Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira...

44
Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira תתתתתתתתתתת תתתתתת תתתתתתתתתתת תתתתתת תתתתתתתת תתתתתתתתThe Hebrew University of The Hebrew University of Jerusalem Jerusalem
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    2

Transcript of Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira...

Page 1: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Bayesian Combinatorial

Auctions

Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira

האוניברסיטה העברית בירושליםהאוניברסיטה העברית בירושליםThe Hebrew University of JerusalemThe Hebrew University of Jerusalem

Page 2: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Combinatorial Auctions

Page 3: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Combinatorial Auctions

opt=9

Page 4: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Combinatorial Auctions

Objective: Find a partition of the items

biddersitems

valuations

that maximizes the social welfare

(normalized)

(monotone)

Page 5: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

ValuationsSubmodular (SM)

The marginal value of the item decreasesas the number of items increases.

Fractionally-subadditive (FS)

additive

Page 6: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

FS Valuations

a b c0 9 00 5 55 5 04 4 4

items

add. valuations

Page 7: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Combinatorial Auctions - Challenges

StrategicWe want bidders to be truthful.VCG implements the opt. (exp. time)

Computationalapproximation algorithms (not

truthful)

Page 8: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Unknown Valuations

Page 9: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Huge Gaps

Submodular (SM)

Fractionally-subadditive (FS)

1-1/e-[Feige-Vondrak]

1-1/e[Dobzinski-Schapira] O(log(m) log log(m))

[Dobzinski]

Page 10: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Solution?

We do not know whether reasonable truthful and polynomial-time approximation algorithms exist.

How can we overcome this problem?

An old/new approach.

Page 11: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Partial Informationis

drawn from D

Page 12: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Complete Information

Page 13: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Auction SettingPlayer i will bidStrategy Profile Algorithm = allocation +

payments

Utility of player i

Page 14: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Bayesian Combinatorial

AuctionsQuestion: Can we design an auction for which any Bayesian

Nash Equilibrium provides good approximation to the

social welfare?

Page 15: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

(Pure) Bayesian Nash [Harsanyi]

•Bidding function

•Informal: In a Bayesian Nash (B1,…,Bn), given a probability distribution D, Bi(vi) maximizes the expected utility of player i (for all vi).

( )

Page 16: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Bayesian PoA

Optimal Social Welfare

Expected Social of a B.N.E.

for fixed v

Bayesian PoA = biggest ratio between SW(OPT) and SW(B) (over all D, B)

Page 17: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Bayesian PoA

Price of Anarchy

[Gairing, Monien, Tiemann, Vetta]

Page 18: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Second PricePlayer i will bid

Strategy Profile

Algorithm:Give item j to the player i with the highest

bid. Charge I the second highest bid.

Utility of player i

Page 19: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Second Price

Social Welfare = 1

Page 20: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Second Price

Social Welfare =

Page 21: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Second Price

Social Welfare =

PoA=1/

Page 22: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Supporting Bids

Bidders have only partial info (beliefs)•They want to avoid risks. (ex-post IR)

Supporting Bids:(for all S)

Page 23: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Lower Bound

opt=2

Page 24: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Lower Bound

Nash=1PoA=2

Page 25: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Our ResultsBayesian setting:The Bayesian PoA for FS valuations

(supporting bids, mixed) is 2.

Complete-information setting:FS Valuations: Existence of pure N.E.Myopic procedure for finding one.PoS=1.

•SM Valuations: Algorithm for computing N.E. in poly time.

Page 26: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

ValuationsSubmodular (SM)

The marginal value of the item decreasesas the number of items increases.

Fractionally-subadditive (FS)

additive

Page 27: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound(full-info case)

Lemma. For any set of items S,

where is the maximizing additive valuation for the set S.

Page 28: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound

Let be a fixed valuation profile

Page 29: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound

Let be a fixed valuation profile

optimum partition:Nash partition:

Page 30: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound

Since b is a N.E

Let be a fixed valuation profile

optimum partition:

maximum additive valuation wrt

Nash partition:

Page 31: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound

Since b is a N.E

Let be a fixed valuation profile

optimum partition:

maximum additive valuation wrt

Nash partition:

Page 32: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper BoundSince b is a N.E

and so

Page 33: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper BoundSince b is a N.E

and so

using lemma we get

Page 34: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper BoundSince b is a N.E

and so

using lemma we get

and so

Page 35: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Upper Bound

summing up

Page 36: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

But…

Open Question: Does a (pure) BN with supporting bids always exist?

Open Question: Can we find a (mixed) BN in polynomial time?

We consider the full-information setting.

Page 37: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

The Potential ProcedureStart with item prices 0,…,0.

Go over the bidders in some order 1,…,n.

In each step, let one bidder i choose his most demanded bundle S of items.

Update the prices of items in S according to i’s maximizing additive valuation for S.

Once no one (strictly) wishes to switch bundle, output the allocation+bids.

Page 38: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Theorem: If all bidders have fractionally-subadditive valuation functions then the Potential Procedure always converges to a pure Nash (with supporting bids).

Proof: The total social welfare is a potential function.

The Potential Procedure

Page 39: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Theorem: After n steps the solution is a 2-approximation to the optimal social welfare (but not necessarily a pure Nash). [Dobzinski-Nisan-Schapira]

Theorem: The Potential Procedure might require exponentially many steps to converge to a Pure Nash.

The Potential Procedure

Page 40: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Open Question: Can we find a pure Nash in polynomial time?

Open Question: Does the Potential Procedure converge in polynomial time for submodular valuations?

The Potential Procedure

Page 41: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

The Marginal-Value ProcedureStart with bid-vectors bi=(0,…,0).

Go over the items in some order 1,…,m.

In each step, allocate item j to the bidder i with the highest marginal value for j.

Set bij to be the second highest marginal value.

Page 42: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Theorem: The Marginal-Value Procedure always outputs an allocation that is a 2-approximation to the optimal social-welfare. [Lehmann-Lehmann-Nisan]

Proposition: The bids the Marginal-Value Procedure outputs are supporting bids and are a pure Nash equilibrium.

The Marginal-Value Procedure

Page 43: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Open Questions

Can a (mixed) Bayesian Nash Equilibrium be computed in poly-time?

Algorithm that computes N.E. in poly time for FS valuations.

Second Price

Design an auction that minimizes the PoA for B.N.E.

Page 44: Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.

Thank you!