AQE(7.782)

58
aarvee associates Gundlakamma Reservoir Project  5100  A 400 B C D 250 3500 3500 3500 1850 3190 400 400 E F G H 400 HYDRAULIC PARTICULARS OF CANAL Discharge 17.463 Cumecs Bed Width 13.5 m Full Suply Depth 1.85 m Side Slopes 1.5:1/1.5:1 Roughness 0.0225 Bed Fall 1/10000= 0.0001 Velocity 0.58 m/sec TROUGH DETAILS Size of Bay 3.5 X 2.35 C/C of Expansion Joints 9.98 m Depth of Flow 1.85 m Free Board 0.5 m  Area of Flow 24.975 m 2 Veloci ty 0.58 m/sec Loading Class A Foot Bridge 500 kg/m 2 Dimensional Details Thickn ess of Side Wall 400 mm Thickness of Internal Wall 400 mm Thickness of Bottom Slab = 400 mm Thickness of Top Slab 400 mm Haunch 450 x 150 Width of Carriage Way 5100 mm Clear Carriag eway 4250 mm Thickn ess of Parape t 200 mm Height of Parapet 762.5 mm Thickness of Kerb 425 mm Height of kerb 300 mm Wearing coat on bottom slab = 40 mm Wearing coat on carriage way = 75 mm DESIGN OF SUPERSTRUCTURE AQUEDUCT AT kM:7.782 AT GUNDLAKAMMA RESERVOIR PROJECT Design of Aqueduct Load Calculations

Transcript of AQE(7.782)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 1/58

aarvee associates Gundlakamma Reservoir Project

5100

 A 400 B C D250

3500 3500 3500

1850 3190

400 400

E F G H

400

HYDRAULIC PARTICULARS OF CANAL

Discharge 17.463 Cumecs

Bed Width 13.5 m

Full Suply Depth 1.85 m

Side Slopes 1.5:1/1.5:1

Roughness 0.0225

Bed Fall 1/10000= 0.0001

Velocity 0.58 m/sec

TROUGH DETAILS

Size of Bay 3.5 X 2.35

C/C of Expansion Joints 9.98 m

Depth of Flow 1.85 mFree Board 0.5 m

 Area of Flow 24.975 m2

Velocity 0.58 m/sec

Loading Class A

Foot Bridge 500 kg/m2

Dimensional Details

Thickness of Side Wall 400 mm

Thickness of Internal Wall 400 mm

Thickness of Bottom Slab = 400 mm

Thickness of Top Slab 400 mm

Haunch 450 x 150

Width of Carriage Way 5100 mmClear Carriageway 4250 mm

Thickness of Parapet 200 mm

Height of Parapet 762.5 mm

Thickness of Kerb 425 mm

Height of kerb 300 mm

Wearing coat on bottom slab = 40 mm

Wearing coat on carriage way = 75 mm

DESIGN OF SUPERSTRUCTURE

AQUEDUCT AT kM:7.782 AT GUNDLAKAMMA RESERVOIR PROJECT

Design of Aqueduct Load Calculations

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 2/58

aarvee associates Gundlakamma Reservoir Project

Load Calculations

(A) Member DE & EF

Selfweight 0.4x2.5 = 1.000 t/m

Water 1.85x1= 1.85 t/m

Wearing Coat 0.04x2.4= 0.096 t/m

Total = 2.946 t/m say

(B) Member AD,BE,CF 4.00 t/mSelfweight 0.4x3.19x2.5= 3.19 t/m

Water Pressure @ Top 0 t/m2

@bottom 1.85 t/m2

(C) Member BC

Selfweight 0.4x2.5= 1.000 t/m

Wearing Coat 0.075x2.4= 0.180 t/m

Total = 1.180 t/m say

1.2 t/m

(D) Member BB'& CC'

Selfweight 0.4x2.5= 1.00 t/m

Kerb 0.425x0.3x2.5= 0.31875 t/m

Total = 1.32 t/m say

1.40 t/mParapet 0.2x0.7625x2.5= 0.38125 t/m

Design of Aqueduct Load Calculations

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 3/58

aarvee associates Gundlakamma Reservoir Project

MEMBER LOAD

*RIGHT SIDE WEIGHT OF PARPET+ WEIGHT OF KERB 0.3M HEIGHT

*(0.16+0.225)*0.3*1*2.4=0.277 t/m

835 TO 841 UNI Y -0.277

*foot path

*(0.16+1.205)*0.3*1*2.5=1.02t/m

1255 TO 1261 UNI Y -13.2

0.2 0.7625 2.5

0.3 0.425 2.5

Design of Aqueduct Load Calculations

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 4/58

aarvee associates Gundlakamma Reservoir Project  

DESIGN FORCES FOR TOP SLAB

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(MTon) (MTon) (MTon) (kNm) (kNm) (kNm)

Max Fx 631 628 651 1.117 3.382 0 0 0 19.744

Min Fx 1488 780 651 -0.027 -1.301 0 0 0 2.886

Max Fy 631 628 651 1.117 3.382 0 0 0 19.744

Min Fy 640 629 651 0.949 -3.62 0 0 0 23.243Max Fz 1509 791 651 0.002 0.967 0 0 0 2.972

Min Fz 1509 791 651 0.002 0.967 0 0 0 2.972

Max Mx 1509 791 651 0.002 0.967 0 0 0 2.972

Min Mx 1509 791 651 0.002 0.967 0 0 0 2.972

Max My 1509 791 651 0.002 0.967 0 0 0 2.972

Min My 1509 791 651 0.002 0.967 0 0 0 2.972

Max Mz 640 629 651 0.949 -3.62 0 0 0 23.243

Min Mz 635 636 651 1.017 0.018 0 0 0 -11.384

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(MTon) (MTon) (MTon) (kNm) (kNm) (kNm)

Max Fx 631 628 652 1.306 3.847 0 0 0 22.697

Min Fx 1488 780 652 -0.032 -1.404 0 0 0 3.195Max Fy 631 628 652 1.306 3.847 0 0 0 22.697

Min Fy 640 629 652 1.135 -4.281 0 0 0 27.24

Max Fz 1509 791 652 0.002 1.104 0 0 0 3.589

Min Fz 1509 791 652 0.002 1.104 0 0 0 3.589

Max Mx 1509 791 652 0.002 1.104 0 0 0 3.589

Min Mx 1509 791 652 0.002 1.104 0 0 0 3.589

Max My 1509 791 652 0.002 1.104 0 0 0 3.589

Min My 1509 791 652 0.002 1.104 0 0 0 3.589

Max Mz 640 629 652 1.135 -4.281 0 0 0 27.24

Min Mz 636 636 652 1.176 -0.212 0 0 0 -13.052

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(MTon) (MTon) (MTon) (kNm) (kNm) (kNm)Max Fx 122 122 434 0.974 -0.718 0 0 0 -13.184

Min Fx 1474 773 165 -0.026 0.57 0 0 0 -0.51

Max Fy 183 180 153 0.619 5.394 0 0 0 14.571

Min Fy 190 191 441 0.735 -3.721 0 0 0 -1.816

Max Fz 1509 791 0:00 0 0.002 0 0 0 0.007

Min Fz 1509 791 0:00 0 0.002 0 0 0 0.007

Max Mx 1509 791 0:00 0 0.002 0 0 0 0.007

Min Mx 1509 791 0:00 0 0.002 0 0 0 0.007

Max My 1509 791 0:00 0 0.002 0 0 0 0.007

Min My 1509 791 0:00 0 0.002 0 0 0 0.007

Max Mz 119 116 434 0.966 3.772 0 0 0 24.313

Min Mz 124 124 146 0.695 -1.596 0 0 0 -18.217

Design of Aqueduct Design of Top Slab

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 5/58

aarvee associates Gundlakamma Reservoir Project  

Impact Factor = 1+4.5/(6+3.5)= 1.474

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH LIVE LOAD

Max Span Moment 11.384 + 26.846 = 38.230 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 23.243 + 35.830 = 59.073 kNmCorressponding Torsion 0 + 0.000 = 0.000 kNm

Max Shear Force 35.51 + 77.980 = 113.49 kN

Corressponding Torsion 0 + 0.000 = 0.00 kNm

LOAD 3 CANAL FULL WITH LIVE LOAD

Max Span Moment 13.052 + 26.846 = 39.898 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 27.24 + 35.83 = 63.070 kNm

Corressponding Torsion 0 + 0.00 = 0.000 kNm

Max Shear Force 37.739 + 77.980 = 115.719 kN

Corressponding Torsion 0 + 0.000 = 0.000 kNm

FINAL DESIGN FORCES

Max Span Moment = 39.898 kNm

Corressponding Torsion = 0.000 kNmEquivalent Span Momnet = Me=M+ T (1+D/B)/1.7 39.898 kNm

Max Support Moment = 63.070 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Support Momnet = Me=M+ T (1+D/B)/1.7 63.070 kNm

Max Shear Force = 115.719 kN

Corressponding Torsion = 0.000 kNm

Equivalent Shear Force = Ve = V+ 1.6 T/B = 115.72 kN

DESIGN CONSTANTS

Grade of Concrete = M 25

Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPaPermissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.765 MPa

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898

Q = 0.5 k j scbc = 1.1405

Design of Aqueduct Design of Top Slab

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 6/58

aarvee associates Gundlakamma Reservoir Project  

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

d = 241.270 mm

Overall Depth Required = D =

242+40+10=

292 mm

Overall Depth Provided = 400 mmdeff = 350 mm

Reinforcement at Support

Bending Moment at Support = 63.070 kNm

Bending Moment per meter = 66.389 kNm

 Ast = M/sst j d =

66.39e06/(190x0.899x350)=

 Ast = 1111.232 sq.mm/m

Spacing of 16 mm dia bars

Sv = 180.936 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

tc = 0.255 MPa (From Table 23 IS 456 -2000

Reinforcement at Mid SpanBending Moment at Support = 39.898 kNm

Bending Moment per meter = 41.998 kNm

 Ast = M/sst j d =

42E06/(190x0.899x350)=

 Ast = 702.969 sq.mm/m

Spacing of 16 mm dia bars

Sv = 286.018 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

Check for Shear 

Shear force = 115.719 kN

Shear Stress = V/Bd = 115719.3

950x350

Shear taken by Tension Reinforcement =

tc = 0.255

V = 0.255x950x350

V = 84787.5 N

Shear taken by bentup Bars =

 Asv = 545.5714 sq.mm

ssv = 190 MPa

Sin 45 = 0.707

V = 73297.68 N

Using 50% Shear contributed by bentup bars

Total Shear =

84787.5 + 36648.84121436.3 N > 115719.3 N

tv = 0.348 MPa

Design of Aqueduct Design of Top Slab

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 7/58

aarvee associates Gundlakamma Reservoir

DESIGN FORCES FOR BOTTOM SLAB(EF)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 577 577 651 -0.096 1.085 0 0 0 15.243

Min Fx 586 586 651 -0.302 -0.87 0 0 0 18.923

Max Fy 578 578 651 -0.121 2.355 0 0 0 8.083

Min Fy 585 586 651 -0.255 -2.675 0 0 0 15.836Max Fz 586 586 651 -0.302 -0.87 0 0 0 18.923

Min Fz 586 586 651 -0.302 -0.87 0 0 0 18.923

Max Mx 586 586 651 -0.302 -0.87 0 0 0 18.923

Min Mx 586 586 651 -0.302 -0.87 0 0 0 18.923

Max My 586 586 651 -0.302 -0.87 0 0 0 18.923

Min My 586 586 651 -0.302 -0.87 0 0 0 18.923

Max Mz 586 587 651 -0.302 -1.225 0 0 0 22.518

Min Mz 582 582 651 -0.182 -0.474 0 0 0 -13.888

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 583 583 652 -1.108 -2.484 0 0 0 -21.855

Min Fx 513 513 652 -1.801 3.171 0 0 0 23.895

Max Fy 578 578 652 -1.309 4.703 0 0 0 17.17Min Fy 585 586 652 -1.128 -5.132 0 0 0 28.451

Max Fz 586 586 652 -1.145 -2.758 0 0 0 33.178

Min Fz 586 586 652 -1.145 -2.758 0 0 0 33.178

Max Mx 586 586 652 -1.145 -2.758 0 0 0 33.178

Min Mx 586 586 652 -1.145 -2.758 0 0 0 33.178

Max My 586 586 652 -1.145 -2.758 0 0 0 33.178

Min My 586 586 652 -1.145 -2.758 0 0 0 33.178

Max Mz 586 587 652 -1.145 -3.21 0 0 0 43.42

Min Mz 582 582 652 -1.11 -0.874 0 0 0 -26.307

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 586 586 285 0 0 0 0 0 0

Min Fx 65 65 434 -0.547 -0.51 0 0 0 0.961

Max Fy 74 74 434 -0.517 0.42 0 0 0 1.615Min Fy 577 577 229 -0.267 -0.982 0 0 0 -1.111

Max Fz 586 586 1:L -0.018 0.001 0 0 0 0.163

Min Fz 586 586 1:L -0.018 0.001 0 0 0 0.163

Max Mx 586 586 1:L -0.018 0.001 0 0 0 0.163

Min Mx 586 586 1:L -0.018 0.001 0 0 0 0.163

Max My 586 586 1:L -0.018 0.001 0 0 0 0.163

Min My 586 586 1:L -0.018 0.001 0 0 0 0.163

Max Mz 65 66 434 -0.547 -0.51 0 0 0 2.711

Min Mz 321 321 182 -0.148 -0.777 0 0 0 -3.571

Impact Factor = 1+4.5/(6+3.5)= 1.474

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOAD

Max Span Moment 13.888 + 5.263 = 19.151 kNmCorressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 22.518 + 3.995 = 26.513 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Shear Force 26.242 + 6.072 = 32.31 kN

Corressponding Torsion 0 + 0.000 = 0.00 kNm

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 26.307 + 5.263 = 31.570 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 43.42 + 4.00 = 47.415 kNm

Corressponding Torsion 0 + 0.00 = 0.000 kNm

Max Shear Force 50.34 + 6.072 = 56.417 kN

Corressponding Torsion 0 + 0.000 = 0.000 kNm

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 8/58

aarvee associates Gundlakamma Reservoir

FINAL DESIGN FORCES

Max Span Moment = 31.570 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Span Momnet = Me=M+ T (1+D/B)/1.7 31.570 kNm

Max Support Moment = 47.415 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Support Momnet = Me=M+ T (1+D/B)/1.7 47.415 kNm

Max Shear Force = 56.417 kNCorressponding Torsion = 0.000 kNm

Equivalent Shear Force = Ve = V+ 1.6 T/B = 56.42 kNm

DESIGN CONSTANTS

Grade of Concrete = M 25

Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa

(i) Sections away from water Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898

Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)47.416e06/(1.311x950)

d = 195.182 mm

Overall Depth Required = D =

196+40+10=

246 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 47.415 kNm

Bending Moment per meter = 49.911 kNm

 Ast = M/sst j d =

49.92e06/(150x0.881x350)=

 Ast = 1079.113 sq.mm/m

Spacing of 16 mm dia barsSv = 186.322 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

tc = 0.255 (From Table 26 IS 456-2000)

Reinforcement at Mid Span

Bending Moment due to Axial Load = 23.034 x 0.15

= 3.46

Bending Moment at Mid Span = 35.025 kNm

Bending Moment per meter = 36.868 kNm

 Ast = M/sst j d =

36.87e06/(150x0.899x350)=

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 9/58

aarvee associates Gundlakamma Reservoir

 Ast = 781.663 sq.mm/m

Spacing of 16 mm dia bars

Sv = 257.223 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

Check for Shear 

Shear force = 56.417 kN

Shear Stress = V/B j d = 56416.79950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 550 mm

(Including Haunches)

Bending Moment at Support = 49.911 kNm

Axial Load = 26.517 kN

Reinforcement at top = 1148.9 sq.mm

Reinforcement at bottom face = 1149 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

550

SEC A Y A x Y Iself  

1 550000 275 1.51E+08 1.39E+10

2 17233.88 198 3412308

3 17233.88 502 8651408

A = 584467.8 A Y = 1.63E+08 1.39E+10

Yt = A Y/A = 1.63E+08

584467.8

Yb = 550 - 279.42 = 270.58 mm

I g = Iself + A Y2

= 1.39E+10 + 4.66E+10

6.05E+10 mm4

I N.A = Ig - A Yt2

6.05E+10 - 584467.8 x 78077.2

I N.A = 1.48E+10 mm

Zt = 1.48E+10

279.42

Zb = 1.48E+10

270.58

Direct Stress = 26517.463

584467.76

Bending Stress = 49910693

53121524

sct s bt 0.0454 0.9396

sct' s bt' 1.275 8.333

0.0356 + 0.1128 = 0.1483 < 1.0

1.275

= 0.9396 < 8.333

+ = +

= 54858218 mm3

= 0.0454 <

46612393640

= 279.42

= 53121524 mm3

550x1000= 41593750000

1.5x10x1148.926= 675637019.7

1.5x10x1148.926= 4343006620

tv = 0.170 Mpa < 0.255

1000

 AREA A x Y2

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 10/58

aarvee associates Gundlakamma Reservoir

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 36.868 kNm

Axial Load = 26.517 kN

Reinforcement at top = 1148.9 sq.mm

Reinforcement at bottom face = 1148.9 sq.mm

Cover to Top Reinforcement = 50 mmCover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 17233.88 50 861694

3 17233.88 350 6031858

A = 434467.8 A Yt = 86893552 5.33E+09

Yt = A Y/A = 86893552

434467.8Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.82E+10

2.35E+10 mm4

I N.A = Ig - A Yt2

2.35E+10 - 434467.8 x 40000.00

I N.A = 6.11E+09 mm

Zt = 6.11E+09

200.00

Zb = 6.11E+09

200.00

Direct Stress = 26517.463

434467.76

Bending Stress = 36868009

30544290

sct s bt 0.0610 1.2070

sct' s bt' 1.275 8.330

0.0479 + 0.1449 = 0.1928 < 1.0

+ = +

1.275

= 1.2070 < 8.330

= 30544290 mm3

= 0.0610 <

1.5x10x1148.926= 2111150263

18154234962

= 200.00

= 30544290 mm3

1000

 AREA A x Y2

400x1000= 16000000000

1.5x10x1148.926= 43084699.25

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 11/58

aarvee associates Gundlakamma Reservoir

DESIGN FORCES FOR BOTTOM SLAB(FG)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 340 340 651 0.434 -0.429 0 0 0 7.997

Min Fx 596 596 651 0.259 -1.601 0 0 0 19.567

Max Fy 588 588 651 0.354 2.135 0 0 0 9.569

Min Fy 595 596 651 0.261 -2.841 0 0 0 17.28Max Fz 596 596 651 0.259 -1.601 0 0 0 19.567

Min Fz 596 596 651 0.259 -1.601 0 0 0 19.567

Max Mx 596 596 651 0.259 -1.601 0 0 0 19.567

Min Mx 596 596 651 0.259 -1.601 0 0 0 19.567

Max My 596 596 651 0.259 -1.601 0 0 0 19.567

Min My 596 596 651 0.259 -1.601 0 0 0 19.567

Max Mz 596 597 651 0.259 -1.955 0 0 0 25.67

Min Mz 591 592 651 0.285 -0.033 0 0 0 -12.285

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 587 587 652 -0.285 2.514 0 0 0 33.65

Min Fx 331 331 652 -0.941 1.822 0 0 0 11.62

Max Fy 588 588 652 -0.304 4.517 0 0 0 21.17Min Fy 595 596 652 -0.416 -5.427 0 0 0 30.243

Max Fz 596 596 652 -0.451 -3.697 0 0 0 34.142

Min Fz 596 596 652 -0.451 -3.697 0 0 0 34.142

Max Mx 596 596 652 -0.451 -3.697 0 0 0 34.142

Min Mx 596 596 652 -0.451 -3.697 0 0 0 34.142

Max My 596 596 652 -0.451 -3.697 0 0 0 34.142

Min My 596 596 652 -0.451 -3.697 0 0 0 34.142

Max Mz 596 597 652 -0.451 -4.148 0 0 0 47.605

Min Mz 592 592 652 -0.359 -0.803 0 0 0 -24.819

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 75 75 434 0.222 -0.579 0 0 0 -2.145

Min Fx 459 459 289 0 -0.013 0 0 0 -0.118Max Fy 76 76 513 0.023 0.08 0 0 0 0.371

Min Fy 75 75 434 0.222 -0.579 0 0 0 -2.145

Max Fz 596 596 0:00 0.002 -0.005 0 0 0 0.028

Min Fz 596 596 0:00 0.002 -0.005 0 0 0 0.028

Max Mx 596 596 0:00 0.002 -0.005 0 0 0 0.028

Min Mx 596 596 0:00 0.002 -0.005 0 0 0 0.028

Max My 596 596 0:00 0.002 -0.005 0 0 0 0.028

Min My 596 596 0:00 0.002 -0.005 0 0 0 0.028

Max Mz 75 76 213 0.048 -0.067 0 0 0 0.66

Min Mz 331 331 471 0.085 -0.399 0 0 0 -2.987

Impact Factor = 1+4.5/(6+3.5)= 1.474

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOADMax Span Moment 12.285 + 4.402 = 16.687 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 25.67 + 0.973 = 26.643 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Shear Force 27.87021 + 1.157 = 29.03 kN

Corressponding Torsion 0 + 0.000 = 0.00 kNm

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 24.819 + 4.402 = 29.221 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 47.605 + 0.97 = 48.578 kNm

Corressponding Torsion 0 + 0.00 = 0.000 kNm

Max Shear Force 53.23887 + 1.157 = 54.395 kN

Corressponding Torsion 0 + 0.000 = 0.000 kNm

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 12/58

aarvee associates Gundlakamma Reservoir

FINAL DESIGN FORCES

Max Span Moment = 29.221 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Span Momnet = Me=M+ T (1+D/B)/1.7 29.221 kNm

Max Support Moment = 48.578 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Support Momnet = Me=M+ T (1+D/B)/1.7 48.578 kNmMax Shear Force = 54.395 kNm

Corressponding Torsion = 0.000 kN

Equivalent Shear Force = Ve = V+ 1.6 T/B = 54.40 kNm

DESIGN CONSTANTS

Grade of Concrete = M 25

Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898

Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTIONEffective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

48.578e06/(1.311x950)

d = 197.560 mm

Overall Depth Required = D =

198+40+10=

248 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 48.578 kNm

Bending Moment per meter = 51.134 kNm

 Ast = M/sst j d =

51.14e06/(150x0.881x350)=

 Ast = 1105.569 sq.mm/m

Spacing of 16 mm dia bars

Sv = 181.863 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

tc = 0.255

Reinforcement at Mid Span

Bending Moment at Mid Span = 29.221 kNm

Bending Moment per meter = 30.759 kNm

 Ast = M/sst j d =

30.76e06/(150x0.899x350)=

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 13/58

aarvee associates Gundlakamma Reservoir

 Ast = 652.1384 sq.mm/m

Spacing of 12 mm dia bars

Sv = 173.425 mm say 170 mm

 Ast(P) = 665.2784 sq.mm/m

pt = 0.190

Check for Shear 

Shear force = 54.395 kNShear Stress = V/B j d = 54395.42

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 550 mm

(Including Haunches)

Bending Moment at Support = 51.134 kNm

Axial Load = 6.022 kN

Reinforcement at top = 1148.9 sq.mm

Reinforcement at bottom face = 665 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

550

SEC A Y A x Y Iself  

1 550000 275 1.51E+08 1.39E+10

2 17233.88 198 3412308

3 9979.177 502 5009547

A = 577213.1 A Y = 1.6E+08 1.39E+10

Yt = A Y/A = 1.6E+08

577213.1

Yb = 550 - 276.63 = 273.37 mm

I g = Iself + A Y2

= 1.39E+10 + 4.48E+10

5.86E+10 mm4

I N.A = Ig - A Yt2

5.86E+10 - 577213.1 x 76521.7

I N.A = 1.45E+10 mm

Zt = 1.45E+10

276.63

Zb = 1.45E+10

273.37

Direct Stress = 6021.791

577213.06

Bending Stress = 51134349

52343166

sct s bt 0.0104 0.9769

sct' s bt' 1.275 7.000

0.0082 + 0.1396 = 0.1477 < 1.0

=

276.63

= 52343166 mm3

= 52965640 mm3

tv = 0.182 Mpa < 0.255

1000

44784179456

7.000

1.5x10x1148.926= 675637019.7

1.5x10x665.279= 2514792436

 AREA A x Y2

550x1000= 41593750000

=

+ = +

0.0104 < 1.275

= 0.9769 <

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 14/58

aarvee associates Gundlakamma Reservoir

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 30.759 kNm

Axial Load = 6.022 kN

Reinforcement at top = 665.3 sq.mm

Reinforcement at bottom face = 665.3 sq.mmCover to Top Reinforcement = 50 mm

Cover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 9979.177 50 498958.8

3 9979.177 350 3492712

A = 419958.4 A Yt = 83991671 5.33E+09

Yt = A Y/A = 83991671419958.4

Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.72E+10

2.26E+10 mm4

I N.A = Ig - A Yt2

2.26E+10 - 419958.4 x 40000.00

I N.A = 5.78E+09 mm

Zt = 5.78E+09

200.00

Zb = 5.78E+09

200.00

Direct Stress = 6021.791419958.35

Bending Stress = 30758837

28911981

sct s bt 0.0143 1.0639

sct' s bt' 1.275 8.330

0.0112 + 0.1277 = 0.1390 < 1.0

17247397083

= 200.00

1000

1.5x10x665.279= 24947941.66

1.5x10x665.279= 1222449141

 AREA A x Y2

400x1000= 16000000000

= 0.0143 < 1.275

= 28911981 mm3

= 28911981 mm3

+ = +

= 1.0639 < 8.330

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 15/58

aarvee associates Gundlakamma Reservoir

DESIGN FORCES FOR BOTTOM SLAB(GH)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 350 350 651 0.526 0.345 0 0 0 -8.627

Min Fx 597 597 651 0.254 2.273 0 0 0 25.733

Max Fy 598 598 651 0.254 3.139 0 0 0 16.162

Min Fy 605 606 651 0.318 -2.162 0 0 0 -1.896Max Fz 606 606 651 0.36 -0.993 0 0 0 1.319

Min Fz 606 606 651 0.36 -0.993 0 0 0 1.319

Max Mx 606 606 651 0.36 -0.993 0 0 0 1.319

Min Mx 606 606 651 0.36 -0.993 0 0 0 1.319

Max My 606 606 651 0.36 -0.993 0 0 0 1.319

Min My 606 606 651 0.36 -0.993 0 0 0 1.319

Max Mz 597 597 651 0.254 2.273 0 0 0 25.733

Min Mz 603 603 651 0.273 -0.391 0 0 0 -19.22

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 597 597 652 -0.528 4.532 0 0 0 47.579

Min Fx 542 542 652 -1.117 -2.489 0 0 0 2.819

Max Fy 598 598 652 -0.563 5.77 0 0 0 28.703Min Fy 605 606 652 -0.84 -4.616 0 0 0 6.416

Max Fz 606 606 652 -0.973 -3.403 0 0 0 11.058

Min Fz 606 606 652 -0.973 -3.403 0 0 0 11.058

Max Mx 606 606 652 -0.973 -3.403 0 0 0 11.058

Min Mx 606 606 652 -0.973 -3.403 0 0 0 11.058

Max My 606 606 652 -0.973 -3.403 0 0 0 11.058

Min My 606 606 652 -0.973 -3.403 0 0 0 11.058

Max Mz 597 597 652 -0.528 4.532 0 0 0 47.579

Min Mz 601 602 652 -0.629 1.227 0 0 0 -31.911

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 149 149 434 0.053 0.006 0 0 0 0.478

Min Fx 94 94 517 -0.001 0.008 0 0 0 0.035Max Fy 87 87 439 0.027 0.016 0 0 0 0.412

Min Fy 597 597 29 0.002 0 0 0 0 0.028

Max Fz 606 606 0:00 0 0.001 0 0 0 0.006

Min Fz 606 606 0:00 0 0.001 0 0 0 0.006

Max Mx 606 606 0:00 0 0.001 0 0 0 0.006

Min Mx 606 606 0:00 0 0.001 0 0 0 0.006

Max My 606 606 0:00 0 0.001 0 0 0 0.006

Min My 606 606 0:00 0 0.001 0 0 0 0.006

Max Mz 85 85 440 0.044 0.006 0 0 0 0.514

Min Mz 350 351 183 0.006 0.005 0 0 0 -0.016

Impact Factor = 1+4.5/(6+3.5)= 1.474

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOADMax Span Moment 19.22 + 0.024 = 19.244 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 25.733 + 0.757 = 26.490 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Shear Force 21.21 + 0.231 = 21.44 kN

Corressponding Torsion 0 + 0.000 = 0.00 kNm

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 31.911 + 0.024 = 31.935 kNm

Corressponding Torsion 0 + 0.000 = 0.000 kNm

Max Support Moment 47.579 + 0.76 = 48.336 kNm

Corressponding Torsion 0 + 0.00 = 0.000 kNm

Max Shear Force 45.28 + 0.231 = 45.514 kN

Corressponding Torsion 0 + 0.000 = 0.000 kNm

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 16/58

aarvee associates Gundlakamma Reservoir

FINAL DESIGN FORCES

Max Span Moment = 31.935 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Span Momnet = Me=M+ T (1+D/B)/1.7 31.935 kNm

Max Support Moment = 48.336 kNm

Corressponding Torsion = 0.000 kNm

Equivalent Support Momnet = Me=M+ T (1+D/B)/1.7 48.336 kNmMax Shear Force = 45.514 kN

Corressponding Torsion = 0.000 kNm

Equivalent Shear Force = Ve = V+ 1.6 T/B = 45.51 kN

DESIGN CONSTANTS

Grade of Concrete = M 25

Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898

Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTIONEffective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

48.337e06/(1.311x950)

d = 197.069 mm

Overall Depth Required = D =

198+40+10=

248 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 48.336 kNm

Bending Moment per meter = 50.880 kNm

 Ast = M/sst j d =

50.89e06/(150x0.881x350)=

 Ast = 1100.081 sq.mm/m

Spacing of 16 mm dia bars

Sv = 182.770 mm say 175 mm

 Ast(P) = 1148.925 sq.mm/m

pt = 0.328

tc = 0.255

Reinforcement at Mid Span

Bending Moment at Mid Span = 31.935 kNm

Bending Moment per meter = 33.615 kNm

 Ast = M/sst j d =

33.62e06/(150x0.899x350)=

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 17/58

aarvee associates Gundlakamma Reservoir

 Ast = 712.7011 sq.mm/m

Spacing of 16 mm dia bars

Sv = 282.113 mm say 200 mm

 Ast(P) = 1005.31 sq.mm/m

pt = 0.287

Check for Shear 

Shear force = 45.514 kNShear Stress = V/B j d = 45514.27

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 550 mm

(Including Haunches)

Bending Moment at Support = 50.880 kNm

Axial Load = 0.000 kN

Reinforcement at top = 1148.9 sq.mm

Reinforcement at bottom face = 1005 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

550

SEC A Y A x Y Iself  

1 550000 275 1.51E+08 1.39E+10

2 17233.88 198 3412308

3 15079.64 502 7569982

A = 582313.5 A Y = 1.62E+08 1.39E+10

Yt = A Y/A = 1.62E+08

582313.5

Yb = 550 - 278.60 = 271.40 mm

I g = Iself + A Y2

= 1.39E+10 + 4.61E+10

5.99E+10 mm4

I N.A = Ig - A Yt2

5.99E+10 - 582313.5 x 77617.7

I N.A = 1.47E+10 mm

Zt = 1.47E+10

278.60

Zb = 1.47E+10

271.40

Direct Stress = 0.000

582313.52

Bending Stress = 50880499

52894044

sct s bt 0.0000 0.9619

sct' s bt' 1.275 8.500

0.0000 + 0.1132 = 0.1132 < 1.0

1.275

= 0.9619 < 8.500

+ = +

= 54297100 mm3

= 0.0000 <

46069517812

= 278.60

= 52894044 mm3

550x1000= 41593750000

1.5x10x1148.926= 675637019.7

1.5x10x1005.31= 3800130792

tv = 0.137 Mpa < 0.255

1000

 AREA A x Y2

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 18/58

aarvee associates Gundlakamma Reservoir

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 33.615 kNm

Axial Load = 0.000 kN

Reinforcement at top = 1005.3 sq.mm

Reinforcement at bot tom face = 1005.3 sq.mm

Cover to Top Reinforcement = 50 mmCover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 15079.64 50 753982.2

3 15079.64 350 5277876

A = 430159.3 A Yt = 86031858 5.33E+09

Yt = A Y/A = 86031858

430159.3Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.79E+10

2.32E+10 mm4

I N.A = Ig - A Yt 2.32E+10 - 430159.3 x 40000.00

I N.A = 6.01E+09 mm

Zt = 6.01E+09

200.00

Zb = 6.01E+09

200.00

Direct Stress = 0.000

430159.29

Bending Stress = 33615346

30059587

sct s bt 0.0000 1.1183

sct' s bt' 1.275 8.330

0.0000 + 0.1342 = 0.1342 < 1.0

+ = +

1.275

= 1.1183 < 8.330

= 30059587 mm3

= 0.0000 <

1.5x10x1005.31= 1847256480

17884955592

= 200.00

= 30059587 mm3

1000

 AREA A x Y2

400x1000= 16000000000

1.5x10x1005.31= 37699111.84

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 19/58

aarvee associates Gundlakamma Reservoir Project  

DESIGN FORCES FOR LEFT EXTERNAL WALL(AE)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My

(kN) (kN) (kN) (kNm) (kNm)

Max Fx 610 616 651 5.953 -1.434 0 0 0

Min Fx 159 160 651 -0.939 -0.273 0 0 0

Max Fy 607 577 651 0.218 -0.095 0 0 0

Min Fy 610 616 651 5.953 -1.434 0 0 0

Max Fz 1362 714 651 5.582 -1.271 0 0 0

Min Fz 1362 714 651 5.582 -1.271 0 0 0

Max Mx 1362 714 651 5.582 -1.271 0 0 0

Min Mx 1362 714 651 5.582 -1.271 0 0 0

Max My 1362 714 651 5.582 -1.271 0 0 0

Min My 1362 714 651 5.582 -1.271 0 0 0

Max Mz 612 628 651 4.964 -1.159 0 0 0

Min Mz 608 608 651 3.428 -0.89 0 0 0

FULL CONDITION

Beam Node Fx Fy Fz Mx My

(kN) (kN) (kN) (kNm) (kNm)

Max Fx 610 616 652 6.447 -1.945 0 0 0

Min Fx 159 160 652 -3.246 -1.805 0 0 0

Max Fy 354 364 652 -0.734 -0.081 0 0 0

Min Fy 608 608 652 2.604 -2.785 0 0 0Max Fz 1362 714 652 6.166 -1.5 0 0 0

Min Fz 1362 714 652 6.166 -1.5 0 0 0

Max Mx 1362 714 652 6.166 -1.5 0 0 0

Min Mx 1362 714 652 6.166 -1.5 0 0 0

Max My 1362 714 652 6.166 -1.5 0 0 0

Min My 1362 714 652 6.166 -1.5 0 0 0

Max Mz 612 628 652 5.552 -1.358 0 0 0

Min Mz 607 577 652 -1.839 -1.47 0 0 0

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My

(kN) (kN) (kN) (kNm) (kNm)

Max Fx 100 112 146.00 5.584 -0.69 0 0 0

Min Fx 1362 714 285.00 0 0 0 0 0

Max Fy 1362 714 285.00 0 0 0 0 0Min Fy 98 104 434.00 3.237 -1.137 0 0 0

Max Fz 1362 714 1.00 0.151 -0.032 0 0 0

Min Fz 1362 714 1.00 0.151 -0.032 0 0 0

Max Mx 1362 714 1.00 0.151 -0.032 0 0 0

Min Mx 1362 714 1.00 0.151 -0.032 0 0 0

Max My 1362 714 1.00 0.151 -0.032 0 0 0

Min My 1362 714 1.00 0.151 -0.032 0 0 0

Max Mz 100 116 434.00 3.502 -0.955 0 0 0

Min Mz 607 577 189.00 0.372 -0.151 0 0 0

Impact Factor = 1+4.5/(6+9.98)= 1.282

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOAD

Max Span Moment 16.823 + 2.110 = 18.933

Max Support Moment 14.648 + 32.657 = 47.305

Max Shear Force 14.068 + 40.6972 = 54.765

Max Axial Load 5.953 + 7.156 = 13.11

LOAD 2 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 33.983 + 2.110 = 36.09

Max Support Moment 17.158 + 32.6565 = 49.81

Max Shear Force 27.32085 + 40.6972 = 68.02

Max Axial Load 6.45 + 7.156 = 13.60

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 20/58

aarvee associates Gundlakamma Reservoir Project  

FINAL DESIGN FORCES

Max Span Moment = 36.093 kNm

Max Support Moment = 49.815 kNm

Max Shear Force = 68.018 kNm

Max Axial Force = 13.603 kN

DESIGN CONSTANTS

Grade of Concrete = M 25

Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s c s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress = 1.275 MPa

(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898

Q = 0.5 k j scbc = 1.1405(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

36.093e06/(1.311x950)

d = 200.060 mm

Overall Depth Required = D =

201+40+10=

251 mmOverall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 49.815 kNm

Bending Moment per meter = 52.436 kNm

 Ast = M/sst j d =

52.44e06/(190x0.881x350)=

 Ast = 895.0412 sq.mm/m

Spacing of 16 mm dia bars

Sv = 224.640 mm say 200 mm

 Ast(P) = 1005.31 sq.mm/m

pt = 0.287

tc = 0.242

Reinforcement at Mid Span

Bending Moment at Support = 36.093 kNm

Bending Moment per meter = 37.992 kNm

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 21/58

aarvee associates Gundlakamma Reservoir Project  

 Ast = M/sst j d =

38e06/(190x0.899x350)=

 Ast = 635.918 sq.mm/m

Spacing of 12 mm dia bars

Sv = 177.849 mm say 175 mm

 Ast(P) = 646.270 sq.mm/m

pt = 0.185Check for Shear 

Shear force = 68.018 kN

Shear Stress = V/B j d = 68018.08

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 550 mm

(Including Haunches)

Bending Moment at Support = 52.436 kNm

Axial Load = 13.603 kN

Reinforcement at top = 1005.3 sq.mm

Reinforcement at bottom face = 1005 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

550

SEC A Y A x Y Iself  

1 550000 275 1.51E+08 1.3865E+10

2 15079.64 198 2985770

3 15079.64 502 7569982

A = 580159.3 A Y = 1.62E+08 1.3865E+10

Yt = A Y/A = 161805751.3

580159.2895Yb = 550 - 278.90 = 271.10 mm

I g = Iself + A Y2

= 13864583333 + 45985063185

59849646518 mm4

I N.A = Ig - A Yt2

59849646518 - 580159.2895 x 77784.6

I N.A = 14722210598 mm

Zt = 14722210598

278.90

Zb = 14722210598

271.10

Direct Stress = 13603.47

580159.29

Bending Stress = 52436316.45

52786920

sct s bt 0.0234

sct' s bt' 1.275

0.0184 + 0.5628 = 0.5812 < 1.0

+ = +

= 52786920

1.275

= 0.9934 < 1.765

= 0.0234 <

1.5x10x1005.31= 591182392.3

54305229 mm3=

1.5x10x1005.31= 3800130792

45985063185

= 278.90

mm3

0.242

1000

 AREA A x Y2

tv = 0.205 Mpa <

550x1000= 41593750000

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 22/58

aarvee associates Gundlakamma Reservoir Project

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 37.992 kNm

Axial Load = 13.603 kN

Reinforcement at top = 646.3 sq.mm

Reinforcement at bottom face = 646.3 sq.mm

Cover to Top Reinforcement = 50 mmCover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5333333333

2 9694.057 50 484702.9

3 9694.057 350 3392920

A = 419388.1 A Yt = 83877623 5333333333

Yt = A Y/A = 83877622.93

419388.1147

Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5333333333 + 17211757166

22545090500 mm4

I N.A = Ig - A Yt2

22545090500 - 419388.1147 x 40000.00

I N.A = 5769565913 mm

Zt = 5769565913

200.00

Zb = 5769565913

200.00

Direct Stress = 13603.5

419388.1

Bending Stress = 37992123.05

28847830

sct s bt 0.0324

sct' s bt' 1.275

0.0254 + 0.1581 = 0.1835 < 1.0

+

1.275

= 1.3170 < 8.330

= 0.0324

= 28847830 mm3

<

+ =

17211757166

= 200.00

= 28847830 mm3

400x1000= 16000000000

1.5x10x646.271= 24235143.33

1.5x10x646.271= 1187522023

1000

 AREA A x Y2

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 23/58

aarvee associates Gundlakamma Reservoir Project  

(2) DESIGN FOR BEAM ACTION

Effective Span of Wall = 9.98 m

Clear Span = 9.96 m

Section of Wall = 0.4 x 3.19

Check for Lateral Stability

(a) 60 times width of beam 60 x 0.4

24 >9.96

(b) 250 b2/d 250 x 0.16

3.19

12.539 >9.96

Loads

(A) Bending Moment due to dead loads

Selfweight of wall = 0.4x2.79x2.5= 0.276 t/m

Weight from bridge =

Weight of Slab = 0.4x2.5x5.1/2= 2.55 t/m

Weight of W.C = 0.075x2.4x3.5/2= 0.32 t/m

Weight of Kerb = 0.31875+0.38125= 0.70 t/m

Weight of Water = 1x1.85x1.75= 3.2375 t/m

Weight of Base Slab = 0.4x2.5x1.75= 1.75 t/m

Weight of finishing 0.096x1.75= 0.168 t/m

Total Load = 8.997 t/m

Bending Moment = WL2/8 =

8.997x9.98x9.98/8= 112.007 tm

Shear force = WL/2 =

8.997x9.98/2= 44.893 t

(B) Bending moment due to Live Load

W W

0.825 1.8 1.275

0.6

 A B

Taking moments about A

RBx3.9= Wx0.825+W2.625

RB =

RB = 3.45 W = 0.885 W

3.9

RA = 2W- 0.885 W = 1.115 W

S.No

1

2

3

0.590 3.2 1.2 0.69

 A B

RBx9.98= 1.506x(0.59)+6.358x(3.79+4.99)+3.793x9.29

RB= 1.506x(0.59)+6.358x(3.79+4.99)+3.793x9.29

9.212 t

R A = 18.013 - 9.212 = 8.801

Bending Moment at Centre

9.213x4.99-3.793x0.69= 43.353 t-m

Impact Factor = 1+4.5/(6+9.98)= 1.282

Bending Moment with Impact = 1.282 x 43.353

55.561

9.98

5.7 6.358

3.4 3.792

4.300

9.98

3.9

Wx0.825+Wx2.625

3.9

Wheel Load Reaction =1.115W

1.35 1.506

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 24/58

aarvee associates Gundlakamma Reservoir Project  

Bending Moment due to D.L = 112.007

Total B.M = 167.568

Shear Force = 11.279 + 44.893= 56.172

 Ast = 167.569e07/(150x0.881x3090)= 4103.68873

Provide 9 Nos # 25

 Ast = 4417.865 sq.mm

pt = 0.357

Check for Shear 

V = 56.172 t

551047.6

400x3090

tc = 0.264 MPa from Table 23 IS456-2000

Vs = V-tc bd

551047.6 -0.264x400x3090

224743.6 N

Spacing of 10 mm 2L stirrups

Sv = 2x78.54x150x3090/224743.594

323.953 mm

Provide 10 mm dia 2L stirrups at 200 mm c/c

 

Sideface Reinforcement

0.1% of Web Area

0.1 x 500 x 3190

1276 sq.mm

Provdie 17 -#10 on each face

tv = = 0.446

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 25/58

aarvee associates Gundlakamma Reservoir Project  

Mz

(kNm)

-2.264

-7.559

-15.514

-2.264

6.892

6.892

6.892

6.892

6.892

6.892

14.648

-16.823

Mz

(kNm)

-3.438

-18.789

-1.026

-31.7498.052

8.052

8.052

8.052

8.052

8.052

17.158

-33.983

Mz

(kNm)

18.26

0

011.84

0.532

0.532

0.532

0.532

0.532

0.532

25.481

-1.646

kNm

kNm

kN

kN

kNm

kNm

kN

kN

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 26/58

aarvee associates Gundlakamma Reservoir Project  

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 27/58

aarvee associates Gundlakamma Reservoir Project  

0.9934

1.765

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 28/58

aarvee associates Gundlakamma Reservoir Project  

1.3170

8.330

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 29/58

aarvee associates Gundlakamma Reservoir Project  

t

t-m

t-m

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 30/58

aarvee associates Gundlakamma Reservoir Project  

t-m

t-m

t-m

sq.mm

Design of Aqueduct Design of Vertical Wall(AE)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 31/58

aarvee associates Gundlakamma Reservoir Pro

DESIGN FORCES FOR LEFT EXTERNAL WALL(BE)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 616 617 651 6.506 1.048 0 0 0 -5.134

Min Fx 229 225 651 -0.743 0.648 0 0 0 5.453

Max Fy 616 617 651 6.506 1.048 0 0 0 -5.134

Min Fy 362 369 651 1.186 0.374 0 0 0 -5.145Max Fz 1383 725 651 6.016 0.991 0 0 0 -11.85

Min Fz 1383 725 651 6.016 0.991 0 0 0 -11.85

Max Mx 1383 725 651 6.016 0.991 0 0 0 -11.85

Min Mx 1383 725 651 6.016 0.991 0 0 0 -11.85

Max My 1383 725 651 6.016 0.991 0 0 0 -11.85

Min My 1383 725 651 6.016 0.991 0 0 0 -11.85

Max Mz 613 587 651 1.917 0.768 0 0 0 8.619

Min Mz 618 629 651 5.331 0.935 0 0 0 -17.964

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 616 617 652 7.458 1.242 0 0 0 -5.516

Min Fx 485 481 652 -4.258 0.698 0 0 0 6.615

Max Fy 616 617 652 7.458 1.242 0 0 0 -5.516Min Fy 362 369 652 -0.172 0.268 0 0 0 -2.8

Max Fz 1383 725 652 7.03 1.193 0 0 0 -13.519

Min Fz 1383 725 652 7.03 1.193 0 0 0 -13.519

Max Mx 1383 725 652 7.03 1.193 0 0 0 -13.519

Min Mx 1383 725 652 7.03 1.193 0 0 0 -13.519

Max My 1383 725 652 7.03 1.193 0 0 0 -13.519

Min My 1383 725 652 7.03 1.193 0 0 0 -13.519

Max Mz 613 587 652 -0.331 0.881 0 0 0 10.055

Min Mz 618 629 652 6.307 1.126 0 0 0 -20.902

VEHICULAR LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 106 113 434.00 3.478 0.93 0 0 0 -22.083

Min Fx 1383 725 285.00 0 0 0 0 0 0

Max Fy 104 105 434.00 3.298 1.084 0 0 0 -11.624

Min Fy 1383 725 285.00 0 0 0 0 0 0

Max Fz 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Min Fz 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Max Mx 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Min Mx 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Max My 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Min My 1383 725 1.00 0.099 0.018 0 0 0 -0.475

Max Mz 101 75 434.00 1.794 0.797 0 0 0 2.389

Min Mz 106 117 434.00 3.478 0.93 0 0 0 -24.727

Impact Factor = 1+4.5/(6+9.98)= 1.282

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOAD

Max Span Moment 17.964 + 31.690 = 49.654 kNm

Max Support Moment 8.619 + 3.062 = 11.681 kNm

Max Shear Force 10.281 + 13.6286 = 23.909 kN

Max Axial Load 63.82 + 43.727 = 107.55 kN

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 20.902 + 31.690 = 52.59 kNm

Max Support Moment 10.055 + 3.0617 = 13.12 kNm

Max Shear Force 12.184 + 13.6286 = 25.81 kN

Max Axial Load 73.16 + 43.727 = 116.89 kN

D i f A d t D i f V ti l ll(BF)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 32/58

aarvee associates Gundlakamma Reservoir Pro

FINAL DESIGN FORCES

Max Span Moment = 52.592 kNm

Max Support Moment = 13.117 kNm

Max Shear Force = 25.813 kNm

Max Axial Force = 116.890 kN

DESIGN CONSTANTS

Grade of Concrete = M 25Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa

(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

52.593e06/(1.311x950)

d = 205.562 mm

Overall Depth Required = D =

206+40+10=

256 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 13.117 kNm

Bending Moment per meter = 13.807 kNm

 Ast = M/sst j d =

13.81e06/(190x0.881x350)=

 Ast = 235.6749 sq.mm/m

Spacing of 16 mm dia bars

Sv = 853.132 mm say 200 mm

 Ast(P) = 1005.31 sq.mm/m

pt = 0.287

tc = 0.242 MPa

D i f A d t D i f V ti l ll(BF)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 33/58

aarvee associates Gundlakamma Reservoir Pr

Reinforcement at Mid Span

Bending Moment at Support = 52.592 kNm

Bending Moment per meter = 55.360 kNm

 Ast = M/sst j d =

55.37e06/(190x0.899x350)=

 Ast = 926.6272 sq.mm/m

Spacing of 16 mm dia barsSv = 216.983 mm say 200 mm

 Ast(P) = 1005.310 sq.mm/m

pt = 0.287

Check for Shear 

Shear force = 25.813 kN

Shear Stress = V/B d = 25812.63

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 550 mm

(Including Haunches)

Bending Moment at Support = 13.807 kNmAxial Load = 116.890 kN

Reinforcement at top = 1005.3 sq.mm

Reinforcement at bottom face = 1005 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

550

SEC A Y A x Y Iself  

1 550000 275 1.51E+08 1.39E+10

2 15079.64 198 2985770

3 15079.64 502 7569982A = 580159.3 A Y = 1.62E+08 1.39E+10

Yt = A Y/A = 1.62E+08

580159.3

Yb = 550 - 278.90 = 271.10 mm

I g = Iself + A Y2

= 1.39E+10 + 4.6E+10

5.98E+10 mm4

I N.A = Ig - A Yt 5.98E+10 - 580159.3 x 77784.6

I N.A = 1.47E+10 mm

Zt = 1.47E+10

278.90

Zb = 1.47E+10

271.10

Direct Stress = 116890.2

580159.3

Bending Stress = 13807102

52786920

sct s bt 0.2015 0.2616

sct' s bt' 1.275 1.765

0.1580 + 0.1482 = 0.3062 < 1.0

+ = +

= 278.90

1.275

= 0.2616 < 1.765

= 0.2015 <

550x1000= 41593750000

1.5x10x1005.31= 591182392.3

54305229 mm3

=

1.5x10x1005.31= 380013079245985063185

0.242

1000

 AREA A x Y2

tv = 0.078 Mpa <

= 52786920 mm3

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 34/58

aarvee associates Gundlakamma Reservoir Pr

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 55.360 kNm

Axial Load = 116.890 kN

Reinforcement at top = 1005.3 sq.mm

Reinforcement at bottom face = 1005.3 sq.mmCover to Top Reinforcement = 50 mm

Cover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 15079.64 50 753982.2

3 15079.64 350 5277876

A = 430159.3 A Yt = 86031858 5.33E+09

Yt = A Y/A = 86031858430159.3

Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.79E+10

2.32E+10 mm4

I N.A = Ig - A Yt 2.32E+10 - 430159.3 x 40000.00

I N.A = 6.01E+09 mm

Zt = 6.01E+09

200.00

Zb = 6.01E+09

200.00

Direct Stress = 116890.2430159.3

Bending Stress = 55360182

30059587

sct s bt 0.2717 1.8417

sct' s bt' 1.275 8.330

0.2131 + 0.2211 = 0.4342 < 1.0

+

1.275

= 1.8417 < 8.330

= 0.2717

= 30059587 mm3

<

+ =

17884955592

= 200.00

= 30059587 mm3

400x1000= 16000000000

1.5x10x1005.31= 37699111.84

1.5x10x1005.31= 1847256480

1000

 AREA A x Y2

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 35/58

aarvee associates Gundlakamma Reservoir Pro

(2) DESIGN FOR BEAM ACTION

Effective Span of Wall = 9.98 m

Clear Span = 9.96 m

Section of Wall = 0.4 x 3.19

Check for Lateral Stability

(a) 60 times width of beam 60 x 0.4

24 >12.0

(b) 250 b2/d 250 x 0.163.19

12.539 >12.0

Loads

(A) Bending Moment due to dead loads

Selfweight of wall = 0.4x3.19x2.5= 3.190 t/m

Weight from bridge =

Weight of Slab = 0.4x2.5x5.1/2= 2.55 t/m

Weight of W.C = 0.075x2.4x3.5/2= 0.32 t/m

Weight of Kerb = 0.31875+0.38125= 0.70 t/m

Weight of Water = 1x1.85x3.5= 6.475 t/m

Weight of Base Slab 0.4x2.5x3.5= 3.5 t/m

Weight of finishing 0.096x3.5= 0.336 t/m

Total Load = 17.066 t/m

Bending Moment = WL2

/8 =17.066x9.98x9.98/8= 212.473 tm

Shear force = WL/2 =

17.066x9.98/2= 85.159 t

(B) Bending moment due to Live Load

W W

0.825 1.8 1.275

0.60

 A B

taking moments about A

RBx3.9= Wx0.825+W2.625

RB =

RB = 3.45 W = 0.885 W

3.9

RA = 2W- 0.885 W = 1.115 W

S.No

1

2

3

0.590 3.2 1.2 0.69

 A B

RBx9.98= 1.506x(0.59)+6.358x(3.79+4.99)+3.793x9.29

RB= 1.506x(0.59)+6.358x(3.79+4.99)+3.793x9.29

9.212 t

R A = 18.013 - 9.212 = 8.801 t

3.9

Wx0.825+Wx2.625

3.9

Wheel Load Reaction =1.115W

9.98

4.300

9.98

1.35

5.7

3.4

1.506

6.358

3.792

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 36/58

aarvee associates Gundlakamma Reservoir Pro

Bending Moment at Centre

9.213x4.99-3.793x0.69= 43.353 t-m

Impact Factor = 1+4.5/(6+9.98)= 1.282

Bending Moment with Impact = 1.282 x 43.353

55.561 t-m

Bending Moment due to D.L = 212.473 t-m

Total B.M = 268.034 t-m

Shear Force = 11.279 + 85.16= 96.439 t-m

 Ast = 268.034e07/(150x0.881x3090)= 6564.059 sq.mm

Provide 14 Nos # 25

 Ast = 6872.234 sq.mm

pt = 0.556

Check for Shear 

V = 96.439 t

946065

400x3090

tc = 0.321 MPa from Table 23 IS456-2000

Vs = V-tc bd

946065 -0.321x400x3090

549060.3 NSpacing of 12 mm 2L stirrups

Sv = 2x113.098x150x3090/549060.273

190.947 mm

Provide 12 mm dia 2L stirrups at 175 mm c/c

 

Sideface Reinforcement

0.1% of Web Area

0.1 x 500 x 4700

1276 sq.mm

Provide 17 -#10 on each face

tv = = 0.765

D i f A d t D i f V ti l ll(BF)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 37/58

aarvee associates Gundlakamma Reservoir Pro

DESIGN FORCES FOR RIGHT EXTERNAL WALL

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 622 618 651 14.024 0.004 0 0 0 0.01

Min Fx 171 162 651 -29.385 -0.062 0 0 0 -0.013

Max Fy 363 341 651 -13.989 0.096 0 0 0 0.068

Min Fy 619 597 651 -13.603 -0.083 0 0 0 -0.043Max Fz 1404 736 651 7.657 0.007 0 0 0 0.005

Min Fz 1404 736 651 7.657 0.007 0 0 0 0.005

Max Mx 1404 736 651 7.657 0.007 0 0 0 0.005

Min Mx 1404 736 651 7.657 0.007 0 0 0 0.005

Max My 1404 736 651 7.657 0.007 0 0 0 0.005

Min My 1404 736 651 7.657 0.007 0 0 0 0.005

Max Mz 363 341 651 -13.989 0.096 0 0 0 0.068

Min Mz 555 533 651 -24.726 -0.062 0 0 0 -0.044

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 622 618 652 14.137 0.041 0 0 0 0.011

Min Fx 171 162 652 -70.463 -0.225 0 0 0 0.021

Max Fy 109 102 652 10.072 0.086 0 0 0 0.059Min Fy 555 533 652 -65.805 -0.225 0 0 0 -0.092

Max Fz 1404 736 652 8.217 -0.001 0 0 0 -0.01

Min Fz 1404 736 652 8.217 -0.001 0 0 0 -0.01

Max Mx 1404 736 652 8.217 -0.001 0 0 0 -0.01

Min Mx 1404 736 652 8.217 -0.001 0 0 0 -0.01

Max My 1404 736 652 8.217 -0.001 0 0 0 -0.01

Min My 1404 736 652 8.217 -0.001 0 0 0 -0.01

Max Mz 107 98 652 -50.494 -0.131 0 0 0 0.158

Min Mz 491 469 652 -56.188 -0.159 0 0 0 -0.126

ECCENTRIC LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 624 626 283 0 0 0 0 0 0

Min Fx 555 533 146 -0.173 -0.031 0 0 0 -0.003

Max Fy 108 98 149 -0.081 0.056 0 0 0 0.058

Min Fy 363 341 156 -0.067 -0.083 0 0 0 -0.084

Max Fz 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Min Fz 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Max Mx 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Min Mx 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Max My 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Min My 1404 736 1:L -0.001 -0.001 0 0 0 -0.001

Max Mz 107 85 147 -0.164 0.017 0 0 0 0.079

Min Mz 363 341 156 -0.067 -0.083 0 0 0 -0.084

Impact Factor = 1+4.5/(6+9.98)= 1.282

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOAD

Max Span Moment 0.044 + 0.108 = 0.152 kNm

Max Support Moment 0.068 + 0.101 = 0.169 kNm

Max Shear Force 0.942 + 0.704 = 1.646 kNm

Max Axial Load 14.024 + 0.000 = 14.024 kN

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 0.126 + 0.108 = 0.234 kNm

Max Support Moment 0.158 + 0.101 = 0.259 kNm

Max Shear Force 0.844 + 0.704 = 1.548 kNm

Max Axial Load 14.137 0.000 = 14.137 kN

D i f A d t D i f V ti l W ll(CG)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 38/58

aarvee associates Gundlakamma Reservoir Pro

FINAL DESIGN FORCES

Max Span Moment = 0.234 kNm

Max Support Moment = 0.259 kNm

Max Shear Force = 1.646 kNm

Max Axial Force = 14.137 kN

DESIGN CONSTANTS

Grade of Concrete = M 25Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa

(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

0.234e06/(1.311x950)

d = 14.432 mm

Overall Depth Required = D =

15+40+10=

65 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 0.259 kNm

Bending Moment per meter = 0.273 kNm

 Ast = M/sst j d =

0.28e06/(190x0.881x350)=

 Ast = 4.658008 sq.mm/m

Spacing of 12 mm dia bars

Sv = 24280.19 mm say 200 mm

 Ast(P) = 565.4867 sq.mm/m

pt = 0.162

D i f A d t D i f V ti l W ll(CG)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 39/58

aarvee associates Gundlakamma Reservoir Pr

Reinforcement at Mid Span

Bending Moment = 0.234 kNm

Bending Moment per meter = 0.246 kNm

 Ast = M/sst j d =

0.25e06/(190x0.899x350)=

 Ast = 4.116785 sq.mm/m

Spacing of 12 mm dia barsSv = 27472.2 mm say 200 mm

 Ast(P) = 565.4867 sq.mm/m

pt = 0.162

Check for Shear 

Shear force = 1.646 kN

Shear Stress = V/B j d = 1645.821

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 400 mm

(Including Haunches)

Bending Moment at Support = 0.273 kNmAxial Load = 14.137 kN

Reinforcement at top = 565.5 sq.mm

Reinforcement at bottom face = 565 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 8482.3 198 1679495

3 8482.3 352 2985770A = 416964.6 A Y = 84665265 5.33E+09

Yt = A Y/A = 84665265

416964.6

Yb = 400 - 203.05 = 196.95 mm

I g = Iself + A Y2

= 5.33E+09 + 1.74E+10

2.27E+10 mm4

I N.A = Ig - A Yt 2.27E+10 - 416964.6 x 41229.89

I N.A = 5.53E+09 mm

Zt = 5.53E+09

203.05

Zb = 5.53E+09

196.95

Direct Stress = 14137.00

416964.6

Bending Stress = 272891.1

27212118

sct s bt 0.0339 0.0100

sct' s bt' 1.275 8.333

0.0266 + 0.0012 = 0.0278 < 1.0

= 0.0100 < 8.333

+ = +

28055346 mm3

= 0.0339 < 1.275

1.5x10x565.487= 332540095.7

1.5x10x565.487= 105099092017383531015

= 203.05

0.200

1000

 AREA A x Y2

400x1000= 16000000000

tv = 0.005 Mpa <

= 27212118 mm3

=

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 40/58

aarvee associates Gundlakamma Reservoir Pr

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 0.246 kNm

Axial Load = 14.137 kN

Reinforcement at top = 565.5 sq.mm

Reinforcement at bottom face = 565.5 sq.mm

Cover to Top Reinforcement = 50 mmCover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 8482.3 50 424115

3 8482.3 350 2968805

A = 416964.6 A Yt = 83392920 5.33E+09

Yt = A Y/A = 83392920

416964.6Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.71E+10

2.24E+10 mm4

I N.A = Ig - A Yt2

2.24E+10 - 416964.6 x 40000.00

I N.A = 5.72E+09 mm

Zt = 5.72E+09

200.00

Zb = 5.72E+09

200.00

Direct Stress = 14137.00

416964.6

Bending Stress = 245952.2

28575184

sct s bt 0.0339 0.0086

sct' s bt' 1.275 8.330

0.0266 + 0.0010 = 0.0276 < 1.0

+ = +

1.275

= 0.0086 < 8.330

= 28575184 mm3

= 0.0339 <

1.5x10x565.487= 1039081770

17060287521

= 200.00

= 28575184 mm3

1000

 AREA A x Y2

400x1000= 16000000000

1.5x10x565.487= 21205750.41

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 41/58

aarvee associates Gundlakamma Reservoir Pro

(2) DESIGN FOR BEAM ACTION

Effective Span of Wall = 9.98 m

Clear Span = 9.96 m

Section of Wall = 0.4 x 2.79

Check for Lateral Stability

(a) 60 times width of beam 60 x 0.4

24 >12.0

(b) 250 b2/d 250 x 0.162.79

14.337 >12.0

Loads

(A) Bending Moment due to dead loads

Selfweight of wall = 0.4x2.79x2.5= 2.790 t/m

Weight of Water = 1x1.85x3.5= 6.475 t/m

Weight of Base Slab = 0.4x2.5x3.5= 3.5 t/m

Weight of finishing 0.096x3.5= 0.336 t/m

Total Load = 13.101 t/m

Bending Moment = WL2/8 =

13.101x9.98x9.98/8= 163.108 tm

Shear force = WL/2 =

13.101x9.98/2= 65.374 t

Bending Moment due to D.L = 163.108Total B.M = 163.108 t-m

Shear Force = 65.374 t

 Ast = 163.109e07/(150x0.881x2690)= 4588.434 sq.mm

Provide 9 Nos # 25

 Ast = 4417.865 sq.mm

pt = 0.411

Check for Shear 

V = 65.374 t

641318.8

400x2690

tc = 0.281 MPa from Table 23 IS456-2000

Vs = V-tc bd641318.8 -0.281x400x2690

338547.2 N

Spacing of 10 mm 2L stirrups

Sv = 2x78.54x150x2690/338547.173

187.217 mm

Provide 10 mm dia 2L stirrups at 175 mm c/c

 

Sideface Reinforcement

0.1% of Web Area

0.1 x 400 x 3000

1200 sq.mm

Provide 17 -#10 on each face

tv = = 0.596

D i f A d D i f V i l W ll(CG)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 42/58

aarvee associates Gundlakamma Reservoir Pro

DESIGN FORCES FOR RIGHT EXTERNAL WALL(DH)

EMPTY CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 628 619 651 3.327 0.368 0 0 0 3.171

Min Fx 177 163 651 -0.764 -0.356 0 0 0 -1.395

Max Fy 627 615 651 3.325 0.435 0 0 0 5.697

Min Fy 369 351 651 0.188 -0.527 0 0 0 -9.194Max Fz 1425 747 651 2.85 0.187 0 0 0 0.899

Min Fz 1425 747 651 2.85 0.187 0 0 0 0.899

Max Mx 1425 747 651 2.85 0.187 0 0 0 0.899

Min Mx 1425 747 651 2.85 0.187 0 0 0 0.899

Max My 1425 747 651 2.85 0.187 0 0 0 0.899

Min My 1425 747 651 2.85 0.187 0 0 0 0.899

Max Mz 626 611 651 2.021 0.182 0 0 0 7.687

Min Mz 369 351 651 0.188 -0.527 0 0 0 -9.194

FULL CONDITION

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 628 619 652 3.249 0.743 0 0 0 4.84

Min Fx 177 163 652 -3.021 1.12 0 0 0 8.83

Max Fy 626 611 652 0.873 2.032 0 0 0 22.363Min Fy 371 363 652 0.319 -0.346 0 0 0 -2.483

Max Fz 1425 747 652 2.837 0.252 0 0 0 1.147

Min Fz 1425 747 652 2.837 0.252 0 0 0 1.147

Max Mx 1425 747 652 2.837 0.252 0 0 0 1.147

Min Mx 1425 747 652 2.837 0.252 0 0 0 1.147

Max My 1425 747 652 2.837 0.252 0 0 0 1.147

Min My 1425 747 652 2.837 0.252 0 0 0 1.147

Max Mz 625 607 652 -2.616 0.982 0 0 0 23.639

Min Mz 370 359 652 -1.51 -0.06 0 0 0 -3.294

ECCENTRIC LIVE LOAD

Beam Node Fx Fy Fz Mx My Mz

(kN) (kN) (kN) (kNm) (kNm) (kNm)

Max Fx 177 159 441 0.011 -0.005 0 0 0 -0.006

Min Fx 116 107 213 0 -0.001 0 0 0 -0.016

Max Fy 114 99 186 0.001 0.003 0 0 0 0.003

Min Fy 369 351 183 0.005 -0.006 0 0 0 -0.016

Max Fz 1425 747 0:00 0 0 0 0 0 -0.001

Min Fz 1425 747 0:00 0 0 0 0 0 -0.001

Max Mx 1425 747 0:00 0 0 0 0 0 -0.001

Min Mx 1425 747 0:00 0 0 0 0 0 -0.001

Max My 1425 747 0:00 0 0 0 0 0 -0.001

Min My 1425 747 0:00 0 0 0 0 0 -0.001

Max Mz 370 359 471 0.008 -0.001 0 0 0 0.018

Min Mz 115 107 470 0.001 0 0 0 0 -0.023

Impact Factor = 1+4.5/(6+9.98)= 1.282

SUMMARY OF DESIGN FORCES

LOAD 1 CANAL EMPTY WITH ECCENTRIC LIVE LOAD

Max Span Moment 9.194 + 0.029 = 9.223 kNm

Max Support Moment 7.687 + 0.023 = 7.710 kNm

Max Shear Force 4.267 + 0.038 = 4.305 kN

Max Axial Load 32.63787 + 0.138 = 32.776 kN

LOAD 3 CANAL FULL WITH ECCENTRIC LIVE LOAD

Max Span Moment 3.294 + 0.029 = 3.323 kNm

Max Support Moment 23.639 + 0.023 = 23.662 kNm

Max Shear Force 19.934 + 0.370 = 20.304 kN

Max Axial Load 3.249 0.138 = 3.387 kN

D i f A d t D i f V ti l W ll(DH)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 43/58

aarvee associates Gundlakamma Reservoir Pro

FINAL DESIGN FORCES

Max Span Moment = 9.223 kNm

Max Support Moment = 23.662 kNm

Max Shear Force = 20.304 kN

Max Axial Force = 32.77617 kN

DESIGN CONSTANTS

Grade of Concrete = M 25Grade of Reinforcement = Fe 415

Permissible Bending Compressive Stress

in concrete s cbc = 8.33 MPa

Permissible Direct Compressive Stress

in concrete s cc = 5 MPa

Permissible Bending Tensile Stress

in concrete s cbt = 1.765 MPa

Permissible Stress in Shear = 1.864 MPa

Permissible Direct Tensile Stress 1.275 MPa

(i) Sections away from water 

Permissible stress in steel s st = 190 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.305

 j =1-k/3 = 0.898Q = 0.5 k j scbc = 1.1405

(ii) Sections in contact with water 

Permissible stress in steel s st = 150 MPa

Modular Ratio = m = 10

k = m scbc /(scbc+sst) = 0.357

 j =1-k/3 = 0.881

Q = 0.5 k j scbc = 1.3101

DESIGN OF SECTION

Effective Depth Required d = M/QB

B = width of Section = 950 mm(Adopted in STAAD)

9.224e06/(1.311x950)

d = 137.882 mm

Overall Depth Required = D =

138+40+10=

188 mm

Overall Depth Provided = 400 mm

deff = 350 mm

Reinforcement at Support

Bending Moment at Support = 23.662 kNm

Bending Moment per meter = 24.907 kNm

 Ast = M/sst j d =

24.91e06/(190x0.881x350)=

 Ast = 425.1478 sq.mm/m

Spacing of 12 mm dia bars

Sv = 266.02 mm say 200 mm

 Ast(P) = 565.4867 sq.mm/m

pt = 0.162

D i f A d t D i f V ti l W ll(DH)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 44/58

aarvee associates Gundlakamma Reservoir Pr

Reinforcement at Mid Span

Bending Moment = 9.223 kNm

Bending Moment per meter = 9.709 kNm

 Ast = M/sst j d =

9.71e06/(190x0.899x350)=

 Ast = 162.5094 sq.mm/m

Spacing of 12 mm dia barsSv = 695.9 mm say 200 mm

 Ast(P) = 565.4867 sq.mm/m

pt = 0.162

Check for Shear 

Shear force = 20.304 kN

Shear Stress = V/B j d = 20303.93

950x350

Hence No shear reinforcement required

CHECK FOR TENSILE STRESSES

(1) AT SUPPORT

Thickness at support 400+150= 400 mm

(Including Haunches)

Bending Moment at Support = 24.907 kNmAxial Load = 32.776 kN

Reinforcement at top = 565.49 sq.mm

Reinforcement at bottom face = 565.49 sq.mm

Cover to Top Reinforcement = 198 mm

Cover to Bottom Reinforcement 48 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 8482.3 198 1679495

3 8482.3 352 2985770A = 416964.6 A Y = 84665265 5.33E+09

Yt = A Y/A = 84665265

416964.6

Yb = 400 - 203.05 = 196.95 mm

I g = Iself + A Y2

= 5.33E+09 + 1.74E+10

2.27E+10 mm4

I N.A = Ig - A Yt 2.27E+10 - 416964.6 x 41229.89

I N.A = 5.53E+09 mm

Zt = 5.53E+09

203.05

Zb = 5.53E+09

196.95

Direct Stress = 32776.17

416964.6

Bending Stress = 24907441

27212118

sct s bt 0.0786 0.9153

sct' s bt' 1.275 8.333

0.0616 + 0.1098 = 0.1715 < 1.0

1.275

= 0.9153 < 8.333

+ = +

= 28055346 mm3

= 0.0786 <

17383531015

= 203.05

= 27212118 mm3

400x1000= 16000000000

1.5x10x565.487= 332540095.7

1.5x10x565.487= 1050990920

tv = 0.061 Mpa < 0.200

1000

 AREA A x Y2

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 45/58

aarvee associates Gundlakamma Reservoir Pr

(1) AT MID SPAN

Thickness at support 400 mm

Bending Moment at Mid Span = 9.709 kNm

Axial Load = 32.776 kN

Reinforcement at top = 565.5 sq.mm

Reinforcement at bottom face = 565.5 sq.mm

Cover to Top Reinforcement = 50 mmCover to Bottom Reinforcement 50 mm

400

SEC A Y A x Y Iself  

1 400000 200 80000000 5.33E+09

2 8482.3 50 424115

3 8482.3 350 2968805

A = 416964.6 A Yt = 83392920 5.33E+09

Yt = A Y/A = 83392920

416964.6Yb = 400 - 200.00 = 200.00 mm

I g = Iself + A Y2

= 5.33E+09 + 1.71E+10

2.24E+10 mm4

I N.A = Ig - A Yt2

2.24E+10 - 416964.6 x 40000.00

I N.A = 5.72E+09 mm

Zt = 5.72E+09

200.00

Zb = 5.72E+09

200.00

Direct Stress = 32776.17

416964.6

Bending Stress = 9708923

28575184

sct s bt 0.0786 0.3398

sct' s bt' 1.275 8.330

0.0616 + 0.0408 = 0.1024 < 1.0

1.275

= 0.3398 < 8.330

+ = +

= 28575184 mm3

= 0.0786 <

1.5x10x565.487= 1039081770

17060287521

= 200.00

= 28575184 mm3

1000

 AREA A x Y2

400x1000= 16000000000

1.5x10x565.487= 21205750.41

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 46/58

aarvee associates Gundlakamma Reservoir Pro

(2) DESIGN FOR BEAM ACTION

Effective Span of Wall = 9.98 m

Clear Span = 9.96 m

Section of Wall = 0.4 x 2.79

Check for Lateral Stability

(a) 60 times width of beam 60 x 0.4

24 >12.0

(b) 250 b2/d 250 x 0.162.79

14.337 >12.0

Loads

(A) Bending Moment due to dead loads

Selfweight of wall = 0.4x2.79x2.5= 2.790 t/m

Weight of Water = 1x1.85x1.75= 3.2375 t/m

Weight of Base Slab = 0.4x2.5x1.75= 1.75 t/m

Weight of finishing 0.096x1.75= 0.168 t/m

Total Load = 7.946 t/m

Bending Moment = WL2/8 =

7.946x9.98x9.98/8= 98.922 tm

Shear force = WL/2 =

7.946x9.98/2= 39.648 t

Bending Moment due to D.L = 98.922Total B.M = 98.922 t-m

Shear Force = 39.648 t

 Ast = 98.922e07/(150x0.881x2690)= 2782.795 sq.mm

Provide 6 Nos # 25

 Ast = 2945.243 sq.mm

pt = 0.274

Check for Shear 

V = 39.648 t

388947.3

400x2690

tc = 0.238 MPa from Table 23 IS456-2000

Vs = V-tc bd388947.3 -0.238x400x2690

133299.5 N

Spacing of 10 mm 2L stirrups

Sv = 2x78.54x150x2690/133299.542

475.483 mm

Provide 10 mm dia 2L stirrups at 200 mm c/c

 

Sideface Reinforcement

0.1% of Web Area

0.1 x 400 x 2790

1116 sq.mm

Provide 15 -#10 on each face

tv = = 0.361

D i f A d D i f V i l W ll(DH)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 47/58

aarvee associates Gundlakamma Reservoir Project  

REACTION FOR EMPTY CONDITION

Node L/C FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

1 651 0 41.193 0 0 0 0641 651 0 41.193 0 0 0 0

REACTION FOR CANAL FULL CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

1 652 6.116 55.495 0 0 0 0

641 652 6.116 55.495 0 0 0 0

REACTION FOR LIVE LOAD CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

1 146 0.89 15.772 0 0 0 0641 146 0.673 10.197 0 0 0 0

Max Reaction Due to D.L = 55.495 t

Max Reaction Due to L.L = 15.772 t

Min Reaction Due to L.L = 10.197 t

Total Max Reaction = 71.267 t 699.1293 kN

Total Min Reaction = 65.692 t 644.4385 kN

 Adpot a Bearing of Size = 400 x 200

Nmax = 730 kN > 699.1293 kN(10% Excess load permitted)

Nmin = 150 kN < 644.4385 kN

Check for Bearing Stress Actual Bearing Stress = Load/Bearing Area

Bearing Area = 1.95E+05 mm2

 Actual Bearing Stress = 699129.3

1.95E+05

 Allowable Bearing Stress

sc = A1/A2 s cc

150 A1 = 1000 x 800

 A1 = 800000 sq.mm

 A2 = 195000 sq.mm

 A1/A2 = 2.025 but > 2.0

sc = 2.0 x 6.25 = 12.5 MPa

> 3.59

1000

800

DESIGN OF BEARING(AT E)

= 3.59 MPa

Design of Aqueduct Design of Bearing(E)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 48/58

aarvee associates Gundlakamma Reservoir Project  

Check for Plan Dimensions

Thickness of Each Elasomer Layer hi = 8 mm App I IRC 83 - II

Thickness of Steel Laminates hs = 4 mm

Minimum No of internal Elastomer Layers =n= 2 Nos

Thickness of Outer layer (he) = hi/2 or 6 mm whichever is greater 

4 mm

Overall thickness of Bearing = 8x2+4x3+4x2= 36 mmOverall Dimension of Bearing = 400 x 200 x 48

(a) lo/bo = 400

200

(b)bo/5 >= h >= bo/10

(c)Shape Factor 

S = ab/2 hi(a+b)

a = 400 -2x4= 392 mm

b = 200 -2x4= 192 mm

S = 752649344

Check for Translation

gd <= 0.7

gbd = D bd/h +t md

Longitudinal Strain = 0.000500 ( Due to Creep and Shrinkage)

 

D d = (9.98-2x0.192)x0.0005/2= 0.002399 m

2.399 mm

h =Total Elastomer Thickness = 36 - 12

24 mm

 Average Shear Stress t md = H/A

H = Horizontal Load on Bearing

Braking Force 20% = 0.2 x 154.723

30.94 kN

Seismic Force 0.01 x 699.1293

6.99 kN

Resultant Horizontal Force =H = 31.725 kN

 A = 195000 sq.mm

t md = 31724.6195000

gbd = 2.399

24

0.26 <0.7 MPa

= 2.000 < 2.0

+ 0.163

40>36>20

= 8.05 >6 & <12

= 0.163

Design of Aqueduct Design of Bearing(E)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 49/58

aarvee associates Gundlakamma Reservoir Project  

Check for Rotation

ad <= b n abi max

abi max = 0.5 sm hi

b S2

s m = 10

hi = 12 mm

b= 192

n= 2b = sm a/10 = 3.59

10

abi max = 60

12456.91

b n abi max = 0.359x2x0.005= 0.0035

abd = 400 Mmax L10-3

/(EI)

M Max 2629.413 kNm

L = 9.596 m

I = 0.4x3.19^3/12= 1.082 m4

E = 5000 25 = 25000 MPa

25000000 kN/sq.m

abd = 400x2629.413x9.596x10^-3/(25000000x1.083)

3.73E-04 < 0.0035

Check for Friction

gd <= 0.2 + 0.1 sm

sm = 3.59

0.2+0.1x140= 0.559 > 0.26

Check for Total Shear Stress

tc + tg + t a <= 5

Where tc = 1.5 sm/S =1.5x3.586/8.055= 0.668 MPa

tg = gd = 0.26 MPa

ta = 0.5 (b/hi)2 abi

=0.5x(192/8)^2x0.0049 = 1.387

0.668 + 0.26 + 1.387

2.317 < 5.0MPa

= 0.359

= 0.0048

Design of Aqueduct Design of Bearing(E)

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 50/58

REACTION FOR EMPTY CONDITION

Node L/C FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

11 651 0.783 55.665 0 0 0 0651 651 0.783 55.665 0 0 0 0

REACTION FOR CANAL FULL CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

11 652 0.027 85.326 0 0 0 0

651 652 0.027 85.326 0 0 0 0

REACTION FOR LIVE LOAD CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

11 146 0.482 5.722 0 0 0 0651 146 0.317 4.580 0 0 0 0

Max Reaction Due to D.L = 85.326 t

Max Reaction Due to L.L = 5.722 t

Min Reaction Due to L.L = 4.58 t

Total Max Reaction = 91.048 t 893.181 kN

Total Min Reaction = 89.906 t 881.978 kN

 Adpot a Bearing of Size = 400 x 250

Nmax = 920 kN > 893.181 kN(10% Excess load permitted)

Nmin = 180 kN < 881.978 kN

Check for Bearing Stress Actual Bearing Stress = Load/Bearing Area

Bearing Area = 1.95E+05 mm2

 Actual Bearing Stress = 893180.9

1.95E+05

 Allowable Bearing Stress

sc = A1/A2 s cc

150 A1 = 1000 x 850

 A1 = 850000 sq.mm

 A2 = 195000 sq.mm

 A1/A2 = 2.088 but > 2.0

sc = 2.0 x 6.25 = 12.5 MPa

> 4.58

DESIGN OF BEARING(AT F)

= 4.58 MPa

1000

850

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 51/58

Check for Plan Dimensions

Thickness of Each Elasomer Layer hi = 10 mm App I IRC 83 - II

Thickness of Steel Laminates hs = 4 mm

Minimum No of internal Elastomer Layers =n= 2 Nos

Thickness of Outer layer (he) = hi/2 or 6 mm whichever is greater 

6 mm

Overall thickness of Bearing = 10x2+4x3+6x2= 44 mmOverall Dimension of Bearing = 400 x 250 x 44

(a) lo/bo = 400

250

(b)bo/5 >= h >= bo/10

(c)Shape Factor 

S = ab/2 hi(a+b)

a = 400 -2x6= 388 mm

b = 250 -2x6= 238 mm

S = 9234412520

Check for Translation

gd <= 0.7

gbd = D bd/h +t md

Longitudinal Strain = 0.000500 ( Due to Creep and Shrinkage)

 

D d = (9.98-2x0.192)x0.0005/2= 0.002399 m

2.399 mm

h =Total Elastomer Thickness = 44 - 12

32 mm

 Average Shear Stress t md = H/A

H = Horizontal Load on Bearing

Braking Force 20% = 0.2 x 56.133

11.23 kN

Seismic Force 0.01 x 893.1809

8.93 kN

Resultant Horizontal Force =H = 14.346 kN

 A = 195000 sq.mm

t md = 14346.18195000

gbd = 2.399

32

0.15 <0.7 MPa

>6 & <12

= 0.074

+ 0.074

= 1.600 < 2.0

50>44>25

= 7.38

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 52/58

Check for Rotation

ad <= b n abi max

abi max = 0.5 sm hi

b S2

s m = 10

hi = 12 mm

b= 238

n= 2b = sm a/10 = 4.58

10

abi max = 60

12947.49

b n abi max = 0.459x2x0.005= 0.0042

abd = 400 Mmax L10-3

/(EI)

M Max 2629.413 kNm

L = 9.596 m

I = 0.4x3.19^3/12= 1.082 m4

E = 5000 25 = 25000 MPa

25000000 kN/sq.m

abd = 400x2629.413x9.596x10^-3/(25000000x1.083)

3.73E-04 < 0.0042

Check for Friction

gd <= 0.2 + 0.1 sm

sm = 4.58

0.2+0.1x140= 0.658 > 0.15

Check for Total Shear Stress

tc + tg + t a <= 5

Where tc = 1.5 sm/S =1.5x4.581/7.376= 0.932 MPa

tg = gd = 0.15 MPa

ta = 0.5 (b/hi)2 abi

=0.5x(238/10)^2x0.0047 = 1.312

0.932 + 0.15 + 1.312

2.393 < 5.0MPa

= 0.0046

= 0.458

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 53/58

REACTION FOR EMPTY CONDITION

Node L/C FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

21 651 0.045 42.509 0 0 0 0661 651 0.045 42.509 0 0 0 0

REACTION FOR CANAL FULL CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

21 652 0.781 72.494 0 0 0 0

661 652 0.781 72.494 0 0 0 0

REACTION FOR LIVE LOAD CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

21 146 0.249 0.095 0 0 0 0661 146 0.249 0.095 0 0 0 0

Max Reaction Due to D.L = 72.494 t

Max Reaction Due to L.L = 0.095 t

Min Reaction Due to L.L = 0.095 t

Total Max Reaction = 72.59 t 712.0981 kN

Total Min Reaction = 72.589 t 712.0981 kN

 Adpot a Bearing of Size = 400 x 200

Nmax = 700 kN > 712.0981 kN(10% Excess load permitted)

Nmin = 150 kN < 712.0981 kN

Check for Bearing Stress Actual Bearing Stress = Load/Bearing Area

Bearing Area = 1.95E+05 mm2

 Actual Bearing Stress = 712098.1

1.95E+05

 Allowable Bearing Stress

sc = A1/A2 s cc

150 A1 = 1000 x 800

 A1 = 800000 sq.mm

 A2 = 195000 sq.mm

 A1/A2 = 2.025 but > 2.0

sc = 2.0 x 6.25 = 12.5 MPa

> 3.65

DESIGN OF BEARING(AT G)

= 3.65 MPa

1000

800

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 54/58

Check for Plan Dimensions

Thickness of Each Elasomer Layer hi = 8 mm App I IRC 83 - II

Thickness of Steel Laminates hs = 4 mm

Minimum No of internal Elastomer Layers =n= 2 Nos

Thickness of Outer layer (he) = hi/2 or 6 mm whichever is greater 

6 mm

Overall thickness of Bearing = 8x2+4x3+6x2= 40 mmOverall Dimension of Bearing = 400 x 200 x 40

(a) lo/bo = 400

200

(b)bo/5 >= h >= bo/10

(c)Shape Factor 

S = ab/2 hi(a+b)

a = 400 -2x6= 388 mm

b = 200 -2x6= 188 mm

S = 729449216

Check for Translation

gd <= 0.7

gbd = D bd/h +t md

Longitudinal Strain = 0.000500 ( Due to Creep and Shrinkage)

 

D d = (9.98-2x0.192)x0.0005/2= 0.002399 m

2.399 mm

h =Total Elastomer Thickness = 40 - 12

28 mm

 Average Shear Stress t md = H/A

H = Horizontal Load on Bearing

Braking Force 20% = 0.2 x 0.932

0.19 kN

Seismic Force 0.01 x 712.0981

7.12 kN

Resultant Horizontal Force =H = 7.123 kN

 A = 195000 sq.mm

t md = 7123.42195000

gbd = 2.399

28

0.12 <0.7 MPa

>6 & <12

= 0.037

+ 0.037

= 2.000 < 2.0

40>40>20

= 7.91

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 55/58

Check for Rotation

ad <= b n abi max

abi max = 0.5 sm hi

b S2

s m = 10

hi = 12 mm

b= 188

n= 2b = sm a/10 = 3.65

10

abi max = 60

11777.47

b n abi max = 0.366x2x0.006= 0.0037

abd = 400 Mmax L10-3

/(EI)

M Max 2629.413 kNm

L = 9.596 m

I = 0.4x3.19^3/12= 1.082 m4

E = 5000 25 = 25000 MPa

25000000 kN/sq.m

abd = 400x2629.413x9.596x10^-3/(25000000x1.083)

3.73E-04 < 0.0037

Check for Friction

gd <= 0.2 + 0.1 sm

sm = 3.65

0.2+0.1x140= 0.565 > 0.12

Check for Total Shear Stress

tc + tg + ta <= 5

Where tc = 1.5 sm/S =1.5x3.652/7.915= 0.692 MPa

tg = gd = 0.12 MPa

ta = 0.5 (b/hi)2 abi

=0.5x(188/8)^2x0.0051 = 1.407

0.692 + 0.12 + 1.407

2.221 < 5.0MPa

= 0.0051

= 0.365

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 56/58

REACTION FOR EMPTY CONDITION

Node L/C FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

31 651 2.04 34.248 0 0 0 0671 651 2.04 34.248 0 0 0 0

REACTION FOR CANAL FULL CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

31 652 4.84 48.442 0 0 0 0

371 652 4.84 48.442 0 0 0 0

REACTION FOR LIVE LOAD CONDITION

Node FX FY FZ MX MY MZ

(Mton) (Mton) (Mton) (MTon-m) (MTon-m) (MTon-m)

31 146 0 0.031 0 0 0 0371 146 0 0.031 0 0 0 0

Max Reaction Due to D.L = 48.442 t

Max Reaction Due to L.L = 0.031 t

Min Reaction Due to L.L = 0.031 t

Total Max Reaction = 48.473 t 475.5201 kN

Total Min Reaction = 48.473 t 475.5201 kN

 Adpot a Bearing of Size = 320 x 200

Nmax = 580 kN > 475.5201 kN(10% Excess load permitted)

Nmin = 120 kN < 475.5201 kN

Check for Bearing Stress Actual Bearing Stress = Load/Bearing Area

Bearing Area = 1.95E+05 mm2

 Actual Bearing Stress = 475520.1

1.95E+05

 Allowable Bearing Stress

sc = A1/A2 s cc

150 A1 = 920 x 800

 A1 = 736000 sq.mm

 A2 = 195000 sq.mm

 A1/A2 = 1.943 but > 2.0

sc = 2.0 x 6.25 = 12.5 MPa

> 2.44

DESIGN OF BEARING(AT H)

= 2.44 MPa

920

800

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 57/58

Check for Plan Dimensions

Thickness of Each Elasomer Layer hi = 8 mm App I IRC 83 - II

Thickness of Steel Laminates hs = 4 mm

Minimum No of internal Elastomer Layers =n= 2 Nos

Thickness of Outer layer (he) = hi/2 or 6 mm whichever is greater 

6 mm

Overall thickness of Bearing = 8x2+4x3+6x2= 40 mmOverall Dimension of Bearing = 320 x 200 x 40

(a) lo/bo = 320

200

(b)bo/5 >= h >= bo/10

(c)Shape Factor 

S = ab/2 hi(a+b)

a = 320 -2x6= 308 mm

b = 200 -2x6= 188 mm

S = 579047936

Check for Translation

gd <= 0.7

gbd = D bd/h +t md

Longitudinal Strain = 0.000500 ( Due to Creep and Shrinkage)

 

D d = (9.98-2x0.192)x0.0005/2= 0.002399 m

2.399 mm

h =Total Elastomer Thickness = 40 - 12

28 mm

 Average Shear Stress t md = H/A

H = Horizontal Load on Bearing

Braking Force 20% = 0.2 x 0.304

0.06 kN

Seismic Force 0.01 x 475.5201

4.76 kN

Resultant Horizontal Force =H = 4.756 kN

 A = 195000 sq.mm

t md = 4755.59195000

gbd = 2.399

28

0.11 <0.7 MPa

Check for Rotation

ad <= b n abi max

abi max = 0.5 sm hi

b S2

>6 & <12

= 0.024

+ 0.024

= 1.600 < 2.0

40>40>20

= 7.30

7/30/2019 AQE(7.782)

http://slidepdf.com/reader/full/aqe7782 58/58

s m = 10

hi = 12 mm

b= 188

n= 2

b = sm a/10 = 2.44

10

abi max = 60

10008.56b n abi max = 0.244x2x0.006= 0.0029

abd = 400 Mmax L10-3

/(EI)

M Max 2629.413 kNm

L = 9.596 m

I = 0.4x3.19^3/12= 1.082 m4

E = 5000 25 = 25000 MPa

25000000 kN/sq.m

abd = 400x2629.413x9.596x10^-3/(25000000x1.083)

3.73E-04 < 0.0029

Check for Frictiongd <= 0.2 + 0.1 sm

sm = 2.44

0.2+0.1x140= 0.444 > 0.11

Check for Total Shear Stress

tc + tg + ta <= 5

Where tc = 1.5 sm/S =1.5x2.439/7.297= 0.501 MPa

tg = gd = 0.11 MPa

ta = 0.5 (b/hi)2 abi

=0.5x(188/8)^2x0.006 = 1.655

0.501 + 0.11 + 1.655

2.267 < 5.0MPa

= 0.0060

= 0.244