

    8.

    Tng t d dng chng minh

    a8 + b8 c8

    128

    Mt cch tng qut, ta c bi ton

    Nu a, b v c l ba s thc tha mn iu kin a+ b c 0, th vi min nguyn dng, ta c

    a2n + b2n 122n1

    .c2n

    Lu : Cho c nhn cc gi tr thc khc nhau, ta nhn c cc bi

    ton khc nhau. Chng hn cho c=1, ta c bi ton

    Chng minh rng, nu a, b l cc s thc tha mn iu kin a + b 1,th

    a2 + b2 12, a4 + b4 1

    8, a8 + b8 1

    128

    Bi 2.47 (Theo [5]). Cho a, b R. Chng minh rng1. 8(a4 + b4) (a+ b)4,2. a6 + b6 a5b+ ab5Li gii

    1. Ta c

    8(a4 + b4) (a+ b)4 = 8s4 41 = 8(41 4212 + 222) 41 == 741 3221.

    1

    4(21 z) + 16.

    1

    16(21 z)2 = 621z + z2 0

    2. Ta c

    51S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • a6 + b6 a5b+ ab5 = s6 2s4 = 61 7412 + 13 1222 432 == 61 741.

    1

    4(21 z) + 1321.

    1

    16(21 z)2 4.

    1

    64(21 z)3 =

    =5

    1641z +

    5

    821z

    2 +1

    16z3 0

    Bi 2.48 (Theo [5]). Chng minh rng vi mi a, b khng m c cc bt

    ng thc

    1.

    a2

    b+

    b2

    a a+b,

    2. (a+b)8 64ab(a+ b)2.

    Li gii.

    1. ta = u,

    b = v. Ta c bt ng thc

    u2

    v+v2

    u u+ v hay u3 + v3 uv(u+ v)

    T gi thit ca bi ton, ta c u 0, v 0 t cng c1 0, z = 1 42 0

    Do

    u3 +v3uv(u+v) = 3131212 = 31412 = 1(2142) 0.2. t

    a = u,

    b = v. Ta c bt ng thc (u+ v)8 64u2v2(u2 + v2)2.

    T gi thit ca bi ton, ta c u 0, v 0, do bt ng thc trn cth vit thnh

    (u+ v)4 8uv(u2 + v2)Ta c:

    (u+ v)4 8uv(u2 + v2) = 41 82(21 22) = 41 8212 + 1622 == 41 821.

    1

    4(21 z) + 16.

    1

    16(21 z)2 = z2 0.

    T ta c iu phi chng minh.

    Vi cc b s thc (x, y, z) hay (a, b, c) v.v.. ta lun hiu 1, 2, 3 l cc

    a thc i xng c s ca cc b . Chng hn vi b s thc (x, y, z)

    ta c

    1 = x+ y + z, 2 = xy + xz + yz, 3 = xyz.

    Mnh 2.2 (Theo [2]). Vi cc s thc x, y, z lun c :

    a) 21 32 b) 22 313. (2.12)Du ng thc xy ra khi v ch khi x=y=z.

    52S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng minh. Vi mi s thc x, y, z ta lun c bt ng thc

    (x y)2 + (y z)2 + (z x)2 0.Du ng thc xy ra khi v ch khi x=y=z. Khai trin v tri ca bt

    ng trn v thu gn ta c s2 2 0. Thay s2 = 21 22, ta c btng thc th nht trong (2.12).

    Theo bt ng thc th nht trong (2.12), ta c

    (x+ y + z)2 3(xy + xz + yz).Trong bt ng trn thay x = ab, y = ac, z = bc ta c

    (ab+ ac+ bc)2 3(a2bc+ ab2c+ abc2) = 3abc(a+ b+ c).T suy ra bt ng thc th hai trong (2.12) vi cc s thc a, b, c.

    Mnh 2.3 (Theo [2]). Vi cc s thc dng x, y, z lun c :

    a) 12 93 b) 31 273 c) 32 2723. (2.13)Du ng thc xy ra khi v ch khi x = y = z.

    Chng minh. V x, y, z l cc s thc dng nn 1, 2, 3 cng l cc s

    dng. Nhn hai v tng ng ca cc bt ng thc trong (2.12) ta c

    2122 9123. Gin c hai v ta nhn c bt ng thc 12 93.

    T bt ng thc th nht trong (2.12), ta c

    41 = 21.

    21 21.32 = 31(12) 31.93 = 2713.

    Gin c hai v bt ng thc trn, vi lu 1 dng, ta nhn c bt

    ng thc 31 273.T bt ng thc th hai trong (2.12) v bt ng thc th nht trong

    (2.13) ta c

    32 = 2.22 2.313 = 33(12) 33.93 = 2723.

    Nhn xt. Cc bt ng trong (2.13) vn cn ng vi x, y, z l cc s

    khng m.

    T bt ng thc th nht v th hai trong (2.13), ta c cc bt ng

    thc quen thuc

    (x+ y + z)(1

    x+

    1

    y+

    1

    z) 9 v

    (x+ y + z)3 27xyz hay x+ y + z3

    3xyz.

    53S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mnh 2.4 (Theo [2]). Vi mi s thc khng m x, y, z ta lun c cc

    bt ng thc

    a) 31 + 93 412 b) 231 + 93 712. (2.14)Du ng thc xy ra khi v ch khi x = y = z.

    Chng minh. Trc ht, vi mi x, y, z khng m, ta chng minh c bt

    ng thc

    x(x y)(x z) + y(y x)(y z) + z(z x)(z y) 0Tht vy, do tnh cht i xng ca x, y, z nn khng lm mt tnh tng

    qut ta gi s rng x y z. Khi bt ng thc cho c vit linh sau

    (x y)[x(x z) y(y z)] + z(x z)(y z) 0Bt ng thc ny ng.

    Khai trin v tri bt ng trn ta c

    x(x y)(x z) + y(y x)(y z) + z(z x)(z y) == (x3 + y3 + z3) + 3xyz (x2y + x2z + y2x+ y2z + z2x+ z2y) == s3 + 33 O(x2y) = (31 312 + 33) + 33 (12 33) =

    = 31 412 + 93.T ta c kt qu ca bt ng thc th nht trong cng thc (2.14).

    T bt ng thc th nht trong (2.12) v (2.14), ta c

    231 + 93 = (31 + 93) +

    31 412 + 312 = 712.

    Vy cc bt ng thc trong (2.14) c chng minh.

    Bi 2.49 (Anh, 1999 (Theo [2])). Cho x, y, z l cc s khng m tha mn

    iu kin x+ y + z = 1. Chng minh rng

    7(xy + yz + zx) 2 + 9xyz.Li gii. V x+y+z = 1, nn ta c th vit bt ng thc cn chng minh

    dng

    7(x+ y + z)(xy + yz + zx) 2 + 9xyz.t 1 = x+ y+ z, 2 = xy+xz+ yz, 3 = xyz, bt ng thc cn chng

    minh tr thnh

    712 231 + 9354S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Theo 2.10 ta c iu phi chng minh.

    Bi 2.50 (Theo [5]). Chng minh rng vi mi s thc a, b, c ta c cc bt

    ng thc sau

    1. a2 + b2 + c2 ab+ bc+ ca,2. a2 + b2 + c2 1

    3(a+ b+ c)2,

    3. a2b2 + b2c2 + c2a2 abc(a+ b+ c),4. (ab+ bc+ ca)2 3abc(a+ b+ c),5. a2 + b2 + 1 ab+ a+ b,Li gii. t 1 = a+ b+ c, 2 = ab+ bc+ ca, 3 = abc. Ta c

    1. Bt ng thc cho tng ng vi 21 22 2 hay 21 32.Theo (2.12) ta c iu phi chng minh.

    2. Bt ng thc cho tng ng vi 21 22 1

    321 hay

    21 32.

    Theo (2.12) ta c iu phi chng minh.

    3.Bt ng thc cho tng ng vi O(a2b2) 13hay 22 213 13. Theo (2.12) ta c iu phi chng minh.4.Theo (2.12) ta c iu phi chng minh.

    5.Trong bt ng thc 1, cho c = 1, ta c iu phi chng minh.

    Bi 2.51 (Theo [5]). Chng minh rng vi mi s thc dng a, b, c ta c

    cc bt ng thc sau

    1. (a+ b+ c)(a2 + b2 + c2) 9abc,2. ab(a+ b 2c) + bc(b+ c 2a) + ac(a+ c 2b) 0,3. ab(a+ b) + ac(a+ c) + bc(b+ c) 6abc,4. 2(a3 + b3 + c3) ab(a+ b) + ac(a+ c) + bc(b+ c),5.

    a3 + b3 + c3

    a2 + b2 + c2 x+ y + z

    3,

    Li gii. t 1 = a+ b+ c, 2 = ab+ ac+ bc, 3 = abc.Khi

    1. Bt ng thc cho tng ng vi

    1(21 22) 93 hay 31 212 + 93.

    Theo cng thc (2.12) trong mnh (2.2) v cng thc (2.13) trong mnh

    (2.3) th

    31 312 v 12 93.T suy ra iu phi chng minh.

    2. Bt ng thc cho tng ng vi

    55S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • ab(1 3c) + bc(1 3a) + ac(1 3b) 0 12 93 0.

    Bt ng thc cui cng ng theo cng thc (2.13) trong mnh (2.3).Vy

    bt ng thc cho c chng minh.

    3. Bt ng thc cho tng ng vi

    ab(1 c) + bc(1 a) + ac(1 b) 63 12 33 63 12 93.

    Bt ng thc cui cng ng theo cng thc (2.13) trong mnh (2.3).Vy

    bt ng thc cho c chng minh.

    4. Bt ng thc cho tng ng vi

    2s3 O(a2b) 2(31 312 + 33) 12 33 231 712 + 93 0 231 + 93 712.

    Bt ng thc cui cng ng theo cng thc (2.14) trong mnh (2.4).Vy

    bt ng thc cho c chng minh.

    5. Bt ng thc cho tng ng vi

    3s3 s1s2 3(31 312 + 33) 1(21 22) 231 712 + 93 0 231 + 93 712.

    Bt ng thc cui cng ng theo cng thc (2.14) trong mnh (2.4).Vy

    bt ng thc cho c chng minh.

    Bi 2.52 (Theo [5]). Chng minh rng, nu a, b, c l di cc cnh ca

    mt tam gic th ta c cc bt ng thc

    1. 2(ab+ bc+ ca) > a2 + b2 + c2,

    2. (a2 + b2 + c2)(a+ b+ c) > 2(a3 + b3 + c3).

    Li gii.

    1. V a, b, c l ba cnh ca mt tam gic, nn ta c th t

    x = a+ b c, y = a b+ c, z = a+ b+ ctrong x, y, z l cc s dng. Khi a, b, c c biu th theo x, y, z nh

    sau:

    a =x+ y

    2, b =

    x+ z

    2, c =

    y + z

    2

    Thay vo bt ng thc cn chng minh ta c bt ng thc

    56S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2(x+ y

    2.x+ z

    2+x+ y

    2.y + z

    2+x+ z

    2.y + z

    2) >

    > (x+ y

    2)2 + (

    x+ z

    2)2 + (

    y + z

    2)2

    t 1 = x+ y+ z, 2 = xy+ xz + yz, 3 = xyz, s2 = x2 + y2 + z2 l cc

    a thc i xng c s v tng ly tha ca x, y ,z. Ta c

    2(s2 + 32) > 2s2 + 22 42 > 0D thy bt ng thc cui cng l bt ng thc ng. Vy bt ng thc

    cho c chng minh.

    2. V a, b, c l ba cnh ca mt tam gic, nn ta c th t

    x = a+ b c, y = a b+ c, z = a+ b+ ctrong x, y, z l cc s dng. Khi a, b, c c biu th theo x, y, z nh

    sau:

    a =x+ y

    2, b =

    x+ z

    2, c =

    y + z

    2

    Thay vo bt ng thc cn chng minh ta c bt ng thc

    [(x+ y

    2)2 + (

    x+ z

    2)2 + (

    y + z

    2)2](x+ y + z) >

    > 2[(x+ y

    2)3 + (

    x+ z

    2)3 + (

    y + z

    2)3].

    t 1 = x+ y + z, 2 = xy + xz + yz, 3 = xyz, s2 = x2 + y2 + z2,

    O(x2y) = x2y + x2z + y2x + y2z + z2x + z2y l cc a thc i xng c

    s, tng ly tha v cng thc qu o ca x, y, z. Ta c

    2(s2 + 22)1 > 2s3 + 3O(x2y)

    2(21 22 + 22)1 > 2(31 312 + 33) + 3(12 33) 12 + 3 > 0.

    D thy bt ng thc cui cng l bt ng thc ng. Vy bt ng thc

    cho c chng minh.

    57S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 3

    a thc i xng n bin v ngdng

    3.1 Cc khi nim

    nh ngha 3.1 (Theo [2]). Gi s x = (x1, x2, ..., xn) Rn.a thc f(x) = f(x1, x2, ..., xn) c hiu l hm s c dng

    f(x) =mk=0

    Mk(x),

    trong

    Mk(x) = Mk(x1, x2, ..., xn) =

    j1+j2+...+jn=k

    aj1j2...jnxj11 x

    j22 ...x

    jnn ,

    ji N, (i = 0, 1, 2, ..., n).nh ngha 3.2 (Theo [2]). a thc f(x1, x2, ..., xn) theo cc bin x1, x2, ..., xnc gi l i xng nu n khng thay i khi i ch gia hai bin bt

    k.

    nh ngha 3.3 (Theo [2]). a thc f(x1, x2, ..., xn) theo cc bin x1, x2, ..., xnc gi l thun nht bc m, nu

    f(tx1, tx2, ..., txn) = tmf(x1, x2, ..., xn),t 6= 0.

    nh ngha 3.4 (Theo [2]). K hiu

    sk = xk1 + x

    k2 + ...+ x

    kn, k Z.

    0 = 1, 1 =ni=1

    xi, 2 =n

    i,j=1,i

  • n = x1x2.....xn.

    Ta gi sk l cc tng ly tha, cn r(x)(r = 1, 2, 3, ..., n) l cc a thc

    i xng s cp bc r.

    Chng hn, vi n = 4, ta c

    1 = x1 + x2 + x3 + x4,

    2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

    3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

    4 = x1x2x3x4.

    S cc s hng trong a thc i xng bc k: k bng

    Ckn =n!

    k!(n k)! .

    nh ngha 3.5 (Theo [2]). a thc vi s hng ti thiu, mi s hng l

    mt n thc c dng xk11 xk22 ...x

    knn c gi l qu o ca n thc (orbit)

    v c k hiu l

    O(xk11 xk22 ...x

    knn )

    Chng hn vi n = 4, ta c

    O(x21x32) = x

    21x

    32 + x

    21x

    33 + x

    21x

    34 + x

    22x

    31 + x

    22x

    33 + x

    22x

    34 + x

    23x

    31+

    +x23x32 + x

    23x

    34 + x

    24x

    31 + x

    24x

    32 + x

    24x

    33.

    T nh ngha v qu o suy ra, nu cc s m k1, k2, ..., kn khc nhau th

    s cc s hng ca qu o O(xk11 xk22 ...x

    knn ) bng n!. M rng cho trng

    hp cc s m k1, k2, ..., kn khng nht thit phi khc nhau ta c khi

    nim qu o ton phn.

    nh ngha 3.6 (Theo [2]). a thc bng tng tt c cc hon v theo cc

    bin x1, x2, ..., xn ca n thc xk11 x

    k22 ...x

    knn c gi l qu o ton phn

    v c k hiu l

    O(xk11 x

    k22 ...x

    knn )

    Qu o ton phn ch khc qu o thng thng bi h s, c th l:

    Nu trong cc s m k1, k2, ..., kn c m1 s bng nhau, sau li c m2 s

    bng nhau,..., v cui cng cn li ml s bng nhau, th

    O(xk11 x

    k22 ...x

    knn ) = m1!m2!....ml!O(x

    k11 x

    k22 ...x

    knn ) (3.1)

    T cng thc (3.1) ta thy, nu cc s m k1, k2, ..., kn khc nhau, th qu

    o ton phn trng vi qu o thng thng.

    59S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cc cng thc di y cho php biu din cc qu o ton phn qua cc

    tng ly tha

    O(xk1x

    l2) = (n 2)!(sksl sk+l), (3.2)

    (n 2)O(xk1xl2xm3 ) = O(xk1xl2)sm O(xk+m1 xl2)O(xk1xl+m2 ), (3.3)......................

    (n r)O(xk11 xk22 .....xkrr xkr+1r+1 ) =

    = O(xk11 x

    k22 .....x

    krr )skr+1

    O(xk1+kr+11 xk22 .....xkrr )O(xk11 xk2+kr+12 .....xkrr )

    ..........................

    O(xk11 xk22 .....xkr+kr+1r ). (3.4)nh ngha 3.7 (Theo [2]). Xt hai n thc Axk11 x

    k22 ...x

    knn , Bx

    l11 x

    l22 ...x

    lnn .

    Ta ni n thc th nht tri hn n thc th hai, nu k1 > l1; hoc

    k1 = l1 v k2 > l2; ...; hoc k1 = l1, k2 = l2, ..., ks = ls v ks+1 > ls+1.

    Chng hn, so snh hai a thc f = x31x42x

    23, g = x

    31x

    42x

    54 ta vit

    chng dng f = x31x42x

    23x

    04, g = x

    31x

    42x

    03x

    54. Theo nh ngha ta thy f tri

    hn g.

    3.2 Biu din cc tng ly tha qua cc a thc i

    xng c s

    nh l 3.1 (Cng thc truy hi Newton (Theo [2])). Cc tng ly tha

    v cc a thc i xng c s lin h vi nhau theo cng thc

    sk = 1sk1 2sk2 + 3sk3 ...+ (1)k1kk (3.5)(trong cng thc (3.5) s hng (1)i1isni = 0 khi i > n).Chng minh. Xt a thc mt bin theo x

    P (x) =ni=1

    (x xi) = xn 1xn1 + ...+ (1)n1n1x+ (1)nnv cc a thc Qi(x) c xc nh theo cng thc

    Qi (x) =n

    j=1,j 6=i(x xj) = P (x)

    x xi (1 i n)

    60S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • K hiu

    k(x) = k(x1, x2, ..., xn), k(x0i ) = k(x1, x2, ..., xi1, 0, xi+1, ..., xn).

    R rng l

    k = k(x0i ) + xik1(x

    0i ), (3.6)

    Qi (x) =n1k=0

    (1)kk(x0i )xn1k (3.7)

    T (3.6), suy ra

    0(x0i ) = 1, 1(x

    0i ) = 1 xi,

    2(x0i ) = 2(x) xi1(x) + x2i ,

    3(x0i ) = 3(x) xi2(x) + x2i1(x) x3i .

    Bng phng php quy np ta c cng thc

    k(x0i)

    =kj=0

    (1)jxjikj (x) (3.8)

    (k=0, 1, ..., n-1).

    Ta c cng thc

    ni=1

    P (x)

    x xi = P (x) =

    n1k=0

    (1)k (n k)k (x)xnk1. (3.9)

    Mt khcni=1

    P (x)xxi =

    ni=1

    Qi (x) =ni=1

    n1k=0

    (1)kk(x0i)xnk1 =

    =n1k=0

    (1)k(

    ni=1

    k(x0i))

    xnk1 (3.10)

    T (3.9) v (3.10), suy ra

    ni=1

    k(x0i)

    = (n k)k (x) , (0 k n 1) . (3.11)

    T (3.9) v (3.11), suy ra

    ni=1

    kj=0

    (1)jxjik(x0j)

    = (n k)k (x) , (k n 1) ,

    61S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • kj=0

    (1)jsjkj (x) = (n k)k (x), (k n 1) . (3.12)

    Ch rng s0 = n, t (3.12) d dng suy ra (3.5). nh l 3.1 c chng

    minh.

    Nhn xt. Trn y trnh by mt chng minh ca nh l 3.1 tuy

    cha c n gin nhng li cho mt s cng thc cn thit cho sau

    ny. nh l trn c th c chng minh bng cch n gin sau. V

    x1, x2, ...., xn l nghim ca a thc P(x), nn ta c cc ng thc sau

    xn1 1xn11 + 2xn21 ...+ (1)nn = 0xn2 1xn12 + 2xn22 ...+ (1)nn = 0

    ...............................................

    xnn 1xn1n + 2xn2n ...+ (1)nn = 0Cng theo tng ct v vi v cc ng thc trn ta c cng thc (3.5).

    S dng cng thc (3.5) d dng thu c cc cng thc sau y

    s1 = 1.1;

    s2 = 1s1 22;s3 = 1s2 2s1 + 33;s4 = 1s3 2s2 + 3s1 44;s5 = 1s4 2s3 + 3s2 4s1 + 55;s6 = 1s5 2s4 + 3s3 4s2 + 55s1 66;........................................................

    T cc cng thc trn, mt cch lin tip ta nhn c cc cng thc

    sau

    s1 = 1;

    s2 = 21 22;

    s3 = 31 312 + 33;

    s4 = 41 4212 + 222 + 413 44;

    s5 = 51 5312 + 5122 + 5213 523 514 + 55;

    s6 = 61 6412 + 92122 232 + 6313 12123+

    +323 6214 + 624 + 615 66;........................................................

    62S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 3.2 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s theo cng thc

    skk

    =

    m1+2m2+...+kmk=k

    (1)km1m2...mk.(m1 +m2 + ...+mk 1)!m1!m2!...mk!

    .m11 m22 ...

    mkk

    (3.13)

    Cng thc (3.13) c th c chng minh bng phng php quy np vi

    s tr giy ca cng thc truy hi (3.5) v c gi l cng thc Waring.

    Ngoi ra c th chng minh c rng cc tng ly tha sk c biu

    din theo cc a thc i xng c s j bi cng thc

    sk = (1)k1

    1 0 0 ... 0 111 1 0 ... 0 12 1 1 ... 0 1... ... ... ... ... ...k2 k3 k4 ... 1 (k 1)1k1 k2 k3 ... 1 kk

    3.3 Cc nh l ca a thc i xng nhiu bin

    nh l 3.3 (nh l tn ti (Theo [2])). Gi s f(x1, x2, ..., xn) l a

    thc i xng ca n bin. Khi tn ti a thc (1, 2, ..., n), sao cho

    nu vo ch 1, 2, ..., n thay cc biu thc

    1 = x1 + x2 + ...+ xn,

    2 = x1x2 + ...+ x1xn + x2x3 + ...+ xn1xn,..................

    n = x1x2....xn,

    th ta nhn c a thc f(x1, x2, ..., xn).

    Chng minh. Gi s a.xk11 xk22 ...x

    knn l mt n thc ca f(x1, x2, ..., xn).

    V f(x1, x2, ..., xn) c tnh i xng, nn cng vi n thc ni trn n

    cha qu o ton phn O(xk11 x

    k22 ...x

    knn ) vi h s a. Nh vy

    f(x1, x2, ..., xn) = a.O(xk11 x

    k22 ...x

    knn ) + f1(x1, x2, ..., xn),

    trong f1(x1, x2, ..., xn) l mt a thc i xng c s cc s hng t

    hn f(x1, x2, ..., xn). T f1(x1, x2, ..., xn) li c th chn ra mt qu o

    b.O(xl11 x

    l22 ...x

    lnn ) c h s b v v.v... Sau mt s hu hn bc ta c th

    phn tch f(x1, x2, ..., xn) thnh tng ca cc qu o ton phn.

    f(x1, x2, ..., xn) = a.O(xk11 x

    k22 ...x

    knn ) + ....+ b.O(x

    l11 x

    l22 ...x

    lnn ).

    63S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Theo cng thc (3.2) v (3.4), cc qu o ton phn c biu din qua

    cc tng ly tha. Cui cng, trn c s cng thc truy hi (3.5), bng

    phng php quy np, cc tng ly tha c biu din qua cc a thc

    i xng c s. nh l c chng minh.

    Nhn xt. nh l trn cn c th c chng minh bng phng php

    s dng khi nim "n thc tri". Tht vy, gi s a.xk11 xk22 ...x

    knn l mt

    n thc tri nht ca f. Khi k1 k2 ... kn vf1(x1, x2, ..., xn) := f(x1, x2, ..., xn) ak1k21 k2k32 ...knn

    l mt a thc i xng c n thc tri thp hn a.xk11 xk22 ...x

    knn (nu vo

    ch 1, 2, ..., n thay cc biu thc ca chng theo x1, x2, ..., xn. i vi

    a thc ny li chn ra n thc tri nht b.xl11 xl22 ...x

    lnn v li xt hiu

    f2(x1, x2, ..., xn) = f1(x1, x2, ..., xn) bl1l21 l2l32 ...lnn == f(x1, x2, ..., xn) ak1k21 k2k32 ...knn bl1l21 l2l32 ...lnn .

    Sau mt s bc hu hn cui cng ta c

    0 = f(x1, x2, ..., xn) ak1k21 k2k32 ...knn ... cm1m21 m2m32 ...mnn .T suy ra

    f(x1, x2, ..., xn) = ak1k21

    k2k32 ...

    knn + ...+ c

    m1m21

    m2m32 ...

    mnn .

    nh l 3.4 (nh l duy nht (Theo [2])). Nu hai a thc (1, 2, ..., n),

    (1, 2, ..., n) sau khi thay

    1 = x1 + x2 + ...+ xn, 2 =

    1ijnxixj, n = x1x2...xn

    cng cho mt a thc i xng f(x1, x2, ..., xn) th

    (1, 2, ..., n) (1, 2, ..., n).Chng minh nh l ny hon ton tng t trng hp hai bin.

    Biu din mt a thc i xng nhiu bin f(x1, x2, ..., xn) qua a thc

    (1, 2, ..., n) ca cc a thc i xng c s theo phng php nh

    trong chng minh nh l 3.2 rt phc tp v phi lin tip biu din cc

    qu o ca cc n thc nhiu bin qua cc qu o ca cc n thc vi

    s bin t hn. V vy khi s bin ln hn 3 tm (1, 2, ..., n) thng

    s dng phng php h s bt nh. Xt v d sau y.

    64S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • V d 3.1 (Theo [5]). Biu din a thc i xng ca cc bin x1, x2, x3, x4sau y theo cc a thc i xng c s 1, 2, 3, 4:

    f(x1, x2, x3, x4) = (x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x4)(x3 + x4).

    Li gii. V f c bc 6 nn khi biu din qua cc a thc i xng c s th

    ta s c mt tng ca cc n thc dng Ak11 k22

    k33

    k44 , vi

    k1 + 2k2 + 3k3 + 4k4 = 6,

    trong k1, k2, k3, k4 l cc s nguyn khng m. Do ta tm f dng:

    f(x1, x2, x3, x4) = A161 + A2

    412 + A3

    313 + A4

    21

    22+

    +A5214 + A6123 + A7

    32 + A824 + A9

    23, (3.14)

    trong

    1 = x1 + x2 + x3 + x4, 2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

    3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4, 4 = x1x2x3x4.

    tm cc h s A1, A2, ..., A9 ta cho cc bin x1, x2, x3, x4 nhn cc gi

    tr c th no .

    Vi x1 = x2 = x3 = 0, x4 = 1, ta c f = 0, 1 = 1, 2 = 3 = 4 = 0 v

    t (3.14) suy ra A1 = 0

    Vi x1 = x2 = 0, x3 = 1, x4 = 1, ta c f = 0, 1 = 0, 2 = 1,3 = 4 = 0 v t (3.14) suy ra A7 = 0

    Vi x1 = x2 = 0; x3 = x4 = 1, ta c f = 0, 1 = 2, 2 = 1, 3 = 0, 4 = 0

    v t (3.14) vi ch A1 = A7 = 0 suy ra

    4A2 + A4 = 0

    Vi x1 = x2 = 0; x3 = 1, x4 = 2, ta c f = 0, 1 = 3, 2 = 2, 3 = 4 = 0

    v t (3.14) vi ch A1 = A7 = 0 suy ra

    9A2 + 2A4 = 0

    Do t hai phng trnh trn suy ra A2 = A4 = 0. Nh vy by gi f c

    dng

    f(x1, x2, x3, x4) = A3313++A5

    214+A6123+A824+A9

    23, (3.15)

    Vi x1 = 0, x2 = x3 = 1, x4 = 2, ta c f = 4, 1 = 0, 2 = 3,3 = 2, 4 = 0 v t (3.15) suy ra A9 = 1.Vi x1 = 1, x2 = 1, x3 = 1, x4 = 1, ta c f = 0, 1 = 0, 2 = 2,

    65S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3 = 0, 4 = 1 v t (3.15) suy ra A8 = 0.

    Vi x1 = 0, x2 = 2, x3 = 1, x4 = 2, ta c f = 16, 1 = 3, 2 = 0,3 = 4, 4 = 0 v t (3.15) vi ch A9 = 1 suy ra A3 = 0.Vi x1 = 1, x2 = 1, x3 = x4 = 1, ta c f = 0, 1 = 2, 2 = 0,3 = 2, 4 = 1 v t (3.15) vi ch A3 = 0, A9 = 1 suy ra A5 = 1.Vi x1 = x2 = x3 = 1, x4 = 0, ta c f = 8, 1 = 3, 2 = 3, 3 = 1, 4 = 0

    v t (3.15) vi ch A3 = 0, A9 = 1 suy ra A6 = 1.Vy ta c kt qu

    f(x1, x2, x3, x4) = 214 + 123 23.

    3.4 a thc phn i xng nhiu bin

    nh ngha 3.8 (Theo [2]). a thc phn i xng nhiu bin l a thc

    thay i du khi thay i v tr ca hai bin bt k.

    Chng hn, a thc

    (x y)(x z)(x t)(y z)(y t)(z t)l a thc phn i xng theo cc bin x, y, z, t.

    a thc

    T (x1, x2, ..., xn) =i

  • f(a, b, c, d) = (b+cad)4(bc)(ad)+(c+abd)4(ca)(bd)++(a+ b c d)4(a b)(c d).

    Li gii. Ta thy f l a thc phn i xng. Tht vy, i ch a v b ta

    c

    f(b, a, c, d) = (a+cbd)4(ac)(bd)+(c+bad)4(cb)(ad)++(b+ a c d)4(b a)(c d) =

    = (b+ c a d)4(b c)(a d) (c+ a b d)4(c a)(b d)(a+ b c d)4(a b)(c d) = f(a, b, c, d).

    Nh vy khi i ch a v b th f i du. i ch hai bin bt k khc cng

    cho kt qu tng t. Vy f l a thc phn i xng theo cc bin a, b, c,

    d. Mt khc, f l a thc bc 6, nn theo nh l (3.5) trn, ta c

    f(a, b, c, d) = k.T (a, b, c, d) = k.(a b)(a c)(a d)(b c)(b d)(c d),trong k l mt hng s no . xc nh k ta c th cho a, b, c, d

    cc gi tr bt k no i mt khc nhau, chng hn a = 0, b = 1, c =

    2, d = 3. Khi ta c

    f(0, 1, 2, 3) = 192, T (a, b, c, d) = 12

    suy ra k=16. Vy ta c kt qu

    f(a, b, c, d) = (b+cad)4(bc)(ad)+(c+abd)4(ca)(bd)++(a+ b c d)4(a b)(c d) =

    = 16.(a b)(a c)(a d)(b c)(b d)(c d).nh ngha 3.9 (Theo [2]). Bnh phng ca a thc phn i xng n

    gin nht T (x1, x2, ..., xn) c gi l bit thc ca cc bin x1, x2, ..., xn:

    4(x1, x2, ..., xn) = T 2(x1, x2, ..., xn) =i

  • Khi s bin ln hn 3, bit thc c biu din qua cc tng ly tha bng

    cng thc sau

    nh thc sau y c gi l nh thc Vandermonde

    Vn =

    1 x1 x

    21 ... x

    n11

    1 x2 x22 ... x

    n12

    ... ... ... ... ...1 xn x

    2n ... x

    n1n

    Khi ta c

    4(x1, x2, ..., xn) =

    ijn(xi xj)2 = V 2n .

    Cng thc trn cn c th c vit nh sau

    (x1, x2, ..., xn) =

    1 1 1 ... 1x1 x2 x3 ... xn... ... ... ... ...xn1