3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... ·...

72
에너지변환특론 Advanced Energy Conversion Chapter 3. Otto cycle and Diesel cycle 교수 박수한 Fall semester, 2014

Transcript of 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... ·...

Page 1: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

에너지변환특론Advanced Energy Conversion

Chapter 3. Otto cycle and Diesel cycle

교수 박 수 한

Fall semester, 2014

Page 2: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

참고.

- http://www.youtube.com/playlist?list=PLX2gX-ftPVXXMDW2aoPCk7nM-58n7nW5M

2

Page 3: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

3

Operation of IC Engines

How to make the analysis of the engine cycle much more manageable?

Simplify!

- Actual Cycles:• Mechanical cycle• Thermodynamics point of view, non-cyclic, open

cycle, quasi steady-flow• Variable composition (combustion) with gas

mixtures (Fuel, CO2, H2O, O2, N2)

Page 4: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

4

Simplify to the Air Standard Cycle

Mechanical Cycle Thermodynamic Cycle

Fuel, Air CO2, N2, H2O

Air

Qin Qout

Page 5: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

5

Air Standard Cycle

- Air-Standard Cycle:• Simplified and more manageable

• Determines important design parameters

• Reasonable accuracy, particularly w.r.t. sensitivity to design parameters

• Error involves

Page 6: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

6

Air Standard Assumptions

- Working fluid is Air

- Mass of air (gas phase) is constant (actually variation up to 7%)

- Closed cycle

• Recalculated Air

• Heat Exchangers for heat rejection and addition

- No Internal Combustion

Page 7: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

7

Air Standard Assumptions

- Ideal Processes• Constant pressure exhaust at 1 atms.• N/A cycles have constant pressure intake at 1 atms• Turbo/Supercharged cycles have constant pressure >

1 atms.- Compression and Expansion are Isentropic with

constant specific heats- Heating is at constant volume (SI), constant pressure

(CI), or both (high speed CI)- Cooling Heat Rejection at constant volume- All processes are reversible

Page 8: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

8

Thermodynamics - review

- Ideal Gas:

- The First Law of Thermodynamics

- The Second Law of Thermodynamics

dTcdudTcdhRTPmRTPVRTPv

vp

,,,

wduq

Tqds

Page 9: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

9

Thermodynamics – Work and Heat

- For a closed system:

v

P

w

1

2

s

T

q

1

2

2

1Pdvw

2

1Tdsq

Page 10: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

10

Thermodynamics - symbols

sound of speed workspcific

/

heats speific,energy internal specific

enthapy specificdensity

cylinderin gas of massetemperatur

air ofconstant gasgas of volumespecific

cylinderin volumecylinderin presure gas

cw

cck

ccuh

mTRvVP

vp

vp

efficiency combustionpower

cycle onefor work ration compressio

fuel of valueheatingratefer heat trans

cycle onefor fer heat transmassunit per ratefer heat trans

cycle onefor massunit per fer heat transrate flow mass

ratio fuelairAF

c

c

HV

W

Wr

QQ

Qqqm

gases all of mixtureexhaust ex fuel,air,

:

mfa

Subscripts

Page 11: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

11

Polytropic Process

constnPv

1

2

1

1

1

2

1

2

2

1

1

2

nnn

n

vv

PP

TT

vv

PP

RTPv from

polytropic1const)( isochoricconst)( isentropic const)(T isothermal 1const)( isobaric 0

knvnskn

nPn

Page 12: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

12

Polytropic Process

v

P(isobaric) 0n

l)(isotherma 1n

)(isochoric n

c)(isentropi kn

s

T

n

0n

kn

1n

Page 13: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

13

Thermodynamics - review

- Isentropic process:

- Speed of sound

system closedfor )1(

)()1(

)(constant

constant constant

12112221

)1(

1

kTTR

kvPvP

w

TP

TvPv

kk

k

k

kRTc

Page 14: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

14

Thermodynamic Properties - Air

- Engine operating conditions:

- Standard conditions:

K-kJ/kg 287.035.1/

R-BTU/lbm 196.0K-kJ/kg 821.0R-BTU/lbm 265.0K-kJ/kg 108.1

vp

vp

v

p

ccRcck

cc

K-kJ/kg 287.0

4.1/R-BTU/lbm 172.0K-kJ/kg 718.0

R-BTU/lbm 240.0K-kJ/kg 005.1

vp

vp

v

p

ccR

cckc

c

Page 15: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

15

Otto Cycle

Real

Otto

스파크 점화 기관의 공기표준 사이클 정적 사이클 (constant volume cycle), 일정체적 하에서 연소 1876년 Nikolaus August Otto, 독일

Page 16: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

참고. 상사점 (Top Dead Center, TDC):

피스톤이 크랭크축으로부터 가장 먼 위치(TDC 이전 –BTDC, TDC 이후-ATDC)

하사점 (Bottom Dead Center, BDC):피스톤이 크랭크축으로부터 가장 가까운 위치(BDC 이전 –BTDC, BDC 이후-ATDC)

보어 (Bore): 실린더의 직경 또는 피스톤면의 직경

행정 (Stroke): 피스톤이 상사점에서 하사점 또는하사점에서 상사점으로 움직인 거리

간극체적 (Clearance Volume):피스톤이 상사점에 있을 때 연소실의 최소체적

배기량 (Displacement), 행정체적(Displacement Volume): 피스톤이 상사점과 하사점을 움직이면서 배제하는 체적

TDC

BDC

l

B

L

s

a

Vc

Vd

Vc : clearance volume

Vd : displaced or swept volume

B : cylinder bore

L : piston stroke

l : connecting rod length

a : crank radius

: crank angle

Page 17: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

참고.

압축비 (compression ratio, rc)

C

CdC V

VVr

volumecylinderminimumvolumecylinderMaximum

SI engine : rc = 8 ~ 12 CI engine : rc = 12 ~ 24

보어 행정비 (bore to stroke ratio, Rbs)

LBR bs

Small & medium size engine = 0.8 ~ 1.2 Large slow speed CI engine = ~ 0.5 B L : under square engine, 저속 대형엔진 B = L : square engine, 소형·중형 승용엔진 B L : over square engine, 소형엔진

TDC

BDC

l

B

L

s

a

Vc

Vd

Page 18: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

Otto Cycle 냉각손실 : 압축 후반, 연소 중, 팽창과정에서 연소실 내의작동유체와 연소실 벽면 등의 온도차로 인해 발생하는열손실

시간손실 : 이론 사이클에서는 상사점에서 순간적으로 연소가 일어나지만, 실제로는 그렇지 못하다. 연소에 필요한 시간은 대략크랭크 각도로 40~60CA가 필요하다. 이처럼 정적연소가아니라서 생기는 열손실을 말한다.

펌프손실 : 공기가 흡입되는 과정에서 이동통로의 조도, 공기청정기,인젝터, 스로틀밸브 등을 거치면서 손실되는 양.스로틀밸브에 의한 손실량이 가장 크다.

배기손실 : 배출가스를 통한 열손실

Page 19: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

19

Air Standard Otto Cycle

1-2: Isentropic Compression2-3: Constant Volume Heat Addition3-4: Isentropic Expansion4-5: Constant Volume Heat Rejection5-6: Exhaust at 1 atm6-1: Intake at 1 atm

Page 20: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

20

Otto Cycle: P-v & T-s Diagrams

Page 21: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

21

Otto Cycle Thermodynamic Analysis at WOT

(6-1: Constant-pressure intake)

1-2: Isentropic compression

2-3: Constant volume heat addition

3-4: Isentropic expansion

4-5: Constant volume heat rejection

(5-6: Constant-pressure exhaust)

Page 22: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

22

Isentropic Compression (1-2) Process

)()(

1

0

)(

)(

const.

21

21

11222

121

21

12

112

11

1

2

112

TTcuu

kvPvP

Pdvw

q

rPvv

PP

rTvvTT

Pv

v

kc

k

kc

k

k

Page 23: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

23

Constant Volume Heat Addition (2-3) Process

)()(

0

2332

232332

32

23

TTcmQQTTcuuqq

wvv

vmin

vin

Page 24: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

24

Isentropic Expansion (3-4) Process

)()(

1

0

1

1

const.

43

43

33444

343

43

34

334

1

3

1

4

334

TTcuu

kvPvP

Pdvw

qr

Pvv

PP

rT

vv

TT

Pv

v

k

c

k

k

c

k

k

Page 25: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

25

Constant Volume Heat Rejection (4-1) Process

)()(

0

4154

4141

4554

1454

145

TTcmQQTTcuu

uuqqww

vvv

vmout

v

out

Page 26: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

26

Thermodynamic Properties

crvv

vv

vvvv

3

4

2

1

3214 and

2

3

1

4

TT

TT

1-2 & 3-4 processes are isentropic

Page 27: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

27

Indicated Thermal Efficiency of Otto Cycle

1

2

1

23

14

2

1

23

14

23

14

in

out

in

netOTTO

/11

11)/(1)/(1

)()(

1)()(

1

1

kc

v

v

t

r

TT

TTTT

TT

TTTT

TTcTTcqq

qw

• k = 1.3 ~ 1.4 and rc > 1 Thermal efficiency increases with compression ratio

• Higher compression ratio Higher Efficiency and Higher Power

Page 28: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

28

Example Problem 3-1

- Given• 4-Cylinder, 2.5L, SI engine, WOT, 4-Stroke• Air standard Otto cycle, 3000 RPM• Compression ratio = 8.6:1, mech. eff. = 86 %• S/B = 1.025, AF = 15• iso-octane: HV = 44,300 kJ/kg, comb. eff. = 100 %• Initial conditions: P1 = 100 kPa, T1 = 60°C• Exhaust residual: 4%

- Calculate parameters for one cylinder- Do a complete thermodynamic analysis

Page 29: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

29

Example Problem 3-1

Page 30: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

30

Real Air-Fuel Engine Cycles

1. Real engines operate on an open cycle• Changing gas composition via combustion• Changing mass for CI cycle via fuel addition

2. Properties differ from air• Fuel & combustion products• Specific heat varies by up to 30 % (300 K to 3000 K)

3. Heat losses during the cycle (up to 12 %)

Page 31: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

31

Real Air-Fuel Engine Cycles

4. Combustion requires finite time (~ 6 %)• 30 to 60 degrees of crank rotation• More compression work, Less expansion work

Finite time combustion losses

Page 32: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

32

Real Air-Fuel Engine Cycles

5. Blowdown process requires a finite time (~2 %)• Exhaust valve opens bBDC• Work loss at the end of power stroke

Early Exhaust Valve Opening Loss

Page 33: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

33

Real Air-Fuel Engine Cycles

6. Intake valve closes aBDC• Improves volumetric efficiency• Momentum of entering air continues flow through

intake valve after piston starts up• Reduces effective compression ratio• Reduces T and P due to compression

7. Finite valve opening and closing times• To assure the fully opened valves at TDC• Valve overlap at TDC

8. Error in LHV (less LHV at higher temperatures)

Page 34: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

34

Real Air-Fuel Cycle vs. Ideal Cycle

- Errors due to the differences between real air-fuel cycles and ideal air standard cycles

- Some errors tend to cancel, e.g., specific heats- The efficiency of real cycle efficiency is less than

that of air standard cycle

OTTOactual 85.0 tt

Page 35: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

35

SI Engine Cycle at Part Throttle

Negative pump work

– P1 is lower than Po

?

Page 36: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

36

SI Engine Cycle with T/C or S/C

Positive pump work

– P1 is higher than Po

?

Page 37: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

37

Part Throttle, T/C or S/C

– Part throttled: Negative– T/C or S/C: Positive

dexipump VPPW )(net

Page 38: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

38

Exhaust Process

Exhaust stroke

Blowdown

EVO

Page 39: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

39

Real Exhaust Blowdown P-v

KEhh so

Page 40: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

40

Real Exhaust Blowdown T-s

KEhh so

Page 41: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

41

Real Exhaust Blowdown Equations

oex

kk

okk

ex

PPP

PP

TPP

TT

7

)1(

44

)1(

447

where,

-Approximated by Isentropic Process

Page 42: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

42

Exhaust Residual

- Residual exhaust gas in clearance volume, Vc, at TDC starting intake stroke

m

exr mm

x

Mass of exhaust gas carried into the next cycle

Mass of gas mixture within the cylinder for the entire cycle

Page 43: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

43

Calculating Exhaust Residual

oex

k

oex

k

PP

PP

vv

PP

PP

PP

vv

PP

33

3

7

7

3

44

4

7

7

4

7

2

7

6

7

1

7

557

vV

vV

m

vV

vV

vV

m

ex

ex

Page 44: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

44

Calculating Exhaust Residual

4

4

7

2

7

7

7

2

1

/

PP

TT

rx

VV

vV

vV

mm

x

ex

excr

m

exr

7

2

7

6

7

7

2

2

1

1

andvV

vV

m

vV

vV

vV

m

ex

m

Page 45: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

45

Calculating Exhaust Residual

arexrm TxTxT )1()( 1

mmaaexex hmhmhm

aex TTT 7 where,

Page 46: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

46

Exhaust Residuals in Real Engines

- Exhaust residual amount• SI engine at WOT: 3~7 %• SI engine at part throttle: up to 20 %• CI engine: Generally less than for SI engine

- The effect of exhaust residual• Less heat addition • Dilution Max. temperature decreases• Volumetric efficiency decreases

Page 47: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

47

Diesel Cycle

Real

Diesel

Page 48: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

48

Air Standard Diesel Cycle

1-2: Isentropic Compression2-3: Constant Pressure Heat Addition3-4: Isentropic Expansion4-5: Constant Volume Heat Rejection5-6: Exhaust at 1 atm6-1: Intake at 1 atm

Page 49: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

49

Diesel Cycle: P-v & T-s Diagrams

Page 50: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

50

Diesel Cycle Thermodynamic Analysis

(6-1: Constant-pressure intake)

1-2: Isentropic compression

2-3: Constant pressure heat addition

3-4: Isentropic expansion

4-5: Constant volume heat rejection

(5-6: Constant-pressure exhaust)

Page 51: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

51

Isentropic Compression (1-2) Process

)()(

1

0

)(

)(

const.

21

21

11222

121

21

12

112

11

1

2

112

TTcuu

kvPvP

Pdvw

q

rPvv

PP

rTvvTT

Pv

v

kc

k

kc

k

k

Page 52: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

52

Constant Pressure Heat Addition (2-3) Process

)()(

)(

)(1)AF(

)(

232233232

232332

23

2332

vvPuuqw

hhTTcqq

TTcQ

TTcmQmQQ

pin

pcHV

pmcHVfin

– Cutoff ratio (Load ratio)

2

3

2

3

2

3

TT

vv

VV

• Heat addition period

cr 1

Page 53: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

53

Cut-off Ratio for Indicated Thermal Efficiency

Page 54: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

54

Isentropic Expansion (3-4) Process

)()(

1

0

1

1

const.

43

43

33444

343

43

34

334

1

3

1

4

334

TTcuu

kvPvPPdvw

qr

Pvv

PP

rT

vv

TT

Pv

v

k

c

k

k

c

k

k

2

1

3

4:Notevv

vv

Page 55: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

55

Constant Volume Heat Rejection (4-1) Process

)()(

0

4154

4141

4554

1454

145

TTcmQQTTcuu

uuqqww

vvv

vmout

v

out

Page 56: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

56

)1()1(11

)()(11

1

DIESEL

23

14

in

out

in

netDIESEL

kr

TTcTTc

qq

qw

kk

ct

p

vt

Indicated Thermal Efficiency of Diesel Cycle

• β 1, then (βk -1) 0

• β rc, then state 3 state 4

OTTODIESEL tt

luelowest va the todecreases DIESELt

Page 57: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

57

Cut-off Ratios and Thermal Efficiencies

Page 58: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

58

Dual Cycle

Real

Dual

Pre-mixed CombustionNon-premixed Combustion

Page 59: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

59

Air Standard Dual Cycle

1-2: Isentropic Compression2-x: Constant Volume Heat Additionx-3: Constant Pressure Heat Addition3-4: Isentropic Expansion4-5: Constant Volume Heat Rejection5-6: Exhaust at 1 atm6-1: Intake at 1 atm

Page 60: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

60

Dual Cycle: P-v & T-s Diagrams

Page 61: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

61

Dual Cycle Thermodynamic Analysis

(6-1: Constant-pressure intake)

1-2: Isentropic compression

2-x: Constant volume heat addition

x-3: Constant pressure heat addition

3-4: Isentropic expansion

4-5: Constant volume heat rejection

(5-6: Constant-pressure exhaust)

Page 62: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

62

Constant Volume Heat Addition (2-x) Process

222

23232

2

2

)(

)()()(0

uuTTcq

TTcmmTTcmQw

vvv

xxvx

vfavmx

x

TDCx

– Pressure ratio

1

3

22

3

2

1PP

rTT

PP

PP

k

c

xx

Page 63: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

63

Constant Pressure Heat Addition (x-3) Process

)()(

)(

)(1)AF(

)(

232233232

232332

23

2332

vvPuuqw

hhTTcqq

TTcQ

TTcmQmQQ

pin

pcHV

pmcHVfin

– Cutoff ratio (Load ratio)

xx TT

VV

vv

vv 3

2

3

2

33

cr 1Note:

Page 64: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

64

Indicated Thermal Efficiency of Dual Cycle

1)1()1(11

)()()(11

1

DUAL

32

14

in

out

in

netDUAL

kr

TTcTTcTTc

qq

qw

kk

ct

xpxv

vt

− Heat in)()( 3232 xxxxin hhuuqqq

− Thermal efficiency

Page 65: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

65

Comparison of Otto, Diesel, and Dual Cycles

α 1:dual cycle Diesel cycle

β 1: dual cycle Otto cycle

1)1()1(11

1

DUAL

kr

kk

ct

Page 66: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

66

Comparison of Cycles – Fixed rc

DIESELDUALOTTO ttt

Page 67: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

67

Comparison of Cycles – Fixed Pmax

OTTODUALDIESEL ttt

Page 68: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

68

Atkinson Cycle

Page 69: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

69

Miller Cycle

N/A T/C

IVC

Page 70: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

70

Comparison of Miller Cycle and Otto Cycle

Page 71: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

71

New Design and New Product

- What is all about the design in mechanical engineering?• Optimization with constraints including

performance, cost, endurance, operation etc.

- How can the new technology/product be accepted by customers?• No sacrifice on old functions• Additional functions, convenience, price

cuts etc.

Page 72: 3. Chapter 3. Otto and Diesel cyclescontents.kocw.net/KOCW/document/2015/chungnam/parksuhan/... · 2016-09-09 · CNU Engine Research Lab. 3 Operation of IC Engines How to make the

CNU Engine Research Lab.

72

New Design and New Product

- How can it be achieved?• Advances in many fields such as

manufacturing, new technology, electronics, control, materials etc.

- New constraints• Environmental• Economy• Life style . . .