Chuối Lũy Thừa Hình Thức Và Hàm Sinh

download Chuối Lũy Thừa Hình Thức Và Hàm Sinh

of 62

description

toán học

Transcript of Chuối Lũy Thừa Hình Thức Và Hàm Sinh

  • i Hc Thi Nguyn

    Trng i Hc Khoa Hc

    Hong Vn Qu

    Chui lu tha hnh thc v hm sinh

    Chuyn ngnh : Phng Php Ton S Cp

    M s: 60.46.40

    Lun Vn Thc S Ton Hc

    Ngi hng dn khoa hc: PGS.TS. m Vn Nh

    Thi Nguyn - 2011

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cng trnh c hon thnh ti

    Trng i Hc Khoa Hc - i Hc Thi Nguyn

    Phn bin 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Phn bin 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Lun vn s c bo v trc hi ng chm lun vn hp ti:

    Trng i Hc Khoa Hc - i Hc Thi Nguyn

    Ngy.... thng.... nm 2011

    C th tm hiu ti

    Th Vin i Hc Thi Nguyn

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mc lc

    1 Kin thc chun b 4

    1.1 Khi nim vnh v ng cu . . . . . . . . . . . . . . . . . . . 4

    1.1.1 Vnh . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.1.2 c ca khng. Min nguyn . . . . . . . . . . . . . . 4

    1.1.3 ng cu . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.4 Trng . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2 Vnh a thc v nghim . . . . . . . . . . . . . . . . . . . . . 5

    2 Vnh cc chui ly tha hnh thc 11

    2.1 Vnh cc chui ly tha hnh thc . . . . . . . . . . . . . . . 11

    2.2 Dy hiu ca mt dy . . . . . . . . . . . . . . . . . . . . . . 17

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan . . . . . . . . 20

    2.4 Hm sinh m v dy s Stirling . . . . . . . . . . . . . . . . . 24

    2.5 Hm sinh ca dy cc a thc Bernoulli . . . . . . . . . . . . 27

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann . . . . . . . . . . . 34

    2.7 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2.8 ng nht thc Newton . . . . . . . . . . . . . . . . . . . . . 41

    2.9 Dy truy hi vi hm sinh . . . . . . . . . . . . . . . . . . . . 48

    1

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • M u

    Trong ton hc vic s dng cc kin thc ton cao cp gii quyt cc bi

    ton ph thng l iu rt quan trng. N khng ch gip ngi lm ton

    c nhiu phng php la chn li gii, m rng tm hiu bit ton hc m

    cn pht huy c s thng minh v sc sng to, tm bao qut bi ton, m

    rng bi ton di nhiu hng khc nhau.

    S dng cc kin thc v chui s gii quyt cc bi ton v dy s

    l mt vn nh vy. Nh chng ta bit cc vn lin quan n dy

    s l mt phn quan trng ca i s v gii tch ton hc. Khi tip cn vn

    ny cc em hc sinh gii, sinh vin v kh nhiu thy c gio ph thng

    thng rt phi i mt vi rt nhiu bi ton kh lin quan n chuyn

    ny.

    Trong cc k thi hc sinh gii quc gia, thi Olimpic ton quc t, thi

    Olimpic ton sinh vin gia cc trng i hc, cao ng, cc bi ton lin

    quan n dy s cng hay c cp v thng loi rt kh, i hi ngi

    hc, ngi lm ton phi c mt tm hiu bit rng v rt su sc cc kin

    thc v dy s v chui s mi a ra cc phng php gii ton hay v hon

    thin c bi ton.

    phc v cho vic bi dng hc sinh gii v vic trao i kinh nghim

    vi cc thy c gio bi dng hc sinh gii quan tm v tm hiu thm v

    phn ny, c s hng dn ca thy m Vn Nh tc gi hc tp thm

    v vit ti " Chui lu tha hnh thc v hm sinh".

    ti gii quyt cc vn trng tm :

    Chng I : Kin thc chun b .Tc gi nhc li cc kin thc c bn nht

    v :

    1.1 Khi nim vnh v ng cu

    1.1.1 Vnh.

    1.1.2 c ca khng. Min nguyn.

    2

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31.1.3 ng cu.

    1.1.4 Trng.

    1.2 Vnh a thc v nghim.

    Chng II : Vnh cc chui lu tha hnh thc. Tc gi gii thiu cc kin

    thc.

    2.1 Vnh cc chui lu tha hnh thc.

    2.2 Dy hiu ca mt dy .

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan.

    2.4 Hm sinh m v dy s Stirling.

    2.5 Hm sinh ca dy cc a thc Bernoulli.

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann.

    2.7 Tch v hn.

    2.8 ng nht thc Newton.

    2.9 Dy truy hi vi hm sinh.

    Lun vn ny c hon thnh di s hng dn v ch bo tn tnh ca

    PGS.TS m Vn Nh - i hc S Phm H Ni. Thy dnh nhiu thi

    gian hng dn v gii p cc thc mc ca tc gi trong sut qu trnh lm

    lun vn. Tc gi xin by t lng bit n su sc n Thy.

    Tc gi xin gi ti cc thy (c) khoa Ton, phng o to Trng i

    Hc Khoa Hc - i Hc Thi Nguyn, cng cc thy c tham gia ging

    dy kha Cao hc 2009-2011 li cm n su sc v cng lao dy d trong

    thi gian qua. ng thi xin gi li cm n tp th lp Cao hc Ton K3B

    Trng i Hc Khoa Hc ng vin gip tc gi trong qu trnh hc

    tp v lm lun vn ny.

    Tc gi xin cm n ti S Ni V, S Gio dc v o to Bc Ninh, Ban

    gim hiu v t Ton trng THPT Lng Ti 2 to iu kin gip

    tc gi hon thnh kha hc ny.

    Tc gi

    Hong Vn Qu

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 1

    Kin thc chun b

    1.1 Khi nim vnh v ng cu

    1.1.1 Vnh

    nh ngha . Ta gi l vnh mt tp hp X cng vi hai php ton hai ngi

    cho trong X k hiu theo th t bng cc du + v . (ngi ta thng k

    hiu nh vy) v gi l php cng v php nhn sao cho cc iu kin sau

    tha mn:

    1) X cng vi php cng l mt nhm aben.

    2) X cng vi php nhn l mt na nhm.

    3) Php nhn phn phi vi php cng: Vi cc phn t ty x, y, z X tac:

    x(y + z) = xy + xz(y + z)x = yx+ zx

    Phn t trung lp ca php cng th k hiu l 0 v gi l phn t khng.

    Phn t i xng (i vi php cng ) ca mt phn t x th k hiu l -x

    v gi l i ca x . Nu php nhn l giao hon th ta bo vnh X l giao

    hon. Nu php nhn c phn t trung lp th phn t gi l phn t n

    v ca x v thng k hiu l e hay 1 .

    1.1.2 c ca khng. Min nguyn

    nh ngha1 : Ta gi l c ca 0 mi phn t a 6= 0 sao cho c b 6= 0 thamn quan h ab=0.

    nh ngha2 : Ta gi min nguyn mt vnh c nhiu hn mt phn t, giao

    4

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 5hon, c n v, khng c c ca 0.

    1.1.3 ng cu

    nh ngha. Mt ng cu (vnh) l mt nh x t mt vnh X n mt

    vnh Y sao cho:

    f (a+ b) = f (a) + f (b)f (ab) = f (a) f (b)

    vi mi a, b X. Nu X = Y th ng cu f gi l mt t ng cu ca X .Ta cng nh ngha n cu, ton cu, ng cu tng t nh nh ngha

    trong nhm.

    1.1.4 Trng

    nh ngha: Ta gi l trng mt min nguyn X trong mi phn t khc

    khng u c mt nghch o trong v nhm nhn X. Vy mt vnh X giao

    hon, c n v, c nhiu hn mt phn t l mt trng nu v ch nu

    X {0} l mt nhm i vi php nhn ca X.

    1.2 Vnh a thc v nghim

    Kt qu chnh

    Cho vnh giao hon R v mt bin x trn R. Vi cc n N, xt tp hp:

    R[x] = {a0 + a1x+ a2x2 + + anxn | ai R} ={ n

    i=0

    aixi | ai R

    }.

    Mi phn t f(x) R[x] c gi l mt a thc ca bin x vi cc h sai thuc vnh R. H s an c gi l h s cao nht, cn h s a0 c gil h s t do ca f(x). Khi an 6= 0 th n c gi l bc ca f(x) v c

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 6k hiu deg f(x). Ring a thc 0 c quy nh c bc l hoc 1.Nu f(x) =

    ni=0

    aixi, g(x) =

    mi=0

    bixi R[x] th

    f(x) = g(x) khi v ch khi m = n, ai = bi vi mi 0 6 i 6 n

    f(x) + g(x) =i=0

    (ai + bi)xi, f(x)g(x) =

    i=0

    (i

    j=0

    aijbj)xi.

    nh l 1.2.1. Ta c R[x] l mt vnh giao hon. Hn na, nu R l mtmin nguyn th R[x] cng l mt min nguyn.

    nh l 1.2.2. Gi s k l mt trng. Vi cc a thc f(x), g(x) k[x] vg(x) 6= 0 c hai a thc duy nht q(x), r(x) sao cho f(x) = q(x)g(x)+r(x)vi deg r(x) < deg g(x).

    V d 1.2.3. Cho hai s t nhin n v p vi n > p > 1. Tm iu kin cnv xn an chia ht cho xp ap vi a R, a 6= 0.Bi gii: Biu din n = qp+ r trong Z vi 0 6 r < p. Khi c biu din

    xn an = (xp ap)(xnp + apxn2p + + a(q1)pxnqp) + aqp(xr ar).Vy, iu kin cn v xn an chia ht cho xp ap l n : p.nh l 1.2.4. Gi s k l mt trng. Khi vnh k[x] l mt vnh chnhv n l vnh nhn t ha.

    Gi s R v a thc f(x) =ni=0

    aixi R[x]. Biu thc f() =

    ni=0

    aii R c gi l gi tr ca f(x) ti . Nu f() = 0 th cgi l mt nghim ca f(x) trong R. Gi s s nguyn m > 1 v k.f() = 0 c gi l mt nghim bi cp m ca f(x) trong k nu f(x) chiaht cho (x )m v f(x) khng chia ht cho (x )m+1.nh l 1.2.5. a thc f(x) k[x] bc n > 1. Khi ta c cc kt qu sau:(i) Nu k l nghim ca f(x) th f(x) = (x)g(x) vi g(x) k[x].(ii) f(x) c khng qu n nghim phn bit trong k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 7i khi tm mi lin h gia cc nghim hay mt tnh cht no ca

    nghim a thc ta thng s dng kt qu sau y:

    nh l 1.2.6. [Vit] Gi s x1, . . . , xn l n nghim ca a thc bc n sauy: f(x) = xn 1xn1 + 2xn2 + (1)nn. Khi c cc h thc

    1 = x1 + x2 + + xn2 = x1x2 + x1x3 + + xn1xn...

    n = x1x2 . . . xn.

    nh l 1.2.7. Gi s f(x1, x2, . . . , xn) k[x1, x2, . . . , xn] l mt a thci xng khc 0. Khi tn ti mt v ch mt a thc s(x1, x2, . . . , xn) k[x1, x2, . . . , xn] sao cho f(x1, x2, . . . , xn) = s(1, 2, . . . , n).

    Mt s v d

    V d 1.2.8. Gi s f(x) = x4 5x3 + 9x2 10x+ 28. Tnh f(1 + 33).Bi gii: V 1 + 3

    3 l nghim ca g(x) = x3 3x2 + 3x 4 = 0 v

    f(x) = (x 2)g(x) + 20 nn f(1 + 33) = 20.V d 1.2.9. [VMO 1990] Gi s f(x) = a0x

    n+a1xn1+ +an1x+an

    R[x] vi a0 6= 0 v tha mn f(x)f(2x2) = f(2x3 + x) vi mi gi tr thcx. Chng minh rng f(x) khng th c nghim thc.

    Bi gii: So snh h s ca x3n v x0 hai v, nn t f(x)f(2x2) = f(2x3+x) ta suy ra a20 = a0 v a

    2n = an.V a0 6= 0 nn a0 = 1; cn an = 0 hoc an =

    1. Nu an = 0 th f(x) = xrg(x) vi g(0) 6= 0. Vy xrg(x)2rx2rg(2x2) =

    xr(2x2 + 1)rg(2x3 + x) hay g(x)2rx2rg(2x2) = (2x2 + 1)rg(2x3 + x). Vg(0) 6= 0 nn ta nhn c g(0) = 0 : mu thun. Vy an = 1. Gi sf(x) = 0 c nghim thc x0. Khi x0 6= 0 v an 6= 0. V f(2x30 + x0) =f(x0)f(2x

    20) = 0 nn x1 = 2x

    30 + x0 cng l nghim thc ca f(x). V hm

    y = 2x3 + x l n iu tng nn dy (xr+1 = 2x3r + xr)r>0 v x0 6= 0 lmt dy v hn v mi s hng u l nghim ca f(x) hay f(x) c nhiuv hn nghim: mu thun theo nh l 1.2.5. Vy f(x) khng c nghimthc.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 8V d 1.2.10. [IMO 1991] Gi s s hu t a (0; 1) tha mn phngtrnh cos 3pia+ 2 cos 2pia = 0. Chng minh rng a =

    2

    3.

    Bi gii: t x = cospia. Khi 4x3+4x23x2 = 0 hay (2x+1)(2x2+x2) = 0. Nu cos pia = x = 1

    2th a =

    2

    3. Nu x 6= 1

    2th 2x2+x2 =

    0, v nh vy x l s v t. Do |x| 6 1 nn cospia = x = 1 +

    17

    4. Bng

    quy np, c th ch ra cos 2npia =an + bn

    17

    4vi s nguyn l an, bn. V

    an+1 + bn+1

    17

    4= cos 2n+1pia = 2 cos2 2npia 1 = 2[an + bn

    17

    4]2 1

    nn an+1 =a2n + 17b

    2n 8

    2> an. Do dy (an) l mt dy tng nghim

    ngt v nh vy tp cc gi tr ca cos 2npia vi n = 0, 1, 2, ... l tp vhn (*) v

    17 l s v t. Nhng do a l s hu t nn tp cc gi trca cosmpia vi m = 0, 1, 2, ... phi l hu hn: mu thun vi (*). Do d

    a =2

    3.

    V d 1.2.11. Gi thit a thc f(x) bc n c tt c cc nghim u thc.Khi tt c cc nghim ca af(x) + f (x) cng l nhng s thc.

    Bi gii: Gi s f(x) c cc nghim thc x1, x2, . . . , xk vi bi tng ngr1, r2, . . . , rk v ta sp xp x1 < x2 < < xk. Hm s

    g(x) =f (x)f(x)

    =1

    x x1 +1

    x x2 + +1

    x xkl hm lin tc trong cc khong (;x1), (x1;x2), . . . , (xk1;xk), (xk;).Da vo s bin thin ca cc hm

    1

    x xj , phng trnh g(x) = a c thmk nghim mi na khc x1, x2, . . . , xk khi a 6= 0. Vy f(x)[g(x) +a] = 0 ctt c (r1 1) + + (rk 1) + k = deg f(x) nghim thc. Vy tt c ccnghim ca af(x)+f (x) u thc. Khi a = 0 th g(x) = 0 c k1 nghimthc mi na. Vy f(x)[g(x)+0] = 0 c tt c (r11)+ +(rk1)+k1 =deg f (x). Tm li tt c cc nghim ca af(x)+f (x) l nhng s thc.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 9V d 1.2.12. Gi thit tt c cc nghim ca a thc f(x) v a thc g(x) =a0x

    n + a1xn1 + + an u l nhng s thc. Khi tt c cc nghimca F (x) = a0f(x) + a1f

    (x) + + anf (n)(x) cng u l nhng s thc.Bi gii: Biu din g(x) = a0(x+ 1)(x+ 2) . . . (x+ n) vi cc j thc.K hiu F0(x) = a0f(x), F1(x) = F0(x) + 1F

    0(x) = a0[f(x) + 1f

    (x)],F2(x) = F1(x)+2F

    1(x) = a0[f(x)+(1+2)f

    (x)]+12f (x)],v.v... cuicng Fn(x) = Fn1(x) + nF n1(x) = a0f(x) + a1f

    (x) + + anf (n)(x).Theo V d 1.2.11 suy ra tt c cc nghim ca F0, F1, . . . , Fn u thc.

    V d 1.2.13. Cho f = cosu + C1n cos(u + )x + + Cnn cos(u + n)xn.Gii phng trnh f(x) = 0.

    Bi gii: t g = sinu+ C1n sin(u+)x+ + Cnn sin(u+n)xn. Khi f + ig = z + C1n ztx+ + Cnn ztnxn = z(1 + tx)nf ig = z + C1n ztx+ + Cnn ztnxn = z(1 + tx)n

    z = cosu+ i sinu

    t = cos + i sin.

    Do 2f = z(1 + tx)n + z(1 + tx)n. Phng trnh f(x) = 0 tng

    ng vi z(1 + tx)n + z(1 + tx)n = 0 hay(1 + tx

    1 + tx

    )n= z

    z= z2.

    Nh vy

    (1 + tx1 + tx

    )n= cos(2u + pi) + i sin(2u + pi) v c

    1 + tx

    1 + tx=

    cos(2u+ pi + k2pi

    n) + i sin(

    2u+ pi + k2pi

    n) vi k = 0, 1, . . . , n 1. T c x.

    V d 1.2.14. Gi s a1, . . . , an, b R \ {0} v 1, . . . , n l nhng s thcphn bit. Khi f(x) = b+

    nk=1

    a2kx k ch c nghim thc.

    Bi gii: Ta c f(c+ id) = b+nk=1

    a2kc+ id k = b+

    nk=1

    a2k(c k id)(c k)2 + d2 .

    Phn o Im(f(c + id)) = dnk=1

    a2k(a k)2 + b2 6= 0 khi d 6= 0. Vy f(c +

    id) 6= 0 khi d 6= 0. Khng hn ch c th coi 1 < 2 < < n1 < n.Hin nhin f(x) = 0 c n 1 nghim thc k tha mn

    1 < 1 < 2 < 2 < < n1 < n1 < n

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 10

    v thm ng mt nghim tha mn hoc (, 1) hoc (n,+). T suy ra hm f(x) ch c cc nghim thc.V d 1.2.15. Cho a thc P (x) = 1 + x2 + x9 + xn1 + ...+ xns + x1992

    vi n1, ..., ns l cc s t nhin cho trc tha mn 9 < n1 < ... < ns k(k + 1) nn|b0ak1 + b1ak2 + + bk2a1 + bk1| 6 2

    (|ak1|+ |ak2|+ + |a1|+ 1)v nh th k(k + 1) < |kak| 6 2

    (k + (k 1) + + 2 + 1) = k(k + 1) :mu thun. Nh vy |an| 6 n+ 1 vi mi n.V d 2.1.12. Chng minh rng 2

    12 (22)

    122 (2n) 12n < 4 vi mi s nguyndng n.

    Bi gii: V 212 (22)

    122 (2n) 12n = 2

    nk=1

    k

    2knn ch cn chng minh

    nk=1

    k

    2k 1 :an = 2an1 + (2n 1)2an2, bn = 2bn1 + (2n 1)2bn2.

    Bi gii: Bng quy np theo n ta nhn c cc cng thc bn =nk=0

    (2k+ 1)

    v an = (2n + 1)an1 + (1)nn1k=0

    (2k + 1). Vyanbn

    =an1bn1

    +(1)n2n+ 1vi

    mi s nguyn n > 0. Nh vy anbn

    = 1 13

    +1

    5+ + (1)

    n

    2n+ 1. Chuyn

    qua gii hn ta c limn+

    anbn

    = arctan 1 =pi

    4.

    V d 2.1.14. Cho hai dy s nguyn (an) v (bn) tha mn:{a0 = 1, b0 = 1an = 2n 1, bn = n2, n > 1.Xy dng hai dy cc s nguyn (An) v (Bn) nh sau:{

    A0 = 0, B0 = 1, A1 = 1, B1 = a1

    An+1 = an+1An + bnAn1, Bn+1 = an+1Bn + bnBn1, n > 1.

    (i) Tnh An, Bn theo n.

    (ii) Chng minh

    AnBn Q \ Z.

    (iii) Tm limn

    BnAn

    .

    (iv) Chng minh

    nk=1

    1

    k=

    1

    1 12

    3 22

    5 32

    .

    .

    . 2n 3 (n 1)

    2

    2n 1

    .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 17

    Bi gii: Bng quy np theo n ta nhn c cc cng thc Bn = n! v

    An = (nk=1

    1

    k)n!.

    (ii) Ta c

    AnBn

    =nk=1

    1

    k Q \ Z.

    (iii) V

    BnAn

    =1nk=1

    1

    k

    nn limn

    BnAn

    = limx1+

    1

    ln(1 + x)= 0.

    (iii) Do

    nk=1

    1

    k=AnBn

    =1

    1 12

    3 22

    5 32

    .

    .

    . 2n 3 (n 1)

    2

    2n 1

    .

    2.2 Dy hiu ca mt dy

    nh ngha 2.2.1. Cho dy s {an} = {an}nN. Dy {Dan}nN vi Dan =an+1 an, n > 0, c gi l dy hiu ca dy {an}.V dy hiu cng l mt dy s nn ta c th lp dy hiu ca n v k hiu

    qua {D2an}. Hin nhinD2an = Dan+1 Dan = an+2 2an+1 + an.Tng qut Dk+1an = D

    kan+1 Dkan v Dk(Dhan) = Dk+han.V d 2.2.2. Vi s nguyn dng r, dy (an), trong an =

    (nr

    ), tha mnh thc Dan = an+1 an =

    (nr1).

    B 2.2.3. Vi hai dy s {an} v {bn} ta cD(ran+sbn) = rDan+sDbnv Dk(ran + sbn) = rD

    kan + sDkbn vi mi s r, s v s t nhin k, n.

    Chng minh: VD(ran+sbn) = rDan+sDbn = r(an+1an)+s(bn+1bn)nn c ngay kt qu D(ran + sbn) = rDan + sDbn. Tng qut D

    k(ran +sbn) = rD

    kan + sDkbn c chng minh d dng bng qui np theo k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 18

    B 2.2.4. Cho dy s {an}. Nu Dr+1an = 0 vi mi n > 0 th r + 1 shng a0, Da0, . . . , D

    ra0 xc nh hon ton tt c cc Dkan vi mi k, n.c bit, nu dy s {bn} tha mn Djb0 = Dja0 v Dr+1bn = 0 vi min > 0, 0 6 j 6 r, th an = bn vi mi n.Chng minh: Hin nhin.

    nh l 2.2.5. Cho dy s {an}. Nu c a thc p(x) bc r tha mn an =p(n) vi mi n > 0 thDr+1an = 0 vi mi n > 0. Ngc li, nuDr+1an =0 vi mi n > 0 th

    an =

    (n

    0

    )a0 +

    (n

    1

    )Da0 + +

    (n

    s

    )Dsa0 + +

    (n

    r

    )Dra0.

    Chng minh: Gi s a thc p(x) bc r tha mn an = p(n) vi mi n > 0.Ta ch ra Dr+1an = 0 bng phng php qui np theo r. Khi r = 0 can = p(n) = a. Vy D

    1an = a a = 0. Gi s kt lun ng cho r 1 vp(x) = crx

    r+ +c0. V an = p(n) vi mi n > 0 nn Dan = an+1an =p(n+ 1) p(n). t q(x) = p(x+ 1) p(x) tha mn Dan = q(n). V q(x)l a thc bc r 1 nn Dr(Dan) = 0 theo gi thit qui np. Vy ta nhnc Dr+1an = 0.Gi thit dy {an} tha mn Dr+1an = 0 vi mi n > 0. nh ngha dymi {bn} xc nh bi:

    bn =

    (n

    0

    )a0 +D

    (n

    1

    )a0 + +Ds

    (n

    s

    )a0 + +Dr

    (n

    r

    )a0, n > 0.

    Theo B 2.2.3 ta c ngay

    Dbn = D

    (n

    0

    )a0 +D

    2

    (n

    1

    )a0 + +Dr+1

    (n

    r

    )a0

    =

    (n

    0

    )Da0 +

    (n

    1

    )D2a0 + +Dr+1

    (n

    r 1)Dra0

    v Dr+1a0 = 0. Lp li, vi D2, . . . , Dj v ta nhn c

    Djbn =

    (n

    0

    )Dja0 +

    (n

    1

    )Dj+1a0 + +

    (n

    r j)Dra0

    v n Drbn = Dra0(nrr)

    = Dra0. Do Dr+1bn = D

    r+1a0 = 0 vi min > 0 v Djb0 = Dja0 vi mi 0 6 j 6 r. Vy theo B 2.2.4 c an = bnvi mi n > 0.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 19

    V d 2.2.6. Cho dy (an) vi a0 = 3 v an+1 = an + 4n+ 1 vi mi n > 0.Chng minh rng vi mi s t nhin dngm u c n an3n1 = 2m2.Bi gii: V Dan = an+1 an = 4n + 1, D2an = Dan+1 Dan = 4(n +1) + 1 4n 1 = 4 v D3an = 0 nn theo nh l 2.2.5 ta c ngayan = 3

    (n0

    )+Da0

    (n1

    )+D2a0

    (n2

    )+ 0 = 3 +n+ 2n(n 1) = 2n2n+ 3 hay

    an 3n 1 = 2(n 1)2 vi mi n > 0. Vy vi mi m c am+1 3(m+1) 1 = 2m2.V d 2.2.7. Cho dy (an) vi a0 = 3, a1 = 2 v an+2 = 3an+1 2an 6n2 + 14n 5 vi mi n > 0. Xc nh an theo n.Bi gii: V an+2 2an+1 = an+1 2an 6n2 + 14n 5 nn khi tbn = an+1 2an ta s c bn+1 = bn 6n2 + 14n 5 v dy (bn) vib0 = 4, bn+1 = bn 6n2 + 14n 5 vi mi n > 0. V Dbn = bn+1 bn =6n2 + 14n 5, D2bn = Dbn+1 Dbn = 6(n + 1)2 + 14(n + 1) 5 +6n2 14n + 5 = 12n + 8 v D3bn = 12, D4bn = 0 nn theo nh l2.2.5 ta c ngay bn = 4

    (n0

    )+Da0

    (n1

    )+D2a0

    (n2

    )+D3a0

    (n3

    )hay

    bn = 4 5n+ 8(n

    2

    ) 12

    (n

    3

    )= 2n3 + 10n2 13n 4.

    Vy a0 = 3, an+1 = 2an 2n3 + 10n2 13n 4 vi mi n > 0. Vi dykiu ny, ta xt an = u.2

    n + an4 + bn3 + cn2 + dn+ e. T y d dng suyra an.

    V d 2.2.8. Cho dy (an) vi a0 = 5, a1 = 1 v an+1 = an + 6an1 6n2 + 26n 25 vi mi n > 1. Chng minh rng vi mi t nhin n u can 2.3n + n2(mod 2n).Bi gii: Vi dy kiu ny, trc tin xt a thc c trng x2 x 6 =(x 3)(x+ 2). Tip theo an = u3n + v(2)n + +an3 + bn2 + cn+ d v xt

    5 = a0 = u+ v + d

    1 = a1 = 3u 2v + a+ b+ c+ d34 = a2 = 9u+ 4v + 8a+ 4b+ 2c+ d

    39 = a3 = 27u 8v + 27a+ 9b+ 3c+ d226 = a4 = 81u+ 16v + 64a+ 16b+ 4c+ d

    415 = a5 = 243u 32v + 125a+ 25b+ 5c+ d.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 20

    Gii h c u = 2, v = 3, b = 1 v a = c = d = 0. Nh vy c cng thcan = 2.3

    n + 3.(2)n + n2 v an 2.3n + n2(mod 2n) vi mi n > 0.Ch 2.2.9. Nu c a thc g(x) tha mn an = g(n) th an+1 an =g(n+ 1) g(n) l mt a thc ca n vi bc nh i 1.

    2.3 Hm sinh thng v dy Fibonacci, dy Catalan

    Mt trong nhng ngun gc dn n khi nim hm sinh chnh l nh l

    khai trin nh thc Newton (1 + x)n =nk=0

    (nk

    )xk v khai trin thnh chui

    ly tha ca hm phn thc

    1

    1 x = 1 + x + x2 + + xn + . y lmt k thut gii tch vi nhiu ng dng trong t hp v nghin cu dy s.

    Hm sinh c phn ra lm hai loi: Hm sinh thng v Hm sinh m. Ta

    bt u vi khi nim hm sinh thng di y:

    nh ngha 2.3.1. Cho dy s {an}, hoc tng qut hn l dy hm {an =an(x)}. Chui lu tha hnh thc f(x) =

    n=0

    anxnc gi l hm sinh

    thng ca dy {an}.

    Kt qu chnh

    nh l sau y c chng minh trong Gii tch.

    nh l 2.3.2. Cho s thc dng . Nu chui lu tha hnh thci=0

    aixi

    hi t ti h(x) th cho mi x (, ) hm h(x) c h(x) =i=1

    iaixi1v

    h0

    f(t)dt =i=0

    aixi+1

    i+ 1.

    nh l 2.3.3. Dy s {an} c gi l dy xc nh kiu tuyn tnh nu dyc dng : a0 = 0, . . . , as1 = s1 v an+s = 1an+s1 + 2an+s2 + +san, n > 0. Khi hm sinh thng f(x) ca dy {an} l mt hm hut

    b0 + b1x+ + brxr1 + 1x+ + sxs , r < s, khi v ch khi {an} l dy xc nh kiutuyn tnh.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21

    Chng minh: Gi thit a0 = 0, . . . , as1 = s1 v an+s = 1an+s1 +2an+s2 + + san, n 0. t f(x) = a0 + a1x+ a2x2 + a3x3 + . Sdng an+s = 1an+s1 + 2an+s2 + + san, n 0, ta c (1x+ 2x2 + +sxs)f(x) = p(x)+f(x), trong p(x) l a thc vi bc deg p(x) < s.t q(x) = 1x + 2x

    2 + + sxs. Ta c (q(x) 1)f(x) = p(x). Vyf(x) =

    p(x)

    q(x) 1 hay hm sinh thng f(x) ca dy l mt hm hu t.

    Ngc li, cho f(x) =b0 + b1x+ + brxr1 + 1x+ + sxs =

    p(x)

    q(x), r < s.V f(x)q(x) =

    p(x) nn khi so snh h s ca cc xn ta c hai ha0 = b0a01 a1 = b1...

    a0s1 + a1s2 + as1 = bs1 va0s + a1s1 + as = 0a1s + a2s1 + as+1 = 0a2s + a3s1 + as+2 = 0...

    Gii h u c nghim a0 = 0, . . . , as1 = s1. T h sau ta suy raan+s = 1an+s1 + 2an+s2 + + san, n 0. Do {an} l dy xcnh kiu tuyn tnh.

    nh l 2.3.4. Nu u(x) = xs + 1xs1 + + s = 0 c cc nghimr1, . . . , rt vi cc bi tng ng 1, . . . , t. Khi tn ti cc a thc p1(n),p2(n), . . . , pt(n) tha mn an = p1(n)r

    n1 + p2(n)r

    n2 + + pt(n)rnt v

    0 6 deg pi(n) 6 i 1 vi i = 1, 2, . . . , t.

    Mt vi v d

    V d 2.3.5. Dy s a0 = 5, a1 = 13, a2 = 35 v an+3 = 6an+211an+1+6anvi n > 0. Chng minh rng an 2n+1(mod 3n+1) v an 3n+1(mod 2n+1).Bi gii: a thc p(x) = x3 6x2 + 11x 6 = (x 1)(x 2)(x 3). Vyan = a2

    n + b3n + c. T iu kin ban u suy ra an = 2n+1 + 3n+1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 22

    V d 2.3.6. Xt dy s a0 = 11, a1 = 6, a2 = 18, a3 = 104, a4 = 346 v

    an+5 = 6an+4 13an+3 + 14an+2 12an+1 + 8an, n > 0.Tm s nguyn dng ln nht m a2011 chia ht cho 2

    m.

    Bi gii: a thc p(x) = x5 6x4 + 13x3 14x2 + 12x 8 c vitthnh p(x) = (x 2)3(x i)(x + i). Vy an = p1(n)2n + ain + b(i)n.T iu kin ban u suy ra an = (n

    2 + n + 1)2n + 5in + 5(i)n. Vya2011 = (2011

    2 + 2011 + 1)22011. S m cn tm bng 2011.

    S dng khi nim hm sinh v chui lu tha hnh thc xt mt s

    dy s c bit.

    V d 2.3.7. Xt dy s Fibonacci a0 = 0, a1 = 1, an+1 = an + an1, n > 1.Cng thc ng cho hm sinh thng ca dy l f(x) =

    x

    1 x x2 . Tm

    an theo n v ch ran=0

    an4n+1

    =1

    11.

    Bi gii: t f(x) = a0+a1x+a2x2+a3x

    3+ .Khi (1xx2)f(x) =x hay ta c f(x) =

    x

    1 x x2 . Vi a =1 +

    5

    2v b =

    152

    , biu din

    f(x) qua chui ly tha f(x) =15

    ( 11 ax

    1

    1 bx). Vy c

    f(x) =15

    ((1 + ax+ a2x2 + ) (1 + bx+ b2x2 + )).So snh h s ca xn hai v c an =

    an bn5v cng thc ng f(x) =

    x

    1 x x2 . Vi x =1

    4ta nhn c

    n=0

    an4n+1

    =1

    11.

    T kt qu an =an bn

    5ta suy ra cc ng nht thc sau y:

    V d 2.3.8. Xt dy s Fibonacci a0 = 0, a1 = 1, an+1 = an + an1, n > 1.Khi ta c

    (i) [Phng trnh Biner] an =an bn

    5, Ln = a

    n + bn [S Lucas]. Do

    limn

    an+1an

    = a.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 23

    (ii) an =1

    2n1[n12 ]k=0

    (n

    2k+1

    )5k =

    [n12 ]k=0

    (nk1

    k

    ).

    (iii) a2n+1 = a2n + a

    2n+1, a3n = a

    3n + a

    3n+1 a3n1.(iv) an = aan + an1, bn = ban + an1.

    (v) a3n + (1)nan : a2n.(vi) Nu p > 5 l s nguyn t th ap : p v a2 + 1 = 2 : 2, a3 + 1 =

    3 : 3, a5 = 5 : 5.

    Bi gii: (i),(ii),(iii),(iv) v (v) u c suy ra t cng thc an =an bn

    5.

    Vi p > 5 l s nguyn t th t (ii) c ap =1

    2p1[p12 ]k=0

    (p

    2k+1

    )5k : p. Vi

    V d 2.3.9. Xt dy Catalan a0 = 1, an+1 = a0an+a1an1 + +an1a1 +ana0, n > 0. Cng thc ng cho hm sinh ca dy l f(x) =

    11 4x2x

    .

    Tm cng thc tnh an theo n.

    Bi gii: t f(x) = a0 + a1x+ a2x2 + a3x

    3 + . Khi f(x)f(x) = a20 + (a0a1 + a1a0)x+ (a0a2 + a1a1 + a2a0)x

    2 + = a1 + a2x+ a3x

    2 + a4x3 + = f(x) 1

    x.

    Vy x[f(x)]2 f(x) + 1 = 0. Gii phng trnh ny v do f(0) = 0 nn

    f(x) =11 4x

    2x=

    1

    2x 1

    2x(1 4x) 12 .

    Cng thc ng cho hm sinh f(x) l f(x) =11 4x

    2x. Biu din

    hm ny qua chui lu tha f(x) =1

    2x

    [2x +

    22

    2!x2 +

    1.3

    3!23x3 + +

    1.3.5...(2n 3)n!

    2nxx + ]. So snh h s c an = 1n+ 1

    (2n

    n

    )vi mi

    s nguyn n > 1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 24

    V d 2.3.10. Dy s (an) c xc nh nh sau: a1 = 1 v an =1

    n!+

    a1(n 1)! +

    a2(n 2)! + +

    an11!vi n > 1. Xc nh cng thc ng ca

    f(x) v ch ra an =F (n)(0)

    n!, trong F (x) =

    1ex 2 vi mi n.

    Bi gii: t a0 = 1. Xt hm sinh f(x) =n=0

    anxn. Khi f(x)(ex1) =(

    a0+a1x+a2x2+ +anxn+

    )( 11!x+

    1

    2!x2+ + 1

    n!xn+ ) = f(x)1.Vy f(x) =

    1ex 2 . Da vo Cng thc khai trin Taylor-Maclaurin ta c

    an =F (n)(0)

    n!, trong F (x) =

    1ex 2 vi mi n.

    2.4 Hm sinh m v dy s Stirling

    Kt qu chnh

    Nh mt s tip tc, khi nim hm sinh m s c nh ngha di y.

    nh ngha 2.4.1. Cho dy s {an}. Chui lu tha hnh thc biu din trongdng f(x) =

    n=0

    ann!xn c gi l hm sinh m ca dy {an}.

    V d 2.4.2. Vi dy s ((mn

    )) hm sinh thng f(x) =

    n=0

    (mn

    )xn c vit

    thnh f(x) =n=0

    m!

    (m n)!n!xn =

    n=0

    Anmn!xn l hm sinh m ca dy (Anm).

    (m l s c nh cho trc )

    nh ngha 2.4.3. Cho mt tp hu hn S khc rng. Mt phn hoch caS thnh k phn, vi 1 6 k 6 n, l mt h cc tp con S1, . . . , Sk tha mnba iu kin sau y :

    ki=1

    Si = S

    Si 6= vi mi iSi Sj = vi mi i, j, i 6= j.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 25

    nh ngha 2.4.4. Cho tp hu hn S khc rng. S cc phn hoch ca tpS thnh k phn c k hiu l S(n, k) v c gi l s Stirling (loi 2).

    nh l 2.4.5. Vi hai s nguyn dng n, k tha mn 1 6 k 6 n ta lun c

    k!S(n, k) =ki=0

    (1)ki(k

    i

    )in.

    Chng minh: Xt tp S = {a1, a2, . . . , an} v R = {1, 2, . . . , k}. TheoBi tp 1.2.22, s cc ton nh t S ln R bng k!S(n, k). Mt khc, biu

    din nh x f : S R qua(

    a1 a2 . . . anf(a1) f(a2) . . . f(an)

    )ta c ngay

    {f(a1), f(a2), . . . , f(an)} = {1, 2, . . . , k}. Vit dy s f(a1) . . . f(an) nhmt chnh hp lp chp n ca k s. Nh vy, tng ng mi nh x f

    vi ng mt chnh hp lp chp n ca k s. S chnh hp lp ny ngbng kn. K hiu A l tp tt c cc nh x t S vo R v cho mi i k

    hiu Ai l tp con ca A gm tt c cc nh x t S vo R \ {i}. Ta c|A| = kn, |Ai| = (k 1)n v

    sj=1

    Aij = (k s)n. Tp tt c cc ton nh t

    S ln R ng bng A \ki=1

    Ai. Theo nh l 2.4.5, ta nhn c

    k!S(n, k) = |A| |ki=1

    Ai| = kn (k

    1

    )(k 1)n

    +

    (k

    2

    )(k 2)n + (1)k

    (k

    k

    )(k k)n.

    Vy k!S(n, k) =ki=0

    (1)i(ki)(k i)n = ki=0

    (1)ki(ki)in.H qu 2.4.6. Vi hai s nguyn dng n, k tha mn 1 6 k 6 n ta lun c

    kn =ki=0

    (k

    i

    )i!S(n, i).

    Chng minh: t ak = k!S(n, k) v bi = in. Theo nh l 2.4.5, ta c

    ak =ki=0

    (1)ki(ki)bi. t ck = (1)kak. Khi ck = ki=0

    (1)i(ki)bi. K

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 26

    hiu ng thc ny nh sau ck = (1 b)k v hiu l sau khi khai trin thay bibi bi.Vi k hiu hiu hnh thc, ng vi mi gi tr ca x, c th vit ngnht thc nh sau: (c+ x)k = (b+ 1 + x)k. Cho x = 1 ta c (1)kbk =(c 1)k hay bk = (1 c)k =

    ki=0

    (1)i(ki)ci. Vy kn = ki=0

    (ki

    )i!S(n, i).

    nh l 2.4.7. Hm sinh m ca dy s Stirling l f(x) =n=0

    S(n, k)xn

    n!c

    cng thc ng bng

    (ex 1)kk!

    .

    Chng minh: Theo nh l 2.4.5, f(x) =n=0

    1

    n!

    ( 1k!

    ki=0

    (1)ki(ki)in)xn.Do k!f(x) =

    ki=0

    (1)ki(ki) n=0

    (ix)n

    n!=

    ki=0

    (1)ki(ki)eix = (ex 1)khay f(x) =

    (ex 1)kk!

    .

    Mt vi v d

    V d 2.4.8. K hiu D(n) l s cc hon v ca n phn t khng c phn tc nh, chng hn: S cc php hon v pi Sn sao cho pi(k) 6= k vi mi k.D dng ch raD(n) = n!

    ( 10! 1

    1!+

    1

    2! + (1)

    n

    n!

    ). Hm sinh m ca dy

    (D(n)) l f(x) =n=0

    D(n)

    n!xn. Xc nh cng thc ng ca f(x) v chng

    minh D(n) = nD(n 1) + (1)n, D(n) = (n 1)(D(n 1) +D(n 2)).Bi gii: Do bi f(x) =

    n=0

    D(n)

    n!xn =

    n=0

    ( 10! 1

    1!+

    1

    2! + (1)

    n

    n!

    )xn

    nn f(x) =( k=0

    (1)kk!

    xk)(

    k=0

    xk)

    = ex.1

    1 x =1

    ex(1 x) .

    T f(x)(1x) = ex suy ra D(n)n!D(n 1)

    (n 1)! =(1)nn!v nh vyD(n) =

    nD(n 1) + (1)n. T{D(n) = nD(n 1) + (1)nD(n 1) = (n 1)D(n 2) + (1)n1 suyra D(n) + D(n 1) = nD(n 1) + (n 1)D(n 2) hay D(n) = (n 1)(D(n 1) +D(n 2)).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 27

    V d 2.4.9. K hiu D(n) l s cc hon v ca n phn t khng c phn

    t c nh. Chng minh rng

    mn=0

    (mn

    )D(n) = m! vi mi s nguyn m > n.

    Bi gii: Do bi f(x) =n=0

    D(n)

    n!xn =

    1

    ex(1 x) nn f(x)ex =

    1

    1 x.

    Vy

    ( n=0

    D(n)

    n!xn)(

    n=0

    1

    n!xn)

    =n=0

    xn. So snh h s ca xm hai v ta

    c

    mn=0

    (mn

    )D(n) = m!.

    V d 2.4.10. Dy s Bell (Bn) c xc nh nh sau: Bn =nk=1

    S(n, k)

    vi n > 1 v B0 = 1. Xc nh cng thc ng ca f(x) =n=0

    Bnn!xn.

    Bi gii: D dng ch ra Bn+1 =nk=0

    (nk

    )Bk. t f(x) =

    n=0

    Bnn!xn. Vy

    f(x)ex =n=0

    1

    n!Bn+1x

    n =n=0

    (n + 1)Bn+1

    (n+ 1)!xn = f (x). T y suy ra f (x)

    f(x)dx =

    ex dx hay ln(f(x)) = ex + C. V f(0) = B0 = 1 nn

    C = 1 v nh th ln(f(x)) = ex 1. Do f(x) = eex1.

    2.5 Hm sinh ca dy cc a thc Bernoulli

    nh ngha 2.5.1. Cc a thc Bernoulli {Bn(x)} l nhng a thc tha mnba iu kin sau y:

    (i) B0(x) = 1

    (ii) Bn(x) = nBn1(x) vi n > 1

    (iii)

    10

    Bn(x)dx = 0 vi n > 1.

    nh ngha 2.5.2. S Bernoulli th n l Bn(0) v c k hiu qua Bn vin = 0, 1, 2, . . . .

    B 2.5.3. o hm cp s ca Bn(x) l B(s)n (x) = n(n 1) . . . (n s +

    1)Bns(x) v Bn(x) l a thc bc n.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 28

    Chng minh: B(s)n (x) = n(n 1) . . . (n s + 1)Bns(x) c suy ra tiu kin (ii). V B

    (n)n (x) = n!B0(x) = n! nn degBn(x) = n.

    nh l 2.5.4. Ta c ngay cc h thc sau y: Bn(x) =ns=0

    (ns

    )Bsx

    nsv

    B0 = 1,ns=0

    (n+1s

    )Bs = 0, Bn Q.

    Chng minh: Ta lun cBn(x) =ns=0

    B(s)n (0)xs

    s!. Theo B 2.5.3,Bn(x) =

    ns=0

    n!Bns(0)xs

    s!(n s)! =ns=0

    (ns

    )Bsx

    ns. Cho n 1, t iu kin10

    Bn(x)dx = 0

    ta suy ra h thc

    10

    ( ns=0

    (ns

    )Bsx

    ns)dx = 0 hay 1n+ 1

    ns=0

    (n+1s

    )Bs = 0. V

    B0 = 1,ns=0

    (n+1s

    )Bs = 0 nn Bn Q vi mi n (bng quy np).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 29

    T kt qu ny, d dng nhn c mt s ng nht thc v a thc sau:

    B0 = 1

    2B1 +B0 = 0

    3B2 + 3B1 +B0 = 0

    4B3 + 6B2 + 4B1 +B0 = 0

    5B4 + 10B3 + 10B2 + 5B1 +B0 = 0

    6B5 + 15B4 + 20B3 + 15B2 + 6B1 +B0 = 0

    . . .ns=0

    (n+ 1

    s

    )Bs = 0.

    B0(x) = 1

    B1(x) = x 12

    B2(x) = x2 x+ 1

    6

    B3(x) = x3 3

    2x2 +

    1

    2x

    B4(x) = x4 2x3 + x2 1

    30

    B5(x) = x5 5

    2x4 +

    5

    3x3 1

    6x.

    H qu 2.5.5. Ta c Bn(x) = Bn(x+ 1)Bn(x) = nxn1.Chng minh: Ta lun c h thc di y:

    Bn(x+ 1) =ns=0

    B(s)n (1)xs

    s!=

    ns=0

    (n

    s

    )Bs(1)x

    ns.

    Hin nhin B0(1) = B0(0) = 1. Cho n > 2, t iu kin10

    Bm(x)dx = 0

    khi m > 1 suy ra 0 =10

    nBn1(x)dx =10

    Bn(x)dx = Bn(1) Bn(0). Dovy, khi xt b(x) = Bn(x+ 1)Bn(x), t nh l 2.5.4 ta c

    b(x) =ns=0

    (n

    s

    )[Bs(1)Bs(0)

    ]xns =

    (n

    1

    )[B1(1)B1(0)

    ]xn1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 30

    V B1(1)B1(0) = 1 nn Bn(x) = Bn(x+ 1)Bn(x) = nxn1.

    V d 2.5.6. Vi s nguyn dng n, s cn1k=0

    ks =1

    s+ 1

    sk=0

    (s+1k

    )Bkn

    s+1k.

    Bi gii: Theo H qu 2.5.5 c

    n1k=0

    ks =1

    s+ 1

    n1k=0

    (Bs+1(k+1)Bs+1(k)

    ).

    Nh vy

    n1k=0

    ks =1

    s+ 1

    (Bs+1(n) Bs+1(0)

    )=

    1

    s+ 1

    sk=0

    (s+1k

    )Bkn

    s+1k

    theo nh l 2.5.4.

    V d 2.5.7. Tnh tng T =nk=0

    k4 theo n.

    Bi gii: Theo v d trn c

    nk=0

    k4 =1

    5

    (B5(n + 1) B5

    )v nh vy nhn

    c T =n5

    5+n4

    2+n3

    3 n

    30.

    H qu 2.5.8. Ta c Bn =(1)nn!

    det

    (20

    ) (21

    )0 ... 0(

    30

    ) (31

    ) (32

    )... 0

    ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)(

    n+10

    ) (n+11

    )... ...

    (n+1n1)

    .

    Chng minh: T B0 = 1,ni=0

    (n+1i

    )Bi = 0, ta c h phng trnh tuyn tnh

    vi cc n (B0, B1, . . . , Bn) :

    (10

    )B0 = 1(

    20

    )B0 +

    (21

    )B1 = 0(

    30

    )B0 +

    (31

    )B1 +

    (32

    )B2 = 0

    ...(n+10

    )B0 +

    (n+11

    )B1 + +

    (n+1n

    )Bn = 0.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31

    H ny c nghim (B0, B1, . . . , Bn). Tnh Bn qua nh thc ta c

    Bn det

    (10

    )0 0 ... 0 0(

    20

    ) (21

    )0 ... 0 0(

    30

    ) (31

    ) (32

    )... 0 0

    ... ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)

    0(n+10

    ) (n+11

    )... ...

    (n+1n1) (

    n+1n

    )

    = det

    (10

    )0 0 ... 0 1(

    20

    ) (21

    )0 ... 0 0(

    30

    ) (31

    ) (32

    )... 0 0

    ... ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)

    0(n+10

    ) (n+11

    )... ...

    (n+1n1)

    0

    hay Bn =(1)nn!

    det

    (20

    ) (21

    )0 ... 0(

    30

    ) (31

    ) (32

    )... 0

    ... ... ... ... ...(n0

    ) (n1

    )... ...

    (nn1)(

    n+10

    ) (n+11

    )... ...

    (n+1n1)

    .

    Xt dy s Bernoulli {Bn} vi B0 = 1,ni=0

    (n+1i

    )Bi = 0, n > 1. Hm sinh

    m ca dy cc s Bernoulli {Bn} l B(x) =n=0

    Bnxn

    n!.

    nh l 2.5.9. Cng thc ng ca hm sinh m B(x) ca dy cc s

    Bernoulli l

    x

    ex 1 .

    Chng minh: V

    ns=0

    (n+1s

    )Bs = 0 nnBn+1 =

    n+1s=0

    (n+1s

    )Bs vi n = 1, 2, . . . .

    Th n + 1 qua n c Bn =ns=0

    (ns

    )Bs vi n = 2, 3, . . . . V B0 =

    (00

    )B0

    v B1 =(10

    )B0 +

    (11

    )B1 1 nn B(x) = x +

    n=0

    ( ns=0

    (ns

    )Bs)xnn!

    =

    x+n=0

    ns=0

    (Bsxss!

    )( xns(n s)!

    )= x+B(x)ex. Vy B(x) = x

    ex 1 .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 32

    H qu 2.5.10. Cho n 6= 1 v n l c Bn = 0.

    Chng minh: V 1 +n=2

    Bnxn

    n!= B(x) B1x = x

    ex 1 +x

    2nn 1 +

    n=2

    Bnxn

    n!=x(ex + 1)

    2(ex 1) . Vx(ex + 1)

    2(ex 1) l hm chn nn Bn = 0 khi n 6= 1 vn l s l.

    nh l 2.5.11. [Euler] Ta c

    n=0

    Bn(x)

    n!zn =

    zexz

    ez 1 .

    Chng minh: V Bn(x) =ns=0

    (ns

    )Bsx

    nstheo nh l 2.5.4 nn ta nhn

    c biu din

    n=0

    Bn(x)

    n!zn =

    n=0

    ns=0

    (ns

    )Bsx

    ns

    n!zn

    =n=0

    ns=0

    Bsxns

    s!(n s)!zn =

    s=0

    Bszs

    s!

    r=0

    xrzr

    r!.

    Theo nh l 2.5.9 ta c

    n=0

    Bn(x)

    n!zn =

    z

    ez 1exz =

    zexz

    ez 1 .

    H qu 2.5.12. Ta lun c

    (i)

    n1s=0

    (ns

    )Bs(x) = nx

    n1vi mi n > 2.

    (ii) Bn(x+ y) =ns=0

    (ns

    )Bs(x)y

    ns.

    Chng minh: (i) Theo nh l 2.5.11, ta c biu din

    n=0

    Bn(x+ 1)

    n!zn =

    zexz

    ez 1ez =

    ( r=0

    Br(x)

    r!zr)(

    s=0

    zs

    s!

    ). So snh h s ca zn hai v, ta c

    Bn(x+1) =ns=0

    (ns

    )Bs(x) hayBn(x+1) = Bn(x)+

    n1s=0

    (ns

    )Bs(x).VBn(x+

    1)Bn(x) = nxn1 theo H qu 2.5.5 nnn1s=0

    (ns

    )Bs(x) = nx

    n1, n > 2.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 33

    (ii) T

    ze(x+y)z

    ez 1 =zexz

    ez 1eyzta suy ra s bng nhau gia hai chui

    n=0

    Bn(x+ y)

    n!zn =

    ( r=0

    Br(x)

    r!zr)(

    s=0

    yszs

    s!

    )v nh vy

    n=0

    Bn(x+ y)

    n!zn =

    r,s=0

    Bs(x)yr

    s!r!zs+r. So snh h t ca zn c

    Bn(x+ y) =ns=0

    (ns

    )Bs(x)y

    ns.

    V d 2.5.13.

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x +

    k

    m) vi mi s

    nguyn m > 1.

    Bi gii: V

    1

    ez 1 =1 + ez + e2z + + e(m1)z

    emz 1 nn theo nh l 2.5.11,

    ta c biu din

    n=0

    Bn(mx)

    n!zn =

    zemxz

    ez 1 =1

    m

    mzemxz

    ez 1 hayn=0

    Bn(mx)

    n!zn =

    1

    m

    emxzmz(1 + ez + + e(m1)z)emz 1

    =1

    m

    m1k=0

    mzemz(x+

    k

    m)

    emx 1

    =1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m).

    Vy

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m) vi mi m > 1.

    V d 2.5.14. Vi hai s nguyn m,n > 1 hy tm tt c cc a thc f(x)

    vi h t cao nht bng 1 tha mn mnf(mx) =1

    m

    m1k=0

    f(x+k

    m).

    Bi gii: T

    n=0

    Bn(mx)

    n!zn =

    1

    m

    m1k=0

    n=0

    mnzn

    n!Bn(x+

    k

    m) theo V d 2.5.13

    ta suy ra mnBn(mx) =1

    m

    m1k=0

    Bn(x+k

    m). Vy Bn(x) tha mn u bi.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 34

    Tnh duy nht: Gi s c hai a thc phn bit p(x) = xn + axn1 + vq(x) = xn+bxn1+ tha mn u bi. Khi hiu (x) = p(x)q(x) =cxd + vi c 6= 0 v d < n cng tha mn u bi. V mn(mx) =1

    m

    m1k=0

    (x +k

    m) nn ta c c = mdnc hay c = 0 : v l, do m > 1 v

    d < n.

    V d 2.5.15. Nu c

    x

    ex 1 = 1 +n=1

    unn!xn th cc un Q vi mi n.

    Bi gii: Gi s

    x

    ex 1 = 1 +n=1

    unn!xn. Khi , qua quy ng v gin c

    x, nhn c ng nht thc 1 =(1 +

    n=1

    1

    (n+ 1)!xn)(

    1 +n=1

    unn!xn). So

    snh h s ca xn hai v, cunn!1!

    +un1

    (n 1)!2! + +u1

    1!n!+

    1

    (n+ 1)!= 0

    vi mi n > 1. Biu din dng t hp qua vic nhn hai v vi (n+ 1)! :(n+ 1

    1

    )un +

    (n+ 1

    2

    )un1 + +

    (n+ 1

    n

    )u1 + 1 = 0, n > 1,

    hay vit theo kiu hnh thc (u+ 1)n+1 un+1 = 0 vi ch : Sau khi khaitrin xong phi vit uk thnh uk. T ng nht thc ny ta c h phng

    trnh tuyn tnh v hn di y:

    2u1 + 1 = 0

    3u2 + 3u1 + 1 = 0

    4u3 + 6u2 + 4u1 + 1 = 0

    5u4 + 10u3 + 10u2 + 5u1 + 1 = 0

    6u5 + 15u4 + 20u3 + 15u2 + 6u1 + 1 = 0

    . . . .

    Nh vy un = Bn Q vi mi n.

    2.6 Hm sinh Dirichlet v hm Zeta-Riemann

    nh ngha 2.6.1. Vi hm s hc f : N C, v s > 1, chui lu tha hnh

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 35

    thc F (s) =n=1

    f(n)

    nsc gi l chui Dirichlet tng ng f. Cho dy s

    {an}. Chui g(s) =n=1

    annscn c gi l hm sinh Dirichlet.

    Ta cng nhn hai nh l sau v tnh duy nht, tnh nhn ca chui Dirichlet:

    nh l 2.6.2. Cho hai chui Dirichlet F (s) =n=1

    f(n)

    nsv G(s) =

    n=1

    g(n)

    ns

    tng ng cc hm s hc f, g : N C. Nu c s R sao cho F (s) =G(s) vi mi s > th f(n) = g(n) cho mi n.

    nh l 2.6.3. Cho ba chui Dirichlet Fi(s) =n=1

    fi(n)

    nstng ng ba hm

    s hc fi : N C, i = 1, 2, 3. Nu f3(n) =

    u,v,uv=nf1(u)f2(v) vi mi

    n N th F3(s) = F1(s)F2(s).nh l 2.6.4. Cho s s > 1 v hai dy s {an}, {bn}. Xt hai hm sinhDirichlet g(s) =

    n=1

    annsv h(s) =

    n=1

    bnns. Gi thit hai chui

    n=1

    |an|nsv

    n=1

    |bn|nshi t trong khong (s0,). Khi g(s)h(s) cng l mt hm sinhDirichlet sinh ra bi dy {cn} vi cn =

    uv=n

    aubv trong khong (s0,).

    Chng minh: Theo php nhn cc chui ta c

    g(s)h(s) = (u=1

    auus

    )(v=1

    bvvs

    ) =u=1

    v=1

    aubv(uv)s

    =n=1

    uv=n

    aubv

    ns.

    Vy g(s)h(s) l mt hm sinh Dirichlet sinh ra bi dy {cn} vi cn =uv=n

    aubv.

    nh l 2.6.5. Nu f l mt hm nhn thn=1

    f(n)

    ns=p

    (i=0

    f(pi)

    pis), trong

    tch ly theo tt c cc s nguyn t p. Chuin=1

    f(n)

    nsc gi l hm

    sinh Dirichlet ca hm s hc f.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 36

    Chng minh: Khai trin tch v phi ca h thc trn ta cp

    (i=0

    f(pi)

    pis) =

    j=1

    (1 +

    i=1

    f(pij)

    pisj

    )= f(pj1j1 )f(pj2j2 ) . . . f(pjrjr )

    psj1j1

    psj2j2

    . . . psjrjr

    =

    f(p11 p22 . . . p

    rr ), v f l hm s nhn,

    =n=1

    f(n)

    ns, n = p

    j1j1pj2j2. . . p

    jrjr,

    trong pt l s nguyn t th t. Nh vy h thc trn l ng.

    Ch 2.6.6. Ta s dng tch hu hn Tk =ki=1

    ( j=1

    f(pji )

    pjsi

    ). Sau cho

    k .nh ngha 2.6.7. Cho s s > 1 v dy s {an}. Chui lu tha hnh thc(s) =

    n=1

    1

    nsc gi l hm zeta Riemann.

    nh l 2.6.8. Vi s > 1 ta c

    (i) 2(s) =n=1

    d(n)

    ns.

    (ii) (s) =j=1

    1

    1 psj.

    (iii)

    1

    (s)=n=1

    (n)

    ns.

    Chng minh: (i) Theo nh l 2.6.4, 2(s) =n=1

    u|n

    1.1

    ns=n=1

    d(n)

    ns.

    (ii) Theo nh l 2.6.5 vi f(n) = 1 c (s) =j=1

    (i=0

    1

    pisj) =

    j=1

    1

    1 psj.

    (iii) K hiu G(s) l hm sinh Dirichlet ca hm s hc . Khi

    G(s) =n=1

    (n)

    ns=j=1

    (i=0

    (pij)

    pisj) =

    j=1

    (1 psj ) =1

    (s).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 37

    Nh vy

    1

    (s)=n=1

    (n)

    ns.

    nh l 2.6.9. Ta c (2) =pi2

    6.

    Chng minh: Cng thc khai trin Fourier ca hm f(x) trn [pi, pi] :

    f(x) =a02

    +n=1

    (an cosnx+ bn sinnx),

    an =

    1

    pi

    pipif(x) cosnx dx

    bn =1

    pi

    pipif(x) sinnx dx

    n > 1.

    Vi hm s chn f(x) = x2 c x2 =a02

    +n=1

    an cosnx, an =2

    pi

    pi0

    x2 cosnx dx

    cho mi n 0. Vy x2 = pi2

    3+ 4

    n=1

    (1)n cosnxn2

    . Cho x = pi ta c

    (2) =pi2

    6.

    2.7 Tch v hn

    nh ngha 2.7.1. Vi dy s (an) ta t tch a1a2 . . . an . . . =n=1

    an. Tch

    ny c gi l mt tch v hn. K hiuAk =k

    n=1an.Nu tn ti lim

    n+ An =

    A th A c gi l gi tr ca tch v hnn=1

    an v vit A =n=1

    an.

    Vn t ra: Khi no tn ti gi tr ca tch v hn

    n=1

    an i vi mt dy

    s cho trc (an).Ta c kt qu sau y ca G.M. Fichtenholz v tnh hi t ca mt tch qua

    hi t ca mt tng tng ng:

    nh l 2.7.2. [ Fichtenholz] Cho dy cc s dng (an) v dy cc s m(bn). Khi

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 38

    (i) Tch v hn

    i=1

    (1 + an) hi t khi v ch khi tng v hni=1

    an hi t.

    (ii) Tch v hn

    i=1

    (1 + bn) hi t khi v ch khi tng v hni=1

    bn hi t.

    Chng minh: (i) Hin nhin, nu tch v hn

    i=1

    (1 + an) hoc tng v hn

    i=1

    an hi t th limn+ an = 0. Khi limn+

    ln(1 + an)

    an= 1. Do bi tch v

    hn P =i=1

    (1 + an) hi t khi v ch khi tng v hn lnP =i=1

    ln(1 + an)

    hi t. Vy vic hi t hay phn k ca

    i=1

    ln(1 + an) vi=1

    an l tng

    ng. T y suy ra tch v hn

    i=1

    (1 + an) hi t khi v ch khi tng v

    hn

    i=1

    an hi t.

    V d 2.7.3. Gi s dy (an) c xc nh nh sau: a1 = 1 v an+1 =(n+ 1)3 1(n+ 1)3 + 1

    an vi mi n > 1. Tm limn+ an v tch v hn

    n=2

    (n3 1n3 + 1

    ).

    Bi gii: Hin nhin ak =k

    n=2

    (n3 1n3 + 1

    ). Do bi n + 1 = (n + 2) 1 v

    n2 + n + 1 = (n + 1)2 (n + 1) + 1 nn ak = 2(k2 + k + 1)

    3k(k + 1). Do

    limn+ an =

    2

    3v tch v hn

    n=2

    (n3 1n3 + 1

    )=

    2

    3.

    V d 2.7.4. t In =pi/20

    sinn x dx . Khi In+1 =n

    n+ 1In1 vi mi n > 1.T suy ra

    (i)

    pi/20

    sin2n x dx =(2n 1)(2n 3) . . . 3.1

    2n(2n 2) . . . 4.2pi

    2pi/20

    sin2n+1 x dx =2n(2n 2) . . . 4.2

    (2n+ 1)(2n 1) . . . 3.1 .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 39

    (ii)

    [ (2n)!!(2n 1)!!

    ]2 12n+ 1

    2

    3.

    Bi gii: Bin i c T = 43 = 4xyz. V 1 = xy+yz+zx > 3 3

    (xyz)2

    nn T 6 4

    3

    9. Ta cn c P = 21 + 73 > 21. V (x + y + z)2 >

    3(x+ yz + zx) = 3 nn P > 2

    3.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 47

    V d 2.8.10. Chng minh rng nu a, b, c l ba s thc phn bit th c

    a3(b2 c2) + b3(c2 a2) + c3(a2 b2)a2(b c) + b2(c a) + c2(a b) < a

    2 + b2 + c2.

    Bi gii: D thy c t v mu u chia ht cho (a b)(b c)(c a). VyV T = ab+ bc+ ca < a2 + b2 + c2 v a, b, c phn bit.

    V d 2.8.11. Chng minh rng nu a, b, c l ba s thc phn bit th

    a2(a+ b)(a+ c)

    (a b)(a c) +b2(b+ c)(b+ a)

    (b c)(b a) +c2(c+ a)(c+ b)

    (c a)(c b) > 3(ab+ bc+ ca).

    Bi gii: Sau khi quy ng, c t v mu u chia ht cho (ab)(bc)(ca).Vy V T = (a+ b+ c)2 > 3(ab+ bc+ ca) v a, b, c phn bit.

    V d 2.8.12. Chng minh rng nu a, b, c, d R tha mn ab+ ac+ ad+bc+ bd+ cd = 0 th

    a3 + b3 + c3 + d3 3(bcd+ cda+ dab+ abc) = (a+ b+ c+ d)3.

    Bi gii: t

    1 = a+ b+ c+ d

    2 = ab+ ac+ ad+ bc+ bd+ cd

    3 = abc+ abd+ acd+ bcd

    4 = abcd

    Nt = at + bt + ct + dt, t = 1, 2, . . . , N0 = 4.

    Theo nh

    l 2.8.1 c N3 N21 + N12 33 = 0. Vy N3 33 = N21 N12 =31 312. V 2 = 0 nn a3 + b3 + c3 + d3 3

    (bcd+ cda+ dab+ abc

    )=

    (a+ b+ c+ d)3.

    V d 2.8.13. a thc T = 2(x7 + y7 + z7) 7xyz(x4 + y4 + z4) c nhnt l x+ y + z.

    Bi gii: t A = x + y + z, B = xy + yz + zx, C = xyz. t an =xn + yn + zn. Khi x, y, z l ba nghim ca t3 At2 + Bt C = 0v

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 48

    an+3 = Aan+2 Ban+1 + Can vi s nguyn n > 0 v a0 = 3. Ch a0 = 3

    a1 = A

    a2 = A2 2B

    a3 = Aa2 Ba1 + Ca0 = A3 3AB + 3C = Ak3 + 3Ca4 = Aa3 Ba2 + Ca1 = Ak4 + 2B2a5 = Ak5 5BCa6 = Ak6 B3 + 3C2a7 = Ak7 + 7B

    2C.

    Vy T = 2a7 7Ca4 = A(2k7 7k4C) c nhn t A = x+ y + z.

    2.9 Dy truy hi vi hm sinh

    V d 2.9.1. Dy s (an) xc nh bi:

    {a0 = 2, a1 = 4, a2 = 31

    an+3 = 4an+2 + 3an+1 18anvi mi n > 0. Chng minh rng a2010 1(mod 2011).Bi gii: t f(x) = a0 + a1x+ a2x

    2 + a3x3 + . Khi c quan h

    f(x)(4x+ 3x2 18x3) = f(x) 9x2 + 4x 2

    hay f(x) =9x2 4x+ 2

    18x3 3x2 4x+ 1 =1

    1 + 2x+

    1

    (1 3x)2 . T y suy ra

    f(x) =n=0

    ((2)n + (n + 1)3n)xn v c an = (2)n + (n + 1)3n vi mi

    n > 0. Nh vy a2010 1(mod 2011).V d 2.9.2. Dy (an) xc nh qua a1 = 1 v an = 1.2.an1 + 2.3.an2 + + (n 1).n.a1 vi mi s nguyn n > 2. Chng minh ng nht thcan+3 4an+2 an+1 = 2

    nk=1

    ak khi n > 2.

    Bi gii: Xt f(x) = a1x+ a2x2 + + anxn + . Khi ta c h thc

    f(x)(1.2.x+ 2.3.x2 + + n.(n+ 1).xn + ) = f(x) x.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 49

    T

    1

    1 x = 1 + x + x2 + x3 + ta suy ra 1x2 + 2x3 + = x

    2

    (x 1)2 .

    Ly o hm hai v c 1.2.x + 2.3.x2 + = 2x(x 1)3 . Vy f(x) = x +

    2x2x3 3x2 + 5x 1 . T f(x)(x

    33x2+5x1) = x43x3+3x2x ta nhn rav so snh h s ca xn, n > 4 hai v, nhn c an+3 = 5an+23an+1+anvi mi s nguyn n > 2. Biu din cc mi quan h trong bng h thc sau

    y:

    a1 = 1a2 + 5a1 = 3a3 + 5a2 3a1 = 3a4 + 5a3 3a2 + a1 = 1a5 + 5a4 3a3 + a2 = 0a6 + 5a5 3a4 + a3 = 0 = an + 5an1 3an2 + an3 = 0an+1 + 5an 3an1 + an2 = 0an+2 + 5an+1 3an + an1 = 0an+3 + 5an+2 3an+1 + an = 0.

    Cng v vi v c an+3 +

    4an+2 + an+1 + 2nk=1

    ak = 0. Nh vy an+3 4an+2 an+1 = 2nk=1

    ak.

    B 2.9.3. Gi s dy (an) c hm sinh thng f(x) =n=0

    anxntha mn

    f(s) c xc nh vi s = 0, 1, . . . , k v l cn nguyn thy bc k ca

    n v. Khi c

    n=0

    ank =f(1) + f(2) + + f(k1)

    k.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 50

    Bi gii: Vi hm sinh thng f(x) = a0 + a1x+ + anxn + c

    f(1) =n=0

    (ank + ank+1 + + a(n+1)k1

    )f() =

    n=0

    (ank + ank+1 + + a(n+1)k1k1

    )f(2) =

    n=0

    (ank + ank+1

    2 + + a(n+1)k12(k1))

    = f(k1) =

    n=0

    (ank + ank+1

    k1 + + a(n+1)k1(k1)(k1)).

    Bi v 1+s+2s+ +s(k1) = 0 vi s = 1, 2, . . . , k1, nn khi cng kng nht thc trn ta nhn c f(1)+f(2)+ +f(k1) = k

    n=0

    ank.

    V d 2.9.4. Vi s nguyn dng n, hy tnh tng an =nk=0

    (1)k( n3k). Xttnh tun hon ca dy (an) v ch ra an : 3

    [n/2]1.

    Bi gii: Xt hm sinh thng f(x) ca dy (bk = (1)k(nk

    )). Khi ta c

    h thc f(x) =nk=0

    (1)k(nk)xk = (1 x)n. Nh vy, vi = 12 + i

    3

    2c

    an =nk=0

    (1)k(n

    3k

    )=

    nk=0

    (1)3k(n

    3k

    )=

    1

    3

    (f(1) + f() + f(2)

    )

    hay an =(1 )n + (1 2)n

    3=

    (32 i

    3

    2

    )n+(3

    2+ i

    3

    2

    )n3

    . Tm li

    tng an =2(

    3)n

    3cos

    npi

    6=

    2.33k1(1)k khi n = 6k33k(1)k khi n = 6k + 133k(1)k khi n = 6k + 20 khi n = 6k + 3

    33k+1(1)k+1 khi n = 6k + 433k+2(1)k+1 khi n = 6k + 5.

    D dng

    suy ra (an) khng tun hon v an : 3[n/2]1.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 51

    V d 2.9.5. Vi mi s nguyn dng n, hy tnh tng an =nk=0

    (1)k(5n5k).Bi gii: Xt hm sinh thng f(x) ca dy (bk = (1)k

    (5nk

    )). Ta c h thc

    f(x) =nk=0

    (1)k(5nk )xk = (1x)5n. Nh vy, vi = cos 2pi5 + i sin 2pi5 can =

    5nk=0

    (1)k(

    5n

    5k

    )=

    5nk=0

    (1)5k(

    5n

    5k

    )=

    1

    5

    4k=0

    f(k)

    hay

    (1 )5n + (1 2)5n + (1 3)5n + (1 4)5n5

    .Vy nhn c tng

    a2m =210m+1(1)m

    5

    [sin10m

    pi

    5+ sin10m

    2pi

    5

    ]v a2m+1 = 0.

    V d 2.9.6. Dy (an) tha mn a1 = 12v an+1 =

    (n+11

    )an +

    (n+12

    )an1 +

    + (n+1n )a1 + 1 vi mi s nguyn n > 1. Chng minh rng a2011 nguynv chia ht cho 2011.

    Bi gii: D dng kim tra

    ( k=0

    xk

    (k + 1)!

    )(1 +

    n=1

    anxn

    n!

    )= 1. Nh vy

    1 +n=1

    anxn

    n!=

    x

    ex 1 =n=0

    Bnxn

    n!theo nh l 2.5.9. Do an = Bn

    vi mi n. c bit a2011 = B2011 = 0 theo H qu 2.5.10 v suy ra a2011nguyn v chia ht cho 2011.

    V d 2.9.7. Dy (an) xc nh qua a1 = 1 v an = 1.2.an1 2.3.an2 + + (1)n(n 1).n.a1 vi mi s nguyn n > 2. Chng minh rng, khin > 2 lun c an+3 + 2an+2 + 5an+1 + 6

    nk=1

    ak = 8.

    Bi gii: Xt f(x) = a1x+ a2x2 + + anxn + . Khi ta c h thc

    f(x)(1.2.x 2.3.x2 + + (1)n+1n.(n+ 1).xn + ) = f(x) x.

    T

    1

    1 + x= 1x+x2x3+ ta suy ra1+2x3x2+ = 1

    (x+ 1)2.

    Ly o hm hai v c 1.2.x2.3.x2+ = 2x(x+ 1)3v nh vy nhn c

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 52

    f(x) =x4 + 3x3 + 3x2 + x

    x3 + 3x2 + x+ 1. T f(x)(x3+3x2+x+1) = x4+3x3+3x2+x

    ta nhn ra v so snh h s ca xn, n > 4 hai v, c a1 = 1, a2 = 2,v a3 = 2, a4 + a3 + 3a2 = 0, an+3 + an+2 + 3an+1 + an = 0 vi mi snguyn n > 2. Biu din cc mi quan h trong bng h thc sau y:

    a1 = 1

    a2 + a1 = 3

    a3 + a2 + 3a1 = 3

    a4 + a3 + 3a2 + a1 = 1

    a5 + a4 + 3a3 + a2 = 0

    a6 + a5 + 3a4 + a3 = 0

    = an + an1 + 3an2 + an3 = 0an+1 + an + 3an1 + an2 = 0an+2 + an+1 + 3an + an1 = 0an+3 + an+2 + 3an+1 + an = 0.

    Cng v vi v c an+3 + 2an+2 + 5an+1 + 6nk=1

    ak = 8.

    V d 2.9.8. Dy (an) xc nh bi an =1.3.5 . . . (2n+ 1)

    2011n.n!vi mi s nguyn

    n > 0. Tnhn=0

    an.

    Bi gii: Hin nhin an+1 =2n+ 3

    2011(n+ 1)an vi mi n > 1. Khi n +

    th

    an+1an 2

    2011. Nh vy chui ly tha f(x) = a0 + a1x+ a2x

    2 + +anx

    n + lun lun hi t. T h thc 2011(n + 1)an+1 = 2nan + 3ansuy ra 2011(n + 1)an+1x

    n = 2x(nanxn1) + 3anxn. Cho n = 0, 1, 2, . . . v

    ly tng tt c c 2011( k=0

    ak+1xk+1)

    = 2x( k=0

    akxk)

    + 3( k=0

    akxk).

    Khi ta c h thc 2011(f(x) 1) = 2xff (x) + 3f(x) hay (2011

    2x)f (x) = 3f(x). T y suy ra

    f (x)f(x)

    =3

    2011 2x. Ly tch phn hai

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 53

    v c ln f(x) = 32

    ln(2011 2x) + a hay f(x) = (2011 2x)3/2.ea.V f(0) = 1 nn 1 = 20113/2.ea hay ea = 20113/2. Tm li ta c f(x) =

    20113/2.(2011 2x)3/2. Vi x = 1 c

    n=0an =

    (20112009

    )32 .

    V d 2.9.9. Dy (an) xc nh qua a1 = 1 v an = 1an1+2an2+ +(n1)a1 vi mi s nguyn n > 2.Chng minh a3 = 3a2 v an+23an+1+an = 0vi mi s nguyn n > 2 v xc nh an theo n. T suy ra a2k+1 chia htcho 3 khi k > 1.Bi gii: Xt f(x) = a1x+ a2x

    2 + + anxn + . Khi ta cf(x)(1x+ 2x2 + + nxn + ) = f(x) x.T

    1

    1 x = 1 + x + x2 + x3 + ta suy ra 1x + 2x2 + = x

    (x 1)2 .

    Vy f(x) = x +x2

    x2 3x+ 1 v c f(x)(x2 3x + 1) = x3 2x2 + x.Nhn ra v so snh h s ca xn, n > 1 hai v, nhn c a1 = 1, a2 = 1,a3 = 3a2, v an+2 3an+1 + an = 0 vi mi s nguyn n > 2. T d ccng thc xc nh an.

    V d 2.9.10. Dy (an) xc nh qua a1 = 1 v an+1 =2n+ 3

    4(n+ 1)an vi mi

    s nguyn n > 0. Tnh tng T =n=0

    an.

    Bi gii: Do 4(n+1)an+1 = 2nan+3an nn 4(n+1)an+1xn = 2xnanx

    n1+3anx

    nvi mi s nguyn n > 0. Cng tt c cc h thc ny ta nhn c

    4( n=0

    an+1xn+1)

    = 2x( n=0

    anxn)

    + 3n=0

    anxn.

    t f(x) =n=0

    anxn. Khi 4(f 1) = 2xf + 3f hay (4 2x)f = 3f v

    suy ra

    f

    f=

    3

    2

    1

    2 x. Nh vy (ln f) = 3

    2(ln(2x)). dng c f(x) =

    (2 x)3

    2ea. V f(0) = a0 = 1 nn ea = 2

    3

    2 . Tm li f(x) =(

    1 x2

    )32 .

    Vi x = 1 c T = f(1) = 2

    2.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 54

    V d 2.9.11. Dy (an) xc nh qua a1 = 1 v an+1 =2n+ 5

    3(n+ 2)an vi mi

    s nguyn n > 0. Chng minh rngk

    n=0an 0. Cng tt c cc h thcny ta nhn c

    3( n=0

    an+1xn+2)

    = 2x( n=0

    anxn+1)

    + 3n=0

    anxn+1.

    t f(x) =n=0

    anxn+1. Khi 3(f x) = 2xf + 3f hay (3 2x)f =

    3f + 3. t g(x) = f(x) + 1. Khi g

    g=

    3

    3 2x. Nh vy (ln g) =

    32

    (ln(3 2x)). dng c g(x) = (3 2x)3

    2ea. V g(0) = a0 = 1 nn

    ea = 3

    3

    2 . Tm li g(x) = 1 +n=0

    anxn+1 =

    (1 2x

    3

    )32 . Vi x = 1 c

    T = g(1) 1 = 33 1. Do vyk

    n=0an 0. Xc nh an theo n v chng minh

    n=0

    an+1n!

    = e.

    Bi gii: Xt hm sinh m ca dy (an) l f(x) =n=0

    ann!xn. Khi ta c

    f =n=0

    an+1n!

    xn =n=0

    nan 2n2 + 5n 3n!

    xn

    =n=0

    nann!

    xn n=0

    2n2 5n+ 3n!

    xn = xf (2x2 5x+ 3)ex.

    Nh vy f = (2x3)ex v suy ran=0

    an+1n!

    xn =n=0

    2n 3n!

    xn. Vy an+1 =

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 55

    2n 3 hay an = 2n 5 vi n > 1. Tn=0

    an+1n!

    xn = (2x 3)ex ta nhn

    c

    n=0

    an+1n!

    = e khi x = 1.

    V d 2.9.13. Chng minh rng

    nk=0

    (2kk

    )k + 1

    (2(nk)nk

    )n k + 1 =

    (2(n+1)n+1

    )n+ 2

    .

    Bi gii: Xt f(x) =k=0

    (2nn

    )n+ 1

    xn vi 0 < |x| < 14. Bi v 1+xf(x)2 f(x)

    theo V d 2.3.9 nn

    nk=0

    (2kk

    )k + 1

    (2(nk)nk

    )n k + 1 =

    (2(n+1)n+1

    )n+ 2qua vic so snh h s

    ca xn+1 hai v.

    V d 2.9.14. Xt dy s hu t a1 = 1, an = (an1

    1!+an2

    2!+ + a1

    (n 1)!)vi mi s nguyn n > 2. Tm tt c cc s nguyn dng n n!an+1 = 1.

    Bi gii: Ta c an = 2an +(an1

    1!+an2

    2!+ + a1

    (n 1)!)vi mi s

    nguyn n > 2. t f(x) = a1x+ a2x2 + a3x3 + . Khi

    f(x)(

    2 +x

    1!+x2

    2!+x3

    3!+

    )= 2a1x+ (2a2 +

    a11!

    )x2 + (2a3 +a21!

    +a12!

    )x3 + = 2a1x+ a2x

    2 + a3x3 + a4x

    4 + = f(x) + x.Vy f(x)(1 + ex) = f(x) + x hay f(x) = xex. T y suy ra ng nht

    a1x+ a2x2 + a3x

    3 + = x(

    1 x1!

    +x2

    2! x

    3

    3!+

    ).

    Do an+1 =(1)nn!vi mi s nguyn n > 1. n!an+1 = 1 cn v nl s chn.

    V d 2.9.15. Xt n > 3 s nguyn dng a1 6 a2 6 a3 6 6 an1 6 anvi tnh cht: Khng c ba s no l di ba cnh mt tam gic khng suy

    bin. Xc nh gi tr nh nht ca

    ana1m n c th t c.

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 56

    Bi gii: Ta bit ba s 0 < a 6 b 6 c l di ba cnh tam gic khi vch khi c < a + b. Vy khng c ba s hng bt k ca dy ca dy l di ba cnh mt tam gic khng suy bin th ap > aq + ar vi mi p, q, r vp > q, r. V dy l dy khng gim nn ta ch cn xt ai + ai+1 6 ai+2 vii = 1, 2, . . . , 2009. Vi nh ngha

    (ab

    )>(cd

    )khi v ch khi a > c v

    b > d ta c bt ng thc(an+1an

    )>(

    1 11 0

    )(anan1

    )>(

    1 11 0

    )n1(a2a1

    ), n > 2.

    Gi s

    (1 11 0

    )n1=

    (a bc d

    ). Khi ta nhn c an > ca2 + da1 v

    suy ra an > (c+ d)a1. Do ana1> c+ d. Do an

    a1nh nht l bng c+ d

    khi dy l n s hng u ca dy Fibonacci v gi tr nh nht ca t s

    bng an =an bn

    5vi a =

    1 +

    5

    2v b =

    152

    .

    V d 2.9.16. Xt dy a1 = 1, an = 12an1 + 22an2 + + (n 1)2a1 vimi s nguyn n > 2. Khi

    {a2 = 4a1 3, a3 = 4a2 2a1 + 3an+3 = 4an+2 2an+1 + an, n > 2.Bi gii: t f(x) = a1x+ a2x

    2 + a3x3 + . Khi tch hai chui

    f(x)(

    12x+ 22x2 + 32x3 + )

    = 12a1x2 + (12a2 + 2

    2a1)x3 + (12a3 + 2

    2a2 + 32a1)x

    4 + = a2x

    2 + a3x3 + a4x

    4 + a5x5 + = f(x) x.

    T

    1

    1 x = 1 + x+ x2 + x3 + x4 + x5 + ta suy ra chui ly tha sau:

    1

    (1 x)2 = 1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 + . Do nhn c

    x

    (1 x)2 = 1x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + v c biu din

    x(1 + x)

    (1 x)3 = 12x+ 22x2 + 32x3 + 42x4 + 52x5 + 62x6 + . Nh th

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 57

    f(x)(x(1 + x)

    (1 x)3)

    = f(x)x hay f(x)[x32x2+4x1

    ]= x43x3+3x2x.T ng nht

    [a1x+a2x

    2+a3x3+

    ][x32x2+4x1

    ]= x43x3+3x2xsuy ra a3 = 4a2 2a1 + 3, an+3 = 4an+2 2an+1 + an vi mi n > 2.V d 2.9.17. Xt dy a1 = 1, an = 1an1+2an2 +(1)n1(n1)a1vi mi s nguyn n > 2. Khi ta c

    (i) a2 = 1, a3 + 3a2 = 0, an+2 + 3an+1 + an = 0, n > 2.(ii) Tm d ca php chia an cho 3.

    Bi gii: (i) t f(x) = a1x+ a2x2 + a3x

    3 + . Tch hai chui ly tha

    F (x) = f(x)( 1x+ 2x2 3x3 +

    )= 1a1x2 + (1a2 + 2a1)x3 + (1a3 + 2a2 3a1)x4 + = a2x

    2 + a3x3 + a4x

    4 + a5x5 + = f(x) x.

    T

    1

    1 + x= 1 x+ x2 x3 + x4 x5 + suy ra chui ly tha sau y:

    1(1 + x)2

    = 1 + 2x 3x2 + 4x3 5x4 + 6x5 . Do nhn cx

    (1 + x)2= 1x+ 2x2 3x3 + 4x4 5x5 + 6x6 . Th vo F (x) c

    f(x)( x

    (1 + x)2

    )= f(x) x hay f(x)

    [x2 + 3x + 1

    ]= x3 + 2x2 + x. T

    ng nht

    [a1x+ a2x

    2 + a3x3 +

    ][x2 + 3x+ 1

    ]= x3 + 2x2 + x s suy

    ra ngay a1 = 1, a2 + 3a1 = 2, a3 + 3a2 = 0, an+2 + 3an+1 + an = 0, n > 2.(ii) Ta c a3 0(mod 3).V an+2+3an+1+an = 0 nn an+2+an 0(mod 3)

    khi n > 2. Do , khi s nguyn k > 1 c

    a2k+1 0(mod 3)a4k+2 a2 2(mod 3)a4k 1(mod 3).

    V d 2.9.18. Xt dy (an), trong an =1.3.5.7 . . . (2n+ 1)

    4n.n!vi mi s

    nguyn n > 0. t f(x) =k=0

    akxk. Tm cng thc ng v tnh f(1).

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 58

    Bi gii: V an+1 =2n+ 3

    4(n+ 1)an vi mi n nn

    an+1an 1

    2< 1. Vy f(x)

    hi t. D dng ch ra

    (f(x)a0

    )= 2xf (x)+3f(x). Vy

    f (x)f(x)

    =3

    2

    1

    2 x

    hay f(x) =(2 x)32ec. Bi v f(0) = a0 = 1 nn ec = 23/2. Tm li

    f(x) =(2 x

    2

    )32v f(1) = 23/2.

    Mt s v d tham kho

    V d 2.9.19. [VMO-1997] Cho dy s nguyn (an) ,n N c xc nhnh sau: a0 = 1, a1 = 45 v an+2 = 45an+1 7an vi mi n = 0, 1, 2, . . . .Khi hy

    (i) Tnh s c dng ca a2n+1 anan+2 theo n.(ii) Chng minh rng 1997a2n + 7

    n+1.4 l s chnh phng vi mi n.

    V d 2.9.20. [VMO-1998-A] Cho dy s nguyn (an) ,n N c xcnh nh sau: a0 = 20, a1 = 100 v an+2 = 4an+1 + 5an + 20 vi min = 0, 1, 2, . . . . Khi hy

    (i) Tm s nguyn dng h nh nht c tnh cht an+h an chia ht cho1998.

    (ii) Tm s hng tng qut ca dy.

    V d 2.9.21. [VMO-2011] Cho dy s nguyn (an) ,n N c xc nhnh sau: a0 = 1, a1 = 1 v an = 6an1 + 5an2 vi mi n = 2, 3, 4 . . . .Khi hy

    (i) Chng minh rng a2012 2010 chia ht cho 2011.(ii) Tm s hng tng qut ca dy .

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Kt lun ca lun vn

    Trong lun vn tc gi trnh by c cc ni dung chnh sau y:

    (1) Vnh, c ca khng, min nguyn, ng cu, trng, vnh a thc v

    nghim.

    (2) Vnh cc chui ly tha hnh thc, khi nim hm sinh m v hm sinh

    thng cng mt vi dy s lin quan.

    (3) Nghin cu mt s dy s Fibonacci, dy Catalan, dy Stirling v dy

    cc a thc Bernoulli, Hm sinh Dirichlet v hm Zeta-Riemann, tch

    v hn.

    (4) Tnh c mt s cng thc ng ca mt s dy v chng minh ng

    nht thc Newton.

    Do thi gian v dung lng nn lun vn mi ch dng li mc tm hiu v

    gii thiu v "Vnh cc chui lu tha hnh thc" v mt s "Hm sinh" c

    bn v dy s. Trong thi gian ti, nu iu kin cho php, tc gi s nghin

    cu, tm hiu k hn c th a ra mt s kt qu c tnh ng dng thc

    tin hn phc v qu trnh hc tp v ging dy.

    Trong qu trnh thc hin lun vn chc chn khng trnh khi thiu st.

    Tc gi rt mong nhn c nhng kin ng gp ca thy c v bn b

    hon thin lun vn tt hn.

    Tc gi xin chn thnh cm n.

    59

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Ti liu tham kho

    [1] H.X. Snh, i s i cng, NXB Gio dc, 2001.

    [2] N.V. Hi, N.K. Minh v H.Q. Vinh, Cc bi thi Olympic Ton THPT

    Vit Nam (1990-2006), NXB Gio dc, 2007.

    [3] R. Merris, Combinatorics, PWS publishing company 20 Park Plaza,

    Boston, MA 02116-4324.

    [4] K.H. Wehrahn, Combinatorics-An Introduction, Carslaw Publications

    1992.

    60

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn