An Introduction to the Mathematical Modeling of...

22
An Introduction to the Mathematical Modeling of Neurons: The Hodgkin- Huxley Equations Louis Tao 陶乐天 taolt @ mail.cbi.pku.edu.cn, letaotao @ pku.edu.cn 北京大学 生命科学学院 生物信息中心 定量生物中心 Center for Bioinformatics, College of Life Sciences Center for Quantitative Biology Peking University 交大致远学院 自然科学研究院 计算神经科学 短期班 17 December 2012

Transcript of An Introduction to the Mathematical Modeling of...

An Introduction to the Mathematical

Modeling of Neurons: The Hodgkin-

Huxley Equations

Louis Tao 陶乐天 taolt @ mail.cbi.pku.edu.cn, letaotao @ pku.edu.cn

北京大学 生命科学学院 生物信息中心 定量生物中心

Center for Bioinformatics, College of Life Sciences

Center for Quantitative Biology

Peking University

交大致远学院 自然科学研究院 计算神经科学 短期班

17 December 2012

Neuronal Networks Are Complex

~1011 neurons & 1015 connections

104 cells & 1 km wiring in 1 mm3 of cortex

Neurons 神经元

• Information processing units 信息处理加工单元

• 1010-1013 neurons in mammalian brains 哺乳动物大脑

• 104 cell bodies and roughly 1 km of ‘wiring’ per mm3

• Different shapes, sizes, functions, … 不同形状、大小、功能

• Spiking vs. Analog neurons 锋电位(动作电位) (“analog neurons,” e.g., bipolar and amacrine cells in retina,

sensory-motor neurons of invertebrates, …

视网膜里的双极细胞与无长突细胞,无脊椎动物的感觉-运动 神经元,等)

• Many other cells (e.g., glia cells 胶质细胞) in cortex: to supply

energy, to provide structural stability, …, and not directly

involved in information processing

Computational Neuroscience

• What “computations” are performed by neurons & neuronal

networks?

• How are these computations done?

• What?

– Feature detection (visual systems, olfactory system, …)

– Coincidence / timing (auditory system)

– Memory (hippocampus)

– Sensory-motor (eye saccades, …)

– Neural Code: firing rate, spike timing

• How?

– Cell level: molecular and biophysical

– Network & systems level

• What & How to Study?

– Cellular: membrane potential, ion channels, synaptic mechanisms

– Extracellular: firing rates, spike times, statistics of spike trains, …

– Systems: fMRI, optical imaging, …

A cell at ‘rest’:

• ionic currents in dynamical equilibrium: net zero current

across membrane potential

• maintenance requires huge amounts of energy, it has

been estimated that half the energy consumed by brain is

used to maintain ionic charge gradients

• Vrest ~ -30 mV to -90 mV (depends on concentration

ratios of ions, e.g. Cl- )

Action Potentials 动作电位

• Action potential (spikes): voltage pulses responding to ‘strong’

input

• All-or-None electrical events, initiated near the cell body,

propagates along axons (at roughly constant velocity and

amplitude)

• Hodgkin & Huxley (1950s) studied various ionic currents

individually (using pharmacological blocks); used squid giant

axon (1/2 mm diameter)

• Action Potential generation involves 2 major, voltage-

dependent currents: sodium and potassium; individual ionic

current obeys Ohm’s law

,

,

1 ln

ion inside

ion ion ion syn ion

ion ion outside

cRTI G V V G V

R zF c

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

Hodgkin Huxley Neuron Model

1963 Nobel Prize

Squid

Giant Axon

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

3 4 Na Na Na K K KI g m h V V I g n V V

Hodgkin Huxley Neuron Model

2

2

2 2

55 mV, 115 mS/cm

90 mV, 36 mS/cm

65 mV, 0.1 mS/cm , 1 F/cm

/ 10 msec

Na Na

K K

Leak Leak m

m m Leak

V g

V g

V g C

C g

syn syn m synI G t V V

leak leak m restI G V V

Synaptic current: induced by

action potentials of other neurons

Leak current:

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

Hodgkin Huxley Neuron Model

Voltage Clamp

Delcomyn (1997)

Device to measure the current necessary to keep the desired V

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

Hodgkin Huxley Neuron Model

+25mV Vrest

voltage step command

KK

K

Ig

V E

nndt

dn

ngg

n

KK

4

Estimate n and n

from time course

Hodgkin Huxley Neuron Model

Vrest

Estimate n(V) and n(V)

for different voltage steps

n

0

1

V

Modeling the K-current

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

Hodgkin Huxley Neuron Model

3

Na Na

m

h

g g m h

dmm m

dt

dhh h

dt

Estimate m(V), m(V), h(V), h(V)

for different voltage steps V

Modeling the Na-current

2

2

m mm Na K Leak syn inj

V VdC I I I I I

t R x

Hodgkin Huxley Neuron Model

3

Na Na

m

h

g g m h

dmm m

dt

dhh h

dt

Estimate m(V), m(V), h(V), h(V)

for different voltage steps V

m

h

V

V 0

1

0

1 Modeling the Na-current

0.1 25

exp 0.1 25 1

4exp18

m

m

VV

V

VV

0.07exp20

1.0

exp 0.1 30 1

h

h

VV

VV

0.01 10

exp 0.1 10 1

0.125exp80

n

n

VV

V

VV

Gating Variable Kinetics:

• Action Potential generation involves 2 major, voltage-dependent currents

• Functional forms guessed by Hodgkin & Huxley to fit experimental data!!!

1 1 1m m h h n n

dm dh dnV m V m V h V h V n V n

dt dt dt

m 1 - m m

m

3 4 Na Na Na K K KI g m h V V I g n V V

K-channel, activation Na-channel, activation & inactivation

mm Na K Leak inj

VC I I I I

t

3 4 Na Na Na K K KI g m h V V I g n V V

Hodgkin Huxley Neuron Model

2

2

2 2

55 mV, 115 mS/cm

90 mV, 36 mS/cm

65 mV, 0.1 mS/cm , 1 F/cm

/ 10 msec

Na Na

K K

Leak Leak m

m m Leak

V g

V g

V g C

C g

syn syn m synI G t V V

leak leak m restI G V V

Synaptic current: induced by

action potentials of other neurons

Leak current:

Action Potentials 动作电位

• Weak input, no action potential, voltage deflection linear in

applied current

• Strong input, action potential generated

• Each ‘action potential’ is characterized by a stereotypical V-

trajectory

• Absolute and relative refractory periods

• Time for HH Numerical Simulations

Reference: F.C. Hoppensteadt & C.S. Peskin, Modeling and

Simulation in Medicine and the Life Sciences, Springer-Verlag,

2002, Chap 3 Matlab files at http://www.math.nyu.edu/faculty/peskin/ModSimPrograms/ch3/

HH Model Phenomenology

Weak applied current: membrane potential deflection linear in current

Current step applied between t=10 and 11

HH Model Phenomenology

Existence of Threshold in Action Potential (AP) Generation:

Applied current has to be sufficiently strong

Current step applied between t=10 and 11

8.28

ThresI

A

HH Model Phenomenology

Absolute Refractory Period after Action Potentials:

Time during which no amount of current can lead to another AP

Current step applied between t=5 and 6

HH Model Phenomenology

Relative Refractory Period after Action Potentials:

Time during which a larger than threshold current is needed for AP

Current step applied between t=10 and 11

8.28

ThresI

A

Recall

HH Model Phenomenology

Repetitive firing in response to constant current

Constant current

Some References:

• A. L. Hodgkin and A. Huxley, J. Physiol. (1952) series of

papers

• Jane Cronin, “Mathematical Theory of the Hodgkin-Huxley

Equations”

• Christof Koch, “Biophysics of Computation”

• Peter Dayan and Lawrence Abbott, “Theoretical

Neuroscience: Computational and Mathematical Modeling of

Neural Systems”