Bài tập giải tích về liên tục hàm số

download Bài tập giải tích về liên tục hàm số

of 35

Transcript of Bài tập giải tích về liên tục hàm số

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    1/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 1

    BI TP V HM S VI BA VN LIN TC, KH VI, KH TCH

    Bi 1. Tm tt c cc hm s ( )u x tha mn ( ) ( )

    1

    2

    0

    u x x u t dt = + .

    Gii

    V ( )

    1

    2

    0

    u t dt l mt hng s nn ( )u x x C = + (C l hng s).

    Do ( )

    112 22

    0 0

    1 1

    2 8 2 4

    t Ct C dt C Ct C C C

    + = + = + = =

    .

    Vy ( ) 14

    u x x= + l hm s cn tm.

    Bi 2. Cho hm s :f tha mn iu kin: ( ) ( )19 19 f x f x+ + v

    ( ) ( )94 94 f x f x+ + vi mi x. Chng minh rng: ( ) ( )1 1 f x f x+ = + vi

    mi x .GiiLy mt s thc x bt k. p dng iu kin ban cho vi 19x v

    94x ta thu c:( ) ( )19 19 f x f x v ( ) ( )94 94 f x f x .

    By gita d dng chng minh bng quy np vi mi n ( ) ( )19 19 f x n f x n+ + , ( ) ( )94 94 f x n f x n+ +

    ( ) ( )19 19 f x n f x n , ( ) ( )94 94 f x n f x n .

    Ta c:( ) ( ) ( ) ( ) ( )1 5.19 94 5.19 94 5.19 94 1 f x f x f x f x f x+ = + + + = +

    ( ) ( ) ( )1 18.94 89.19 18.94 89.19 f x f x f x+ = + +

    ( ) ( )18.94 89.19 1 f x f x + = + .

    Vy ( ) ( )1 +1 f x f x+ = .Bi 3. Cho :f l hm kh vi cp hai vi o hm cp 2 dng.

    Chng minh rng: ( )( ) ( )f x f x f x+ vi mi s thc x.Gii+ Nu ( ) 0f x = th ( )( ) ( )f x f x f x+ = vi mi x : hin nhin.

    + Nu ( ) 0f x < th p dng nh l Lagrange trn on ( );x f x x+ ta

    c: ( ) ( )( ) ( ) ( )( )f x f x f x f c f x + = , ( )( );c x f x x + .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    2/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 2

    ( ) 0 f x f > l hm tng ( ) ( ) 0 f c f x < < . V vy

    ( ) ( )( ) 0f x f x f x + < .

    + Nu ( ) 0f x > th chng minh tng t nh trng hp ( ) 0f x < ta cng

    thu c ( ) ( )( ) 0f x f x f x + < .

    Bi 4 Cho 2x , chng minh ( )1 cos cos 11

    x xx x

    + >

    +.

    Gii

    Xt hm s: [ ): 2;f , ( ) cos f t t t

    = .

    p dng nh l Lagrange trn on [ ]; 1x x + i vi hm ( )f t

    tn ti [ ] ( )( ) ( )

    ( )( ) ( )

    1; 1 : 1

    1

    f x f xu x x f u f x f x

    x x

    + + = = +

    +

    Cn chng minh ( ) [ )cos sin 1 u 2;f uu u u

    = + > + .

    ( ) [ )2

    3cos 0 u 2; f u f

    u u

    = < + nghch bin trn [ )2;+

    ( ) ( )lim 1u

    f u f u

    > = .

    Vy ( )1 cos cos 11x x

    x x + >+

    [ )2;x + .

    Bi 5 Tn ti hay khng hm kh vi lin tc f tha mn iu kin

    ( ) ( ) ( )2 , f f sin x f x x x x< ?

    GiiKhng tn ti.Ta c:

    ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 0

    0 2 2 sin 2 1 cos x x x

    f x f f t dt f t f t dt tdt x = = =

    Suy ra: ( ) ( ) ( )2 2 0 2 1 cos 4f f + .Bi 6

    Gi s hm ( ) { ( ): ; \ 0 0; f a a + tho mn ( )( )01

    lim 2x

    f xf x

    + =

    .

    Chng minh rng ( )0

    lim 1x

    f x

    = .

    Gii

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    3/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 3

    Vi ( ) 0f x > , p dung bt ng thc Cauchy ta c: ( )( )

    12f x

    f x+ .

    ( )( )01

    lim 2 0, 0x

    f xf x

    + = > >

    sao cho ( )

    ( )

    10 2f x

    f x + <

    vi 0 x < < .

    Ta c: ( )( )

    ( )( )( )

    1 10 2 0 1 1 f x f x

    f x f x

    + < +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    4/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 4

    bt ng thc ( ) ( ) f x x c tho mn trong ln cn khuyt ca 0 v

    ( )0

    lim 0x

    x

    = th t (*) suy ra c: ( )0

    lim 0x

    f x

    = .

    GiiV d

    Xt :f xc nh bi ( )( )1

    0

    n

    f x

    =

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 2 2 2x f x f x f x f x f x f x x = + +

    V ( ) ( ) ( ) ( )( )0

    lim lim 2 0x x

    x f x f x x

    = + = nn ( )0

    lim 0x

    f x

    = .

    Bi 9a) Cho v d v hm f tho mn iu kin ( ) ( )( )

    0lim 2 0x

    f x f x

    = nhng

    ( )0

    limx

    f x

    khng tn ti.

    b) Chng minh rng nu trong mt ln cn khuyt ca 0, cc bt ng thc

    ( )1

    , 12

    f x x

    < < v ( ) ( )2 f x f x x c tho mn th ( )0

    lim 0x

    f x

    = .

    Gii

    a) Xt :f

    xc nh bi ( )

    ( )1

    0

    n

    f x

    =

    b) ( )( )2 2

    x x x f x

    f x x

    . Do1

    12

    < < nn ( )0

    lim 0x

    f x

    = .

    Bi 10

    Cho trc s thc , gi s( )

    ( )limx

    f axg a

    x

    = vi mi s dng a. Chng

    minh rng tn ti c sao cho ( )g a ca= .

    Gii

    Ta c:( ) ( ) ( )

    ( ) ( ) ( )lim lim 1 1x t

    g a f ax f t g g a g a

    a a x t

    = = = = . Chn

    ( )1c g= ta c ( )g a ca= .

    Bi 11Gi s [ ]( )0;2f C v ( ) ( )0 2f f= . Chng minh rng tn ti 1 2, xx trong

    [ ]0;2 sao cho 2 1 1x x = v ( ) ( )2 1 f x f x= .

    nu1

    , n = 0,1,2,3,...2n

    x =

    nu ngc li

    nu ngc li

    nu 1 , n = 0,1,2,3,...

    2

    nx =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    5/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 5

    Xt hm s ( ) ( ) ( )1g x f x f x= + , [ ]0;2x

    V [ ]( )0;2f C nn [ ]( )0;2g C .

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 1 0 1 2 2 1 1g f f f f f f g= = = =

    Suy ra: ( ) ( ) ( )2

    0 1 1 0.g g g=

    V th tn ti [ ] ( ) ( ) ( )0 0 0 00;1 : 0 1 x g x f x f x = + = .

    Vy c th ly 2 0 1 01 , x x x x= + = .Bi 12Cho [ ]( )0;2f C . Chng minh rng tn ti 1 2,x x trong [ ]0;2 sao cho

    2 11x x = v

    ( ) ( ) ( ) ( )( )2 11

    2 02

    f x f x f f = .

    Gii

    Xt hm s: ( ) ( ) ( ) ( ) ( )( )1

    1 2 02

    g x f x f x f f = + , [ ]0;2x

    V [ ]( )0;2f C nn [ ]( )0;2g C .

    Ta c: ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

    0 1 0 2 0 1 0 22 2

    g f f f f f f f = = +

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

    1 2 1 2 0 1 0 22 2g f f f f f f f

    = = +

    Suy ra: ( ) ( )0 1g g = ( ) ( ) ( )( )2

    11 0 2 0

    2 f f f

    +

    .

    V th tn ti [ ] ( ) ( ) ( ) ( ) ( )( )0 0 0 01

    0;1 : 0 1 2 02

    x g x f x f x f f = + = .

    Vy c th ly 2 0 1 01 , x x x x= + = .Bi 13Vi n , gi [ ]( )0; f C n sao cho ( ) ( )0 f f n= . Chng minh rng tn

    ti 1 2;x x trong khong [ ]0;n tho mn 2 1 1x x = v ( ) ( )2 1 f x f x= .

    GiiXt ( ) ( ) ( ) [ ]1 , x 0; 1g x f x f x n= +

    ( ) ( ) ( )0 1 ... 1g g g n+ + +

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 2 1 ... 1 0 0f f f f f n f n f n f = + + + = =

    + Nu ( ) 0g k = , { }0,1, 2,..., 1k n th ta c ngay iu phi chng minh.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    6/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 6

    + Nu {0,1, 2,..., 1k n : ( ) 0g k . Khng mt tnh tng qut gi s

    ( ) 0g k > th lc lun tm c { }, h 0,1,2,..., 1h k n sao cho

    ( ) 0g h < . Khi tn ti [ ]0 0; 1x n sao cho

    ( ) ( ) ( )0 0 00 1g x f x f x= + = .

    Vy c th ly2 0 1 01 , x x x x= + = .

    Bi 14Chng minh rng nu 1 2sin sin 2 ... sin sinna x a x a nx x+ + + vi x th

    1 22 ... 1na a na+ + + .

    Giit ( ) 1 2sin sin 2 ... sinn f x a x a x a nx= + + + ta c:

    ( )( ) ( )

    1 2 0

    02 ... 0 lim

    nx

    f x f a a na f

    x

    + + + = =

    ( ) ( ) ( )0 0 0

    sinlim lim . lim 1

    sin sin x x x f x f x f xx

    x x x x = = == .

    Bi 15Gi s ( )0 0f = v f kh vi ti im 0. Hy tnh

    ( )01

    lim ...2 3x x x x

    f x f f f x k

    + + + +

    vi k l mt s nguyn dng

    cho trc.GiiTa c:

    ( )0

    1lim ...

    2 3x x x x

    f x f f f x k

    + + + +

    ( ) ( )( ) ( ) ( )

    0

    0 0 00 1 1 12 3lim . . ... .

    0 2 30 0 02 3x

    x x x f f f f f f

    f x f k

    x x xx kk

    = + + + +

    = ( )( ) ( ) ( )

    ( )0 0 0 1 1 1

    0 ... 1 ... 02 3 2 3

    f f f f f

    k k

    + + + + = + + + +

    .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    7/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 7

    Bi 16Cho f l hm kh vi ti a v xt hai dy ( )nx v ( )ny cng hi t v a sao cho

    n n x a y< < vi mi n . Chng minh rng: ( ) ( ) ( )lim n n

    nn n

    f x f yf a

    x y

    =

    .

    Gii

    Ta c:( ) ( )

    ( )( ) ( ) ( ) ( )

    0 n n n n n n

    n n n n

    f x f y f x f y x f a y f af a

    x y x y

    + =

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( )( )

    ( ) ( )( ) ( )0

    n n n n

    n n

    n n n n

    n n n n

    n n n n

    n n n n

    n n n n

    n n

    n n

    n n

    f x f y f a f a af a af a x f a y f a

    x y

    f x f a f a x a f y f a f a y a x y x y

    f x f a f a x a f y f a f a y a

    x y x y

    f x f a f a x a f y f a f a y a

    x a y a

    f x f a f y f a f a f a n

    x a y a

    + + +=

    =

    +

    +

    = +

    Vy( ) ( )

    ( )lim n nn

    n n

    f x f yf a

    x y

    =

    .

    Bi 17Cho f kh vi trn ( )0;+ v 0a > . Chng minh rng:

    a) Nu ( ) ( )( )limx

    af x f x M +

    + = th ( )limx

    Mf x

    a+= .

    b) Nu ( ) ( )

    ( )lim 2

    x

    af x x f x M +

    + = th ( )limx

    Mf x

    a+= .

    Giip dng quy tc Lpitan, ta c:

    a) ( )( ) ( )( )

    ( )

    ( ) ( )( )lim lim lim lim

    ax axax

    ax ax x x x xax

    e f x e af x f xe f xf x

    e aee+ + + +

    += = =

    ( ) ( )( ) ( ) ( )( )1 1

    lim lim .x x

    Maf x f x af x f x

    a a a+ + = + = + =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    8/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 8

    b) Ta c:

    ( )( ) ( )( )

    ( )lim lim lim

    a xa x

    a x x x xa x

    e f xe f xf x

    ee

    + + +

    = =

    ( ) ( )2lim

    2

    a x

    xa x

    ae f x f xx

    ae

    x

    +

    +

    =

    ( ) ( )( ) ( ) ( )( )1 1

    lim 2 lim 2 .x x

    Maf x x f x af x x f x

    a a a+ + = + = + =

    Cu 18Cho f kh vi cp 3 trn ( )0;+ . Liu t s tn ti ca gii hn

    ( ) ( ) ( ) ( )( )limx f x f x f x f x+ + + +

    c suy ra s tn ti ca ( )limx f x+ khng?GiiKhng. Ly v d: ( ) ( )cos , x 0; f x x= + .Ta c:

    ( ) ( ) ( ) ( )( ) ( )lim lim cos sin cos sin 0x x

    f x f x f x f x x x x x+ +

    + + + = + =

    Nhng khng tn ti ( )lim lim cosx x

    f x x+ +

    = .

    Cu 19

    a) Gi s f xc nh v lin tc trn [ )0;+ , c o hm lin tc trn( )0;+ v tho mn ( )0 1f = , ( ) x 0x f x e . Chng minh rng tn ti

    ( )0 0;x + sao cho ( )0

    0

    x f x e

    = .

    b) Gi s f kh vi lin tc trn ( )1;+ v tho mn ( )1 1f = ,

    ( )1

    x 1f xx

    . Chng minh rng tn ti ( )0 1;x + sao cho

    ( )0 20

    1f x

    x = .

    Giia) t ( ) ( ) xg x f x e=

    f lin tc trn [ )0;+ g lin tc trn [ )0;+ g lin tc trn ti 0

    ( ) ( ) ( )0

    lim 0 0 1 0x

    g x g f +

    = = = .

    ( ) ( )0 lim 0xx

    f x e f x

    +

    =

    ( ) ( )( ) ( )lim lim lim lim 0x x x x x x

    g x f x e f x e

    + + + +

    = = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    9/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 9

    Do : ( ) ( ) ( ) ( )0 00

    lim lim 0; : 0xx

    g x g x x g x+ +

    = + = hay ( ) 00x

    f x e

    = .

    b) t ( ) ( )1

    g x f x x= f kh vi lin tc trn ( ) ( ) ( )

    11; lim 1 0

    x f x f

    +

    + = =

    ( ) ( )1 1

    1lim lim 0x x

    g x f xx

    + +

    = =

    .

    ( ) ( ) ( ) ( )1 1

    0 lim 0 lim lim 0 x x x

    f x f x g x f xx x+ + +

    = = =

    ( ) ( ) ( ) ( )0 01

    lim lim 1; : 0xx

    g x g x x g x+ +

    = + = hay ( )0 20

    1f x

    x

    = .

    Cu 20 Cho [ ]( ) ( ) ( )0 0

    0;1 : sin cos 1 M f C f x xdx f x xdx

    = = =

    .

    Tm ( )20

    minf M

    f x dx

    .

    Gii

    Cho ( ) ( )02

    sin cos f x x x

    = + .

    + R rng 0f M .

    + i vi hm bt k f M , ( ) ( )2

    00

    0 f x f x dx

    .

    Suy ra: ( ) ( ) ( ) ( ) ( )2 2 20 0 00 0 0 0

    8 4 42 f x dx f x f x dx f x dx f x dx

    = = = .

    Vy cc tiu t c khi0f f= .

    Cu 21Tm hm s ( )f x c o hm lin tc trn sao cho

    ( ) ( ) ( )( )2 2 2

    0 2011

    x

    f x f t f t dt = + +

    (1).GiiV hm s ( )f x c o hm lin tc trn nn ( )2f x c o hm lin tctrn .Ly o hm 2 v ca (1), ta c:

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )22 22 0f x f x f x f x f x f x f x f x = + = =

    ( ) x f x Ce = (2).

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    10/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 10

    T (1) suy ra: ( ) ( )2 0 2011 0 2011f f= = .

    Cho 0x = , t( ) ( )2 0 2011f C = = .

    Vy ( ) 2011 x f x e= .

    Cu 22Tm tt c cc hm s lin tc :f tho mn

    ( ) ( ) ( ) ( ) ( ) ( )1 2 2011 1 2 2011... ...f x f x f x f y f y f y+ + + = + + +

    vi mi b s tho mn:1 2 2011 1 2 2011

    ... ... 0 x x x y y y+ + + = + + + = .Giit ( ) ( ) ( )0 , g . f b x f x b= = Do : ( ) ( )0 0 0g f b= =

    v ( ) ( ) ( ) ( ) ( ) ( )1 2 2011 1 2 2011... ...g x g x g x g y g y g y+ + + = + + +

    vi mi b s tho mn : 1 2 2011 1 2 2011... ... 0 x x x y y y+ + + = + + + = .Trc ht cho

    1 2 2011 1 2 2009 2010 2011... 0 , x ... 0 , x , x y y y x x x x= = = = = = = = = =

    ta c: ( ) ( ) xg x g x = .

    Tip theo cho

    1 2 2011 1 2 2008 2009 2010 2011... 0 , x ... 0 , x , x , y y y x x x y x x y= = = = = = = = = = = ta c:

    ( ) ( ) ( ) ( ) ( ) ( )0 x,y x, yg x g y g x y g x y g x g y+ + = + = +

    y l phng trnh hm Cauchy, do : ( )g x ax= , ( )1a g= .

    Vy ( ) , a, b = const f x ax b= + .

    Cu 23Cho f lin tc trn on [ ];a b , kh vi trong khong ( );a b v

    ( ) ( ) 0 f a f b= = . Chng minh rng tn ti ( );c a b sao cho:

    ( ) ( )2011 f c f c = .

    GiiXt hm s: ( )

    ( )

    ( )2010

    x

    a

    f t dt

    g x e f x

    =

    V f lin tc trn on [ ];a b , kh vi trong khong ( );a b nn g lin tc trn

    on [ ];a b , kh vi trong khong ( );a b . Hn na ( ) ( ) 0g a g b= = suy ra tn

    ti ( ) ( ); : 0c a b g c = .

    M ( )( )

    ( ) ( )( )2010

    2011

    x

    a

    f t dt

    g x e f x f x

    = . Suy ra: ( ) ( )2011 f c f c = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    11/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 11

    Cu 24Cho f lin tc trn [ ]0;2012 . Chng minh rng tn ti cc s

    [ ]1 2 1 2, 0;2012 , x 1006 x x x = tho mn: ( ) ( )( ) ( )

    2 12012 0

    2f f

    f x f x

    =

    Gii

    Xt hm s: ( )( ) ( ) ( ) ( )1006 2012 0

    1006 2012

    x f x f f F x

    + = , [ ]0;1006x .

    F lin tc trn [ ]0;1006 . Ta c:

    ( )( ) ( ) ( )

    ( ) ( ) ( ) ( )

    2 1006 2012 00

    2012

    2 1006 2012 010062012

    f f f F

    f f f F

    =

    =

    ( ) ( ) [ ] ( )0 00 1006 0 0;1006 : 0F F x F x = .

    [ ] ( ) ( )( ) ( )

    0 0 0

    2012 00;1006 : 1006

    2

    f f x f x f x

    + = .

    t 2 0 1 01006 , x x x x= + = ta c iu phi chng minh.Cu 25Cho s thc a [ ]0;1 . Xc nh tt c cc hm lin tc khng m trn [ ]0;1

    sao cho cc iu kin sau y c tha mn:a) ( )

    1

    0

    1 f x dx = b) ( )1

    0

    xf x dx a= c) ( )1

    2 2

    0

    x f x dx a= .

    Giip dng bt ng thc Bunhiacovski ta c:

    ( ) ( ) ( ) ( ) ( )2 21 1 1 1

    2

    0 0 0 0

    . . xf x dx x f x f x dx x f x dx f x dx =

    .

    M theo gi thit: ( ) ( ) ( )21 1 1

    2

    0 0 0

    .xf x dx x f x dx f x dx =

    .

    Do f lin tc trn [ ]0;1 nn ( ) ( ) [ ]0, x 0;1 x f x f x =

    Suy ra: ( ) [ ]0 x 0;1f x = . iu ny mu thun vi gi thit: ( )1

    0

    1 f x dx = .

    Vy khng tn ti hm f tho mn bi ton.Bi 26C tn ti hay khng hm s kh vi :f tho mn

    ( ) ( ) ( )20 1 , f x ? f x f x=

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    12/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 12

    GiiGi s hm f tho mn yu cu bi ton. V ( ) ( )2 0 x f x f x nn

    fng bin trn [ ) ( ) ( ) [ )0; 0 1 0 x 0; f x f + = > + .

    T gi thit bi ton ta c:( )

    ( )( ) [ )2

    0 0

    1, x 0;1

    1

    x xf tdt dt f x

    f t x

    .

    Do khng tn ti ( )1

    limx

    f x

    . iu ny mu thun vi gi thit f lin tc.

    Vy khng tn ti hm f tho mn bi ton.Cu 27C hay khng mt hm s :f tha mn: ( ) sin sin 2 f x y x y+ + + <

    vi x, y .GiiGii s tn ti hm f tho mn yu cu bi ton.

    + Cho , y =2 2

    x

    = , ta c: ( ) 2 2f + < .

    + Cho3

    , y =2 2

    x

    = , ta c: ( ) 2 2f < .

    Ta li c: ( )( ) ( )( ) ( ) ( )4 2 2 2 2 4 f f f f = + + + + + < . iu

    ny v l. Vy khng c hm s f no tho yu cu bi ton.

    Cu 28Tm tt c cc hm f(x) xc nh v lin tc trn sao cho( ) ( ) 0 x f x f x = .

    Gii

    t ( ) ( )( )2

    g x f x=

    ( ) ( ) ( )2 0 xg x f x f x = =

    ( ) ( ) ( )g x C const f x const f x ax b = = = = + x .

    Cu 29

    Cho :f sao cho ( ) ( ) a bf a f b a b < . Chng minh rngnu ( )( )( )0 0 f f f = th ( )0 0f = .GiiTa vit li iu kin i vi hm f(x) nh sau: ( ) ( )f a f b a b (*)

    Du = xy ra khi a = b.t ( ) ( )0 , y = f x f x= . Khi ( ) 0.f y =

    p dng bt ng thc ( )* lin tip ta c:

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    13/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 13

    ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0x x f x f y x f y f x y f f y x= = = =

    Suy ra: 0x y= = . Vy ( )0 0f = .

    Cu 30

    Hm ( )2

    3 12

    x x f x e x= c kh vi ti im 0x = hay khng?

    GiiTheo cng thc Taylor, ta c:

    ( ) ( )2 3 2 3

    3 31 12 6 2 6

    x x x x x xe x o x e x o x= + + + + = +

    ( ) ( ) ( )

    333

    3

    1

    6 6

    x

    f x o x x o x= + = +

    .

    Vy f(x) kh vi ti 0x = v ( )3

    10

    6f = .

    Cu 31Chng minh rng nu hm f(x) kh vi v hn ln trn th hm

    ( ) ( )0 f x f

    x

    c nh ngha thm lin tc ti x = 0 cng kh vi v hn

    ln.

    GiiVi 0x ta c:

    ( ) ( ) ( ) ( )( ) ( )

    ( )1 1

    0 0 0

    00

    x f x f f x f f t dt f ux xdu f ux du

    x

    = = =

    V ( )1

    0

    f ux du kh vi v hn ln vi mi x .

    Vy( ) ( )0 f x f

    x

    c nh ngha thm lin tc ti x = 0 kh vi v hn

    ln.

    Cu 32Cho ( )f x kh vi 2 ln tho ( ) ( )0 1 0f f= = ,

    [ ]( )

    0;1in 1

    xm f x

    = .

    Chng minh rng:[ ]

    ( )0;1

    max 8x

    f x

    .

    Giif lin tc trn [ ] [ ] ( )

    [ ]( )

    0;10;1 0;1 : in 1

    xa f a m f x

    = = .Suy ra c

    ( ) 0f a = , ( )0;1a .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    14/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 14

    Khai trin Taylor ti a: ( )( )( )

    ( )2

    12

    f a x a f x x a

    + = + , 0 1< < .

    + Vi 0x = , ta c: ( ) 210 12

    f ca

    = + , 10 c a< < .

    + Vi 1x = , ta c:( )

    ( )220 1 1

    2

    f ca

    = + , 2 1a c< < .

    Do : ( )1 22

    8f ca

    = nu1

    2

    a ; ( )( )

    22

    28

    1f c

    a =

    nu

    1

    2a .

    Vy[ ]

    ( )0;1

    max 8x

    f x

    .

    Cu 33

    Gi s ( )2011 1sin , x 0

    0 , x = 0

    xf x x

    =

    v hm ( )g x kh vi ti x = 0. Chng minh rng ( )( )g f x c o hm bng0 ti 0x = .Gii

    Ta c: ( )( )( )( ) ( )( ) ( )

    2011

    0 00

    1sin 00

    lim limh hx

    g h gg f h g f d h

    g f xdx h h =

    = =

    ( ) ( )2011 20112011 2011

    0 0 02011 2011

    1 1sin 0 sin 0

    1 1lim . sin lim . lim sin

    1 1sin 0 sin 0

    h h h

    g h g g h gh h

    h hh h

    h hh h

    = =

    V ( )2011 20111

    0 sin 0 0h h hh

    nn 20110

    1lim sin 0h

    hh

    = .

    Do : ( )( ) ( )0

    0 .0 0x

    dg f x g

    dx=

    = =

    Cu 34Hm f xc nh, kh vi trn ( )0; , + . Chng minh rng hm

    ( ) ( ) f x f x + khng gim khi v ch khi ( ) x f x e khng gim.

    Giit ( ) ( ) ( )h x f x f x= + ; ( ) ( ) xg x f x e= .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    15/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 15

    Suy ra: ( ) ( )( )x xe h x e f x = ; ( ) ( )xe g x f x = .

    Khi :( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    0

    0x

    x x t g x e f x h x e f x h x e f t dt f

    = = =

    ( ) ( ) ( )0

    0x

    th x e h t dt f

    = .

    ( ) ( ) ( ) ( ) ( ) ( )0

    0x

    xh x f x f x e g x f t dt f

    = + = + +

    = ( ) ( ) ( )0

    0x

    x te g x e g t dt f

    + + .

    ( ) Gi s ( )h x khng gimKhi vi b > a ta c:

    ( ) ( ) ( ) ( )( ) ( )b

    b a t

    a

    g b g a e h b e h a e h t dt = (1)

    Theo nh l trung bnh ca tch phn tn ti

    ( ) ( ) ( ) ( )( )1

    ; :b b

    t t b a

    a a

    c a b e h t dt h c e dt h c e e

    = = (2)

    Thay (2) vo (1) ta c:

    ( ) ( ) ( ) ( ) ( ) ( )b a b a

    g b g a e h b e h a e h c e h c

    = + ( ) ( )( ) ( ) ( )( ) 0b ae h b h c e h c h a = + vi b c a> > .

    Do g(x) khng gim.( ) Gi s g(x) khng gim

    Khi vi b > a ta c:

    ( ) ( ) ( ) ( )( ) ( )b

    b a t

    a

    h b h a e g b e g a e g t dt = + (3)

    Theo nh l trung bnh ca tch phn tn ti

    ( ) ( ) ( ) ( )( )1; :b b

    t t b a

    a a

    c a b e g t dt g c e dt g c e e

    = = (4)Thay (4) vo (3) ta c:

    ( ) ( ) ( ) ( ) ( ) ( )b a b ah b h a e g b e g a e g c e g c = +

    ( ) ( )( ) ( ) ( )( ) 0b ae g b g c e g c g a = + vi b c a> > .Do h(x) khng gim.Vy bi ton chng minh xong.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    16/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 16

    Cu 35Gi s ( )f C . Liu c tn ti cc hm s g(x) v h(x) sao cho x

    th ( ) ( ) ( )sin cosf x g x x h x x= + hay khng?GiiC. Chng hn xt cc hm s sau:

    ( ) ( ) ( ) ( )sin , h cosg x f x x x f x x= =

    Ta c: ( ) ( ) ( ) ( ) ( )2 2sin cos sin cosg x x h x x f x x f x x f x+ = + = .

    Cu 36Gi s :f c o hm cp 2 tho mn: ( ) ( )0 1, f 0 0f = = v

    ( ) ( ) ( ) [ )5 6 0 0; f x f x f x x + + . Chng minh rng:

    ( ) 2 33 2x x f x e e , [ )0;x + .GiiTa c:

    ( ) ( ) ( ) [ )5 6 0 0; f x f x f x x + +

    ( ) ( ) ( ) ( )( ) [ )2 3 2 0 0;f x f x f x f x x +

    t ( ) ( ) ( ) [ )2 , x 0;g x f x f x= + .

    Khi ( ) ( ) [ ) ( )( ) [ )33 0 , x 0; 0 ,x 0;xg x g x e g x + +

    ( )3x

    e g x

    tng trn [ )0;+ ( )( ) [ ) ( )( ) [ )2 22 , x 0; 2 0 x 0; x x x xe f x e e f x e + + +

    ( )2 2x xe f x e + tng trn [ )0;+

    ( ) ( ) [ )2 0 02 0 2 3 , 0;x xe f x e e f e + + = +

    ( ) 2 33 2x x f x e e , [ )0;x + .

    Cu 37Cho ( ): 0;f + c o hm cp 2 lin tc tho mn:

    ( ) ( ) ( ) ( )2

    2 1 2011 f x xf x x f x + + + vi mi x. Chng minh rng:( )lim 0

    xf x

    = .

    Giip dng quy tc Lpitan, ta c:

    ( )( )

    2

    2

    2

    2

    lim lim

    x

    xx x

    e f xf x

    e

    = =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    17/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 17

    =

    ( )

    ( ) ( )( )

    ( ) ( )( )2 2

    2

    2

    2 2

    2 22

    22 2

    lim lim lim

    x x

    x

    x x x xx x

    e f x e f x xf xe f x xf x

    xee xe

    + +

    = =

    ( ) ( ) ( ) ( )( )

    ( )

    ( ) ( ) ( ) ( )2

    2

    2 22

    222

    2 1 2 1lim lim 0.

    11

    x

    xx x

    e f x xf x x f x f x xf x x f x

    xe x

    + + + + + += = =

    ++

    Cu 38

    Gi s hm s f lin tc trn [ ) ( )0; , 0 0 f x x+ v ( )lim 1x

    f xa

    x+= < .

    Chng minh rng tn ti 0c sao cho ( ) f c c= .

    Gii+ Nu ( )0 0f = th kt lun trn hon ton ng.

    + Nu ( )0 0f >

    t ( ) ( )g x f x x=

    V f lin tc trn [ )0;+ g cng lin tc trn [ )0;+ .

    Ta c: ( ) ( ) ( )0 0 0 0 0 x 0g f f= = > .

    ( ) ( )( )lim 1 0 : 1 0 :

    x

    f x f ba b b f b b

    x b+= < > < > < .

    Khi : ( ) ( ) 0g b f b b= < .

    ( ) ( ) [ ] [ ) ( ) ( )0 0 0; 0; : 0 0 :g g b c b g c c f c c + = = .Cu 39Gi s f c o hm trn mt khong cha [ ]0,1 , ( ) ( )0 0 , f 1 0f > < .

    Chng minh rng tn ti ( ) ( ) ( ) [ ]0 00;1 : x 0;1 x f x f x

    .Giif c o hm trn mt khong cha [ ]0,1

    [ ] ( ) ( )[ ]

    ( )0 0 0,10;1 : maxx x f x f x f x = .

    Ta s chng minh: 0 00, x 1x .Tht vy!

    ( ) ( )( ) ( )

    ( ) ( )( ]

    0

    0 0lim 0 0 0;1 : 0 x 0;x

    f x f f x f f h h

    x x+

    = > >

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    18/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 18

    ( ) ( ) ( ] ( )0 x 0; 0 f x f h f > khng phi l gi tr ln nht ca ( )f x

    trn [ ] 00,1 0x .

    ( ) ( )( ) ( )

    ( ) ( )[ )

    11

    1 1lim 1 0 0;1 : 0 x ;1

    1 1x f x f f x f

    f k k x x

    = < <

    ( ) ( ) [ ) ( )1 x ;1 1 f x f k f < khng phi l gi tr ln nht ca ( )f x

    trn [ ) 0;1 1k x .

    Cu 40Cho mt hm s f xc nh trn tho mn

    ( ) ( )0 0 , f sin x f x x= . Chng minh rng o hm ca f ti 0

    khng tn ti.

    GiiGi s ( )0f tn ti.

    0;2

    x

    ta c:

    ( ) ( )( )

    ( ) ( )0 0

    0 0sin sin0 lim lim 1

    0 0x x f x f f x f x x

    f x x x x

    + +

    +

    = =

    .

    Tng t ta cng chng minh c ( )10 1f <

    iu ny chng t ( )0f khng tn ti.

    Cu 41Gi s ( )f x kh vi trn ( );a b sao cho ( )lim , lim

    x a x bf x

    +

    = + = v

    ( ) ( ) ( )2 1 x ; f x f x a b + . Chng minh rng b a . Cho v d

    b a = .GiiCch 1

    Ta c: ( ) ( ) ( )( )

    ( )( )2 21 x ; 1 0 x ;1

    f x f x f x a b a b

    f x

    + +

    +

    ( )( ) ( ) ( )arctan 0 x ; arctan f x x a b f x x + + tng trn ( );a b

    Chuyn qua gii hn ta c:2 2

    a b b a

    + + .

    V d: cot , a = 0 , b =y x = .Cch 2

    Ta c: ( ) ( ) ( )( )

    ( )( )2 21 x ; 1 x ;1

    f x f x f x a b a b

    f x

    +

    +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    19/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 19

    Ly tch phn hai v:( )

    ( ) ( )21 arctan

    1

    b bb

    aa a

    f xdx dx f x a b a b b a

    f x

    + .

    Cu 42

    Cho f l mt hm lin tc trn [ ]0;1 . Tm . Tm ( )1

    0

    lim nn

    f x dx

    .

    Gii

    Cho 0 1< < . Khi ta c: ( ) ( ) ( )1 1 1

    0 0 1

    n n n f x dx f x dx f x dx

    = + .

    + Theo nh l gi tr trung bnh ca tch phn tn ti

    [ ] ( ) ( )( ) ( ) ( )( )1 1

    0 00;1 : 1 lim 0 1n n nnc f x dx f c f x dx f

    = = .

    + t[ ]

    ( )0,1

    supx

    M f x

    = , ta c: ( ) ( )1 1

    1 1

    n n f x dx f x dx M

    .

    Vy ( ) ( )1

    0

    lim 0nn

    f x dx f

    = .

    Cu 43

    Cho f l mt hm lin tc trn [ ];a b v ( ) 0b

    a

    f x dx = . Chng minh rng tn

    ti ( ) ( ) ( ); :c

    a

    c a b f x dx f c = .

    Xt hm: ( ) ( )x

    x

    a

    g x e f t dt

    =

    g lin tc trn [ ];a b , kh vi trn ( );a b

    ( ) ( ) 0g a g b= = .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( )

    x

    x

    ag x e f x f t dt

    = , v th ( ) ( ) ( )

    c c

    a a f c f t dt f x dx= = .

    Cu 44

    Gi s [ ]( );f C a b , a > 0 v ( ) 0b

    a

    f x dx = . Chng minh tn ti ( );c a b

    sao cho ( ) ( )c

    a

    f x dx cf c= .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    20/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 20

    Gii

    Xt hm s: ( ) ( )1 x

    a

    g x f t dt x

    =

    g lin tc trn [ ];a b , kh vi trn ( );a b

    ( ) ( ) 0g a g b= = .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( )21 x

    a

    g x xf x f t dt x

    =

    Do tn ti ( );c a b sao cho ( ) ( )c

    a

    f x dx cf c= .

    Cu 45Gi s f, g [ ]( );C a b . Chng minh rng tn ti ( );c a b sao cho

    ( ) ( ) ( ) ( )b b

    a a

    g c f x dx f c f x dx= .

    Gii

    Xt ( ) ( ) ( ) ( ), Gx x

    a a

    F x f t dt x g t dt = =

    Suy ra: ( ) ( )F x f x = , ( ) ( )G x g x =

    p dng nh l Cauhy ta c:

    c ( );a b :( ) ( )

    ( ) ( )

    ( )

    ( )

    F b F a F c

    G b G a G c

    =

    c ( );a b :

    ( )

    ( )

    ( )

    ( )

    b

    a

    b

    a

    f t dt f c

    g cg t dt

    =

    c ( );a b : ( ) ( ) ( ) ( )b b

    a a

    g c f x dx f c f x dx= .

    Cu 46

    Gi s f, g [ ]( );C a b

    . Chng minh rng tn ti ( );c a b

    sao cho( ) ( ) ( ) ( )

    c b

    a c

    g c f x dx f c f x dx= .

    Gii

    Xt hm: ( ) ( ) ( )x b

    a x

    F x f t dt g t dt =

    F lin tc trn [ ];a b , kh vi trn ( );a b v ( ) ( )F a F b= .

    V th theo nh l Rolle ta c: ( ) ( ); : 0c a b F c =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    21/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 21

    M ( ) ( ) ( ) ( ) ( )b x

    x a

    F x f x g t dt g x f t dt =

    Do : ( ); :c a b ( ) ( ) ( ) ( )c b

    a c

    g c f x dx f c f x dx= .

    Cu 47Gi s f v g l hai hm s dng, lin tc trn [ ];a b . Chng minh rng tn

    ti ( );c a b sao cho( )

    ( )

    ( )

    ( )1

    c b

    a c

    f c g c

    f x dx g x dx

    =

    .

    Gii

    Xt hm: ( ) ( ) ( )x b

    x

    a x

    F x e f t dt g t dt =

    F lin tc trn [ ];a b , kh vi trn ( );a b v ( ) ( )F a F b= .

    Theo nh l Rolle ta c: ( );c a b : ( ) 0F c = .

    M: ( ) ( ) ( ) ( ) ( ) ( ) ( ) x b b x

    x

    a x x a

    F x e f t dx g t dx f x g t dt g x f t dt = +

    Do : ( );c a b : ( ) ( ) ( ) ( ) ( ) ( ) 0c b b c

    a c c a

    f t dx g t dx f x g t dt g x f t dt + =

    ( );c a b : ( )

    ( )

    ( )

    ( )1

    c b

    a c

    f c g c

    f x dx g x dx

    =

    .

    Cu 48Cho [ ]( )1 0;1f C . Chng minh rng tn ti ( )0;1c sao cho:

    ( ) ( ) ( )1

    0

    10

    2 f x dx f f c= + .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

    10

    0 0 01 1 1 f x dx f x d x x f x x f x dx= =

    ( ) ( ) ( )1

    0

    0 1 f x f x dx= .

    Theo nh l gi tr trung bnh ca tch phn:

    tn ti ( ) ( ) ( ) ( ) ( ) ( )1 1

    0 0

    10;1 : 1 1

    2c x f x dx f c x dx f c = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    22/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 22

    Do : tn ti ( )0;1c sao cho: ( ) ( ) ( )1

    0

    10

    2 f x dx f f c= +

    Cu 49Cho [ ]( )2 0;1f C . Chng minh rng tn ti ( )0;1c sao cho:

    ( ) ( ) ( ) ( )1

    0

    1 10 0

    2 6 f x dx f f f c = + + .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

    1

    00 0 0

    1 1 1 f x dx f x d x x f x x f x dx= =

    ( )

    ( )

    ( )

    ( )

    ( )

    12 21

    00

    1 1

    0 2 2

    x x

    f f x f x dx

    = + .p dng nh l gi tr trung bnh ca tch phn:

    tn ti ( )( )

    ( ) ( ) ( ) ( )2

    1 12

    0 0

    1 1 10;1 : 1

    2 2 6

    xc f x dx f c x dx f c

    = = .

    Do tn ti ( )0;1c sao cho: ( ) ( ) ( ) ( )1

    0

    1 10 0

    2 6 f x dx f f f c = + + .

    Cu 50

    Gi s [ ]( )1 0;1f C v ( )0 0f . Vi ( ]0;1x , cho ( )x tho mn

    ( ) ( )( )0

    x

    f t dt f x x= . Tm( )

    0limx

    x

    x

    +

    .

    Gii

    t ( ) ( )0

    x

    F x f t dt = .

    Suy ra: ( )0 0F = , ( ) ( ) ( ) ( ), FF x f x x f x = = .

    Ta c: ( ) ( )0 0 0F f = .

    Theo khai trin Taylor ta c: ( ) ( ) ( ) ( )2 210 02

    F x F x F x o x = + +

    ( ) ( ) ( ) ( )0 0F x F F x o x = + + ( ) ( ) ( ) ( )0 0F F F o = + +

    ( )( ) ( ) ( ) ( ) ( )0 0 f x x F x x F F o = = + +

    Khi : ( ) ( ) ( )2 21

    0 02

    F x F x o x + + = ( ) ( ) ( )0 0 x F F o + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    23/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 23

    ( )

    0

    1lim

    2xx

    x

    +

    = .

    Cu 51Cho f l mt hm lin tc trn v a b< , k hiu

    ( ) ( )2011b

    a

    g x f x t dt = + . Tnh o hm ca g.

    Gii

    Ta c: ( ) ( ) ( )2011

    2011

    2011b b x

    a a x

    g x f x t dt f u du+

    +

    = + =

    ( ) ( ) ( )2011 2011 2011g x f b x f a x = + + .

    Cu 52Cho f lin tc trn . Tm ( ) ( )( )

    0

    1lim

    b

    ha

    f x h f x dxh

    + .

    Giip dng nh l gi tr trung bnh ca tch phn, ta c:

    ( ) ( )( ) ( ) ( )b b h b

    a a h a

    f x h f x dx f x dx f x dx+

    +

    + =

    ( ) ( ) ( ) ( )b b h a h b

    a h b a a h

    f x dx f x dx f x dx f x dx+ +

    + +

    = +

    , [ ], 0,1 .

    ( ) ( )( ) ( ) ( )0

    1lim

    b

    ha

    f x h f x dx f b f ah

    + = .

    Cu 53

    Cho f l mt hm lin tc trn [ )0;+ tho mn ( ) ( )0

    limx

    x f x f t dt

    +

    c

    gii hn hu hn. Chng minh ( )lim 0x f x = .Gii

    t ( ) ( ) ( ) ( )0

    x

    F x f t dt F x f x= = .

    Khi gi s ( ) ( ) ( ) ( )( )0

    lim limx

    x x f x f t dt F x F x L

    + = + =

    ( ) ( ) ( ) ( )a b h

    a h b

    f x dx f x dx hf a h hf b h +

    +

    = + = + + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    24/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 24

    p dng quy tc Lpitan ta c:

    ( )( ) ( )( )

    ( )

    ( ) ( )( )( ) ( )( )lim lim lim lim lim

    x xx

    x x x x x x xx

    e F x e F x F xe F xF x F x F x Le ee

    +

    = = = = + =

    Suy ra: ( ) ( )lim lim 0x x

    f x F x

    = = .

    Cu 54Chng minh rng nu f kh tch Riemann trn [ ];a b th

    ( ) ( ) ( ) ( )2 2

    2sin cosb b b

    a a a

    f x xdx f x xdx b a f x dx

    +

    .

    Gii

    p dng bt ng thc Schwarz, ta c:

    ( ) ( )

    ( ) ( ) ( ) ( )

    2 2

    2 2 2 2 2

    sin cos

    sin cos

    b b

    a a

    b b b b b

    a a a a a

    f x xdx f x xdx

    f x dx xdx f x dx xdx b a f x dx

    +

    + =

    Cu 55Chng minh rng nu f dng v kh tch Riemann trn [ ];a b th

    ( ) ( ) ( )

    2b b

    a a

    dx

    b a f x dx f x .

    Hn na nu ( )0 m f x M < th ( )( )

    ( )( )

    22

    4

    b b

    a a

    m Mdx f x dx b a

    f x mM

    + .

    Gii+ p dng bt ng thc Cauchy Schwarz, ta c:

    ( ) ( )( )

    ( )( )

    2

    2 1.

    b b b

    a a a

    dxb a f x dx f x dx

    f xf x

    = .

    + V ( )0 m f x M < nn ( )( ) ( )( )( )

    0 , a x b f x m f x M

    f x

    Ta c:

    ( )( ) ( )( )( )

    ( ) ( )( )

    0 0b b b b

    a a a a

    f x m f x M dxdx f x dx m M dx mM

    f x f x

    + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    25/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 25

    ( )( )

    ( )( )( )

    ( )( ) ( ) .b b b b

    a a a a

    dx dx f x dx mM m M b a mM m M b a f x dx

    f x f x + + +

    Do : ( )( )

    ( )( ) ( ) ( )2b b b b

    a a a a

    dxmM f x dx m M b a f x dx f x dx

    f x

    +

    Xt hm s: ( ) 2 y g t t kt = = + .

    Hm st cc i ti2

    kt= vi gi tr cc i l

    2

    4

    k.

    Vi ( )( ) ( ), t =b

    a

    k m M b a f x dx= + ta c:

    ( )( ) ( ) ( ) ( ) ( )

    2 22

    4

    b b

    a a

    m M b am M b a f x dx f x dx

    + + .

    Do : ( )( )

    b b

    a a

    dxmM f x dx

    f x

    ( ) ( )2 2

    4

    m M b a+

    ( )( )

    b b

    a a

    dx f x dx

    f x

    ( ) ( )2 2

    4

    m M b a

    mM

    + .

    Cu 56Cho f lin tc trn [ ];a b sao cho vi mi [ ] [ ]; ;a b ta c:

    ( )1

    f x dx M

    +

    vi 0 , >0M > .

    Chng minh rng ( ) 0f x = trn [ ];a b .

    GiiVi mi [ ]0 ; x a b , chn h thuc b sao cho [ ]0 ; x h a b+ .Khi theo nh l trung bnh ca tch phn: tn ti c gia 0x v 0x h+

    sao cho ( ) ( ) ( )0

    0

    1x h

    x

    f c h f x dx h f c M h

    ++

    = .

    Cho 0h ta c ( ) [ ]0 00 x ; f x a b . Suy ra: ( ) 0f x = trn [ ];a b .

    Cu 57

    Cho f lin tc trn [ ];a b . t ( )1 b

    a

    c f x dxb a

    =

    . Chng minh rng:

    ( ) ( )2 2

    b b

    a a

    f x c dx f x t dx t .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    26/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 26

    Gii

    Xt ( ) ( ) ( ) ( )2 2 22

    b b b

    a a a

    g t x t dt b a t f x dx t f x dx

    = = +

    .

    g(t) l tam thc bc hai theo t, g(t) t cc tiu ti ( )01 b

    a

    t f x dx cb a

    = =

    .

    Vy ( ) ( )2 2

    b b

    a a

    f x c dx f x t dx t .

    Cu 58Cho f l mt hm thc kh vi n cp 1n + trn . Chng minh rng vi

    mi s thc , , a < ba b tho mn( ) ( ) ( ) ( )

    ( ) ( )( )

    ( )

    ...ln

    ...

    n

    n

    f b f b f bb a

    f a f a f a

    + + +=

    + + +

    tn ti ( );c a b sao cho ( ) ( ) ( )1n

    f c f c+

    = .

    GiiVi a, b l s thc, a b< ta c

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ...ln

    ...

    n

    n

    f b f b f bb a

    f a f a f a

    + + +=

    + + +

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )... ...n na bf a f a f a e f b f b f b e + + + = + + +

    Xt hm s

    : ( ) ( ) ( )

    ( )

    ( )( )...n x

    g x f x f x f x e

    = + + +

    Ta c g(x) kh vi trn v ( ) ( )g a g b= .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( ) ( )( )1nxg x e f x f x+ = .

    Do : ( ) ( ) ( )1n

    f c f c+

    = .

    Cu 59Cho [ ): 0;f + l mt hm lin tc kh vi. Chng minh rng:

    ( ) ( ) ( ) [ ] ( ) ( )

    21 1 1

    3 20,1

    0 0 00 maxx f x dx f f x dx f x f x dx

    .

    Giit

    [ ]( )

    0,1maxx

    M f x

    = .

    Khi ( ) [ ] ( ) [ ]x 0;1 x 0;1 f x M M f x M . Nhn ( ) 0f x

    vo tng v ca bt ng thc ny ta c :( ) ( ) ( ) ( ) Mf x f x f x Mf x , [ ]0;1x

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    27/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 27

    Suy ra: ( ) ( ) ( ) ( )0 0 0

    x x x

    M f t dt f t f t dt M f t dt

    ( ) ( ) ( ) ( )2 20 0

    1 1 02 2

    x x

    M f t dt f x f M f t dt . n y ta tip tc nhn

    ( ) 0f x vo tng v ca bt ng thc ny c:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )3 20 0

    1 10

    2 2

    x x

    Mf x f t dt f x f f x Mf x f t dt , [ ]0;1x .

    Ly tch phn 2 v trn [ ]0;1 ca bt ng thc ny:

    ( )21

    0

    M f x dx

    ( ) ( ) ( ) ( )21 1 1

    3 2

    0 0 0

    0 f x dx f f x dx M f x dx

    ( ) ( ) ( ) ( )21 1 1

    2 2

    0 0 0

    0 f x dx f f x dx M f x dx

    hay ( ) ( ) ( )[ ]

    ( ) ( )1 1 1

    3 2

    0,10 0 0

    0 maxx

    f x dx f f x dx f x f x dx

    .

    Cu 60

    Cho [ ): 0;f + kh vi v tho mn ( ) ( )( )2 2

    11 1 , f f x

    x f x= =

    +.

    Chng minh rng tn ti gii hn hu hn ( )limx f x+ v b thua 1 4

    + .

    Gii

    ( )( )

    [ )2 21

    0 x 0;f x x f x

    = > ++

    f(x) ngbin ( ) ( )1 1 x > 1 f x f > = .

    T ta c: ( ) ( ) 2 11 1

    11 1 arctan 1

    1 4

    x xx

    f x f t dt dt t t

    = + < = + < +

    + .

    Vy tn ti gii hn hu hn ( )limx f x+ v b thua 1 4

    + .Cu 61Tm tt c cc hm ( )f x tho mn iu kin: ( ) ( )1 2 x f x f x + = .

    GiiNhn xt: ( )1 112 2.2 2 2 2 x x x x x + = = Ta c: ( ) ( )1 2 x f x f x + = ( ) ( ) ( )1 1 11 2 2 x

    x x f x f x

    + + + = +

    t ( ) ( ) 12 xg x f x = + ( ) ( )1 xg x g x+ = . Vy ( ) ( ) 12 x f x g x = ,

    vi g l hm tun hon c chu k 1T = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    28/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 28

    Cu 62Cho f l hm lin tc trn [ )0;+ v tho mn ( )0 3 1 xf x< < ( )0;x + .

    Chng minh rng hm s ( ) ( ) ( )3

    3

    0 0

    3x x

    g x t f t dt tf t dt =

    l hm sng

    bin trn ( )0;+ .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( )2 2

    3 2

    0 0

    9 3x x

    g x x f x xf x tf t dt xf x x tf t dt

    = =

    Li c: ( ) ( ) ( )2 2

    2 2

    0 0 0 0

    0 3 1 3 3 0 x x x x

    tf t dt dt x tf t dt x x tf t dt

    < < = < >

    Kt hp vi ( ) ( )0 0; xf x x> + , ta suy ra: ( ) ( )0 x 0;g x > + .

    Vy ( )g x l hm sng bin trn ( )0;+ .

    Cu 63Cho hm s: [ ]( )2 0,2f C v ( ) ( ) ( )0 2010, f 1 2011, f 2 2012f = = = .

    Chng minh rng tn ti ( )0;2c sao cho ( ) 0f c = .

    Gii+ p dng nh l Lagrange cho hm s f trn [ ] [ ]0;1 , 1;2

    ( ) ( ) ( ) ( )1 0 2011 20100;2 : 11 0 1 0

    f fa f a = = =

    ( ) ( )( ) ( )2 1 2012 2011

    0;2 : 12 1 2 1

    f fb f b

    = = =

    + V f kh vi trn [ ]0;2 v ( ) ( ) f a f b = nn theo nh l Rolle tn ti

    ( ) ( )0;2 : 0c f c = .

    Cu 64Tn ti hay khng hm lin tc :f + + tho mn cc iu kin:

    ( ) ( )( ) f 2011 2012i f< ( ) ( )( ) 1fii f xx

    = .

    Gii+ Trc ht ta chng minh f l n nh.

    1 2,x x+ , ta c:

    ( ) ( ) ( )( ) ( )( )1 2 1 2 1 21 2

    1 1f x f x f f x f f x x x

    x x= = = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    29/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 29

    + f lin tc v n nh suy ra fn iu. Kt hp vi iu kin (i) suy ra f

    ng bin trn + . Khi ( )( )1

    f f xx

    = cng l hm ng bin. iu ny

    v l v1

    yx

    = l hm nghch bin.

    Vy khng tn ti hm f tho mn yu cu bi ton.Cu 65Cho f xc nh trn [ ]0;1 tho mn: ( ) ( )0 1 0f f= = v

    ( ) ( ) [ ]x, y 0,12

    x y f f x f y

    + +

    .

    Chng minh rng: phng trnh ( ) 0f x = c v s nghim trn on [ ]0,1 .GiiCho x y= , t gi thit ta c: ( ) ( ) ( ) [ ]2 0 x 0,1 f x f x f x .

    Ta c: ( ) ( )1 1

    0 0 1 0 02 2

    f f f f

    + = =

    .

    Ta s chng minh1

    02n

    f

    =

    n (1)

    + (1) ng vi 0, 1n n= = .

    + Gi s (1) ng n n k= , tc l: 1 02kf =

    .

    + Ta c: ( )1 11 1 1

    0 0 0 02 2 2k k k

    f f f f + +

    + = =

    . Do (1) ng

    n n k= .Vy phng trnh ( ) 0f x = c v s nghim trn on [ ]0,1 .

    Cu 66Cho hm s ( )f x lin tc trn tho mn iu kin:

    ( )( ) ( ) 1 xf f x f x = v ( )1000 999f = . Hy tnh ( )500f .Gii

    Vi 1000x = , ta c: ( )( ) ( ) ( )1

    1000 1000 1 999999

    f f f f = = .

    Xt hm s: ( ) ( ) 500g x f x=

    f lin tc trn f lin tc trn [ ]999;1000 g lin tc trn [ ]999;1000 .

    ( ) ( )1

    999 999 500 500 0999

    g f= = <

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    30/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 30

    ( ) ( )1000 1000 500 999 500 0g f= = >

    Suy ra: ( ) ( ) ( ) ( )0 0999 . 1000 0 999;1000 : 0g g x g x< =

    ( ) ( )0 0999;1000 : 500 x f x = .

    Thay 0x x= ta c ( )( ) ( ) ( )0 01

    1 500500

    f f x f x f = = .

    Cu 67Cho hm s :f tho mn iu kin:

    ( ) ( ) ( )2 x, y

    3

    f x f y f xyx y

    = + + (1) . Hy xc nh gi tr c th

    c ca ( )2011f .

    GiiCho 0x y= = thay vo (1) ta c:

    ( ) ( )( ) ( )

    ( )

    ( )

    22

    0 20 02 0 0 6 0

    3 0 3

    ff ff f

    f

    = = =

    =

    + Xt ( )0 2f = . Khi :( ) ( ) ( )

    ( )0 0 3

    2 23 2

    f x f f x f x x

    = + = .

    Thay vo (1) thy khng tho.+ Xt ( )0 3f = , khi ( ) 3 f x x= + . Thay vo (1) thy tho mn.

    Vy ( )2011 2011 3 2014f = + = .

    Cu 68Cho hm s :f tho mn iu kin

    ( ) ( )3 32 2 x, y f x y f y x+ = + .Chng minh rng f l hm hng.GiiVi mi a, b thuc , chng minh tn ti ,x y sao cho:

    3 32 , y 2 x y a x b+ = + = .

    R rng ( ) ( ) f a f b f

    =

    l hm hng.

    Xt h phng trnh:

    323 3

    33

    22 02

    222

    a x x y a y a x

    x b y x b

    y x b

    + = =

    + = + = + =

    .

    y l phng trnh a thc bc l ( bc 9) i vi x nn lun c nghimtrn . Suy ra h trn lun c nghim (x, y).Vy f l hm hng.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    31/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 31

    Cu 69Tm gi tr ca k sao cho tn ti hm lin tc :f tho mn:

    ( )( ) 9 x f f x kx= .Gii- Trng hp: k = 0 th hm ( ) 0 f x x= tho mn yu cu bi ton.

    - Trng hp: 0k + fn iu+ f l mt n nh. Tht vy! ,x y ,

    ( ) ( ) ( )( ) ( )( ) 9 9 9 9 f x f y f f x f f y kx ky x y x y= = = = = .V f lin tc v l n nh nn fn iu thc s

    Nu f tng thc s.Khi :

    ( ) ( ) ( )( ) ( )( ) ( )( )x y f x f y f f x f f y f f x< < < tng thc s. Nu f gim thc s

    ( ) ( ) ( )( ) ( )( ) ( )( )x y f x f y f f x f f y f f x< > < gim thc s.

    Vy ( )( ) f f x l hm tng thc, v th 9 y kx= cng l hm tng thc s.Do 0k > .

    Ngc li vi k > 0, ta lun tm c hm ( ) 34 x f x k x= .

    Cu 70Tn ti hay khng hm s :f sao cho vi mi x, y thuc ta c:

    ( ) ( ){ } ( )( )max , min , f xy f x y f y x= + .GiiThay 1x y= = ta c

    ( ) ( ){ } ( ){ } ( )1 max 1 ,1 min 1 ,1 1 1 0 1 f f f f = + = + = ( V l).Vy hm f khng tn ti.Cu 71

    Tm ( ) ( )1 2 2

    0

    min 1f

    K x f x dx

    = + , y [ ]( ) ( )1

    0

    0,1 : 1 f C f x dx = =

    .

    Gii p dng bt ng thc Schwarz ta c:

    ( ) ( ) ( ) ( )221 1 1 1

    2 2 2

    220 0 0 0

    11 1 1 .

    1 41

    dx f x dx x f x dx x f x dx K

    xx

    = = + + =

    + +

    Suy ra: ( ) ( )1

    2 2

    0

    4min 1

    fK x f x dx

    = + .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    32/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 32

    Cu72 Gi s rng f v g l cc hm kh vi trn [ ]a;b ; trong

    ( ) ( )g x 0 , g x 0 . Chng minh rng tn ti ( )c a;b sao cho:

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    f a f b f c g cdet det

    g a g b f c g c

    g b g a g c

    =

    .

    Gii

    Xt hai hm s: ( )( )

    ( )( )

    ( )

    f x 1h x , k x

    g x g x= = kh vi trn [ ]a;b .

    p dng nh l Cauchy ta c:

    ( ) ( ) ( )( ) ( )

    ( )( )

    h b h a h cc a;b : k b k a k c =

    ( )

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( )( )( )

    ( )( )

    2

    2

    f c g c f c g cf b f ag cg b g a

    c a;b :1 1 g c

    g b g a g c

    =

    Cu 73 Chng minh rng: ( )f x arctan x= tho mn phng trnh:

    ( )

    ( )

    ( ) ( )

    ( )

    ( ) ( )( )

    ( )

    ( )

    n n 1 n 22

    1 x f x 2 n 1 f x n 2 n 1 f x 0

    + + + = v

    i x

    vn 2 .Gii

    ( )f x arctan x=

    ( ) ( ) ( )221

    f x 1 x f x 11 x

    = + =+

    (1)

    Ly o hm hai v ca (1) suy ra: ( ) ( ) ( )21 x f x 2xf x 0 + + = .Bng quy np ta chng minh c:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )n n 1 n 221 x f x 2 n 1 xf x n 2 n 1 f x 0 + + + =

    ( )x , n 2

    + Mnh ng trong trng hp n = 2.+ Gi s mnh ng n n k= tc l: ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k 1 k 221 x f x 2 k 1 xf x k 2 k 1 f x 0 + + + = (*)Ly o hm hm hai v ca (*) ta c

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    33/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 33

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    ( )

    ( ) ( )( )

    ( )

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    k k 1 k 12

    k k 1

    k 1 k k 12

    2xf x 1 x f x 2 k 1 f x

    2 k 1 xf x k 2 k 1 f x 0

    1 x f x 2kxf x k 1 kf x 0

    +

    +

    + + +

    + + =

    + + + =

    Cu 74 Cho f l hm kh vi n cp n trn ( )0;+ . Chng minh rng vi

    x 0> ,

    ( ) ( )( )n

    nn n 1

    n 1

    1 1 1f 1 x f

    x x x

    +

    =

    Gii+ Mnh ng trong trng hp n 1= .

    + Gi s mnh ng trong trng hp n k , tc l:( ) ( )

    ( )kkk k 1

    k 1

    1 1 1f 1 x f

    x x x

    +

    =

    + Ta s chng minh mnh trn ng vi n k 1= + .Tht vy!

    ( )( )

    ( )

    ( )

    ( )( )

    kk 1 k

    k 1 k k 1k k k 1 k 21 1 1 11 x f 1 x f 1 kx f x f x x x x

    +

    + +

    = =

    = ( )

    ( )

    ( )( )k k

    k 1 k 1k 1 k 21 11 k x f 1 x f x x

    + +

    ( ) ( )( )k

    k 1k k 2

    k 1

    k 1 1f 1 x f

    x x x

    +

    =

    .

    Li c: ( )( )

    ( )( )k k 1

    k 1 k 1k 2 k 21 11 x f 1 x f x x

    =

    Theo gi thit quy np vi trng hp n k 1= ta c:( ) ( )

    ( )k 1

    k 1k k 2

    k

    1 1 1f 1 x f

    x x x

    =

    .

    T suy ra( )( )

    ( )

    k 1k 1 k 1k

    k 2

    1 1 11 x f f

    x x x

    +

    + +

    +

    =

    .

    Vy bi ton c chng minh xong

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    34/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 34

    Cu 75 Cho f kh vi trn ( )a;b sao cho vi ( )x a;b ta c:

    ( ) ( )( )f x g f x = , trong g ( )C a;b . Chng minh f C ( )a;b .GiiTa c: ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )f x g f x f x g f x f x g f x g f x = = =

    ( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )2 2

    f x g f x g f x g f x g f x = +

    Do f , f u lin tc trn ( )a;b .

    Chng minh bng quy np ta c ( ) ( )nf n 3 u l tng cc o hm( ) ( )kg f vi k 0;n 1= . T suy ra iu phi chng minh.

    Cu 76 Cho [ ]f : ; 1;12 2

    l mt hm kh vi c o hm lin tc v

    khng m. Chng minh tn ti 0x ;2 2

    sao cho

    ( )( ) ( )( )2 2

    0 0f x f x 1+ .

    Gii

    Xt hm s:

    ( )

    g : ; ;2 2 2 2

    x arctan f x

    g l hm lin tc trn ;2 2

    . Nu ( )f x 1 th g kh vi ti mi x v

    ( )( )

    ( )( )

    f xg x

    1 f f x

    =

    .

    Nu tn ti 0x ;2 2

    sao cho

    ( )

    ( )

    0

    0

    f x 1

    f x 1

    =

    = th0x l cc tra phng

    ca hm f nn theo nh l Fermat ta suy ra c ( )0f x 0 = . V th ta c:

    ( )( ) ( )( )2 2

    0 0f x f x 1+ = .

    Nu ( )f x 1 x ;2 2

    th p dng nh l Lagrange cho hm g trn

    on ;2 2

    :

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    35/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    ( )

    ( )( )

    00 2

    0

    f xx ; : g g

    2 2 2 2 2 21 f x

    =

    .

    D thy:( )

    ( )( )

    0

    2

    0

    f x0

    1 f x

    .

    Vy ta chng minh c ( )( ) ( )( )2 2

    0 0f x f x 1+ .

    Cu 77Cho f kh vi trn [ ]a;b v tho mn:

    a) ( ) ( )f a f b 0= = b) ( ) ( ) ( ) ( )f a f a 0 , f b f b 0+ = > = > .

    Chng minh rng tn ti ( )c a;b sao cho ( )f c 0= v ( )f c 0 .GiiT gi thit suy ra f bng 0 ti t nht mt im trong khong ( )a;b .

    t ( ) ( ){ }c inf x a;b : f x 0= = , ta c ( )f c 0= .

    V ( )f a 0 > nn ( ) ( )f x 0 x a;c> . Hn na ( )f c tn ti nn

    ( )( ) ( ) ( )

    h 0 h 0

    f c h f c f c hf c lim lim 0

    h h + +

    = = .

    Cu 78

    Cho ( )f x l hm s c o hm ti im 0x 2011= v n . Chng minh

    rng: ( ) ( )n

    1 2011nlimn f f 2011 f 2011

    n+

    =

    .

    GiiV f c o hm ti im 0x 2011= nn theo nh ngha ta c:

    ( ) ( )( )0 0x 0

    f 2011 x f xlim f x

    x +

    =

    Xt ring: Nu ly1

    x

    n

    = , ta c x 0 khi n .

    Ta c:

    ( )( )

    ( )n n

    1f 2011 f 2011

    1 2011n nlimn f f 2011 lim f 20111nn

    + + = =

    .