1;旦 J。こ5 ノ八 ʼ.n。F; 4jむ I丿:j TI゛・ ジド 言-ノ背- 牡 “ I W “ ″...

36
J。こ5 ’.n。F; 4jむ I丿:j TI゛・ ジド - - Y臨]/ijniversity-!S;hi zuoka砿1 Å `・・.こ; - - StudentsWor] 十▽jjムj Pro shop2011 ;■に。・ gs - - き、 ●゛ヤ 1’- - y4 !ゝ むぶ ……こヽj醜 祠, -

Transcript of 1;旦 J。こ5 ノ八 ʼ.n。F; 4jむ I丿:j TI゛・ ジド 言-ノ背- 牡 “ I W “ ″...

  • J。こ5

    ノ 八’ . n 。 F ;

    4 j む

    I丿:j

    TI゛・ジド言

    -

    - ■

    ノ背牡

    “IW“″`rr

    1;

    Y臨]/ijniversity-!S;hi’zuoka砿1

      二ヅ

    ー’どIÅ

    ・`・.こ;

    y y

    や..6″..

    」 

    ‘.・

    J?

    い一鞍杜氏0 白wmE

    しノー・’--’

    StudentsWor]

    十▽jjムj

    Pro

    shop2011。;■に。・?

    gs

    kl

    ″̶りr6-

    ?”

    //

    d。-

    jl

    4J

    き、

    ●゙ ヤ

    ||

    1 ’ -

    -

    y 4j

    !ゝ

    むぶ

    ……こヽj醜

    ●1苛

    匂゛lt’

    jl

    祠,

    へj -

  • Yonseiunivl、lrsity-Shizuokaunl、yersity

    Studellts’VVorkshop2011

    PI’oceedings

    D{3cemberyjl2011

    Yonseiuniv{:う:17sity,Seou1,Korea

  • Program

  • Y`onseiun沁ersity-Shizuokaun沁ersityStudentsWorksh()p2011

    1)ecembel‘5,2011(Monday)atYonseiU111versity,lくorea

    11

    21

    19

    17

    13

    SurfacePlasmonResonanceinDeep-UVRegion

    Sung‘YongLim,lllyunseokYang,Kyoung-SuPark,No-CheoIPark,and

    Young-PilPark(Yonseiuniveristy)

    11:25-11:400-06

    Storage

    KoheiTakamatsu,W.lnami,andY.Kawata(Shizuokauniversity)

    CoffeBreak

    O-05

    TrackingServoミMethodusingPre-patternsforHOlographicData

    ObservationofWide-GapSemiconductors

    Program

    09:(X)-09:30

    ()9:30-09:45

    09:45-10:10

    Registration

    openingRemark

    O-01(lnヽ 4ted)

    AutoconfocaITransmissionlVlicroscopyBasedonNonlinear

    Detection

    ChulminJoo,ChunZhan,QingLi,andlヨ;iavashYazdanfar

    (Yonseiuniversity)

    10:10-10:250-02

    CharacteristicAnalysisofCFRPCuttingwithNanosecondPulsed

    Laser

    Kdsukeushida,W.lnami,Y.Shimamura,Y.Kawata

    (Shizuokauniversity)

    10:25-10:400-03

    DynamicCharllderisticsPI’edictionofthePerforatedCylindrical

    ShelHnSMARTUsingSI1111arityAnalysis ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 5

    Young-lnChoiβeunghoLim,Young-PilPark,No-CheolPark,

    Kyoung-SuPark(Yonseiun沁el゙ sity)

    10:40-10:550-04

    Two-PhotonExcitationwithvisibleFemto鎖慨ondLaserfor

    10:55-11:10

    11:10-11:25

  • MasahzuKikawada,A.0no,W.lnami,R』4kimoto,andY.Kawata

    (Shizuokaun沁el’sity)

    11:40-11:550-07

    TribologicaIPropertiesofZnONanowires

    HaeJinKim,KyeongHeeKang,andDaeJE皿Kim(Yonseiuniversity)

    11:55-12:100-08

    CeIIPIlcessingwithElectronBeam

    23

    ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 2 5

    KenWatanabe,W.lnami,andY.Kawata(Shizuokauniversity)

    1:2:10-13:30Lunch

    1:3:30-13:450-09

    PrecisionlVlachiningofGC鬘old

    lVollkyunLee,Kyung-ln,lang,andByung-KwonMin

    (Yonseiunivel`sity)

    13:45-14:000-10

    OpticallyCOI!trollableElectrophoresiswithaPhotoconductive

    Substrate

    27

    29

    TaikiNagashima,T.lwahashi,W.lnami,A.Miya㎞wa,andY.Kawata

    (Shizuokauniverity)

    lzl・:00-14:150-11

    FabricationofAntirenectionSurfaceviaNanosphereLithography゙ 3̈1

    HaesungPark,KyoungsikKim(Yonseiuniveristy)

    1∠1・:15-14:300-12

    AnalysisofLightandElectronScatteringinaThinFnmforEXA

    OpticaIMkroscope

    MasahiroFukuta,W.lnami,A.0no,andY.Kawata

    (Shizuokaunivel°sity)

    1,・1・:30-14:450-13

    lmageRe虻orationMethodforHighResolutionlmageinDigital

    HOlographicMicroscope

    Do-HyungKim,SungbinJeon,San11’HyukLee,Kyoung’SuPark・

    No4:;heoH)ark,HyunseokYangandYoung-PilPark(Yonseiun沁ersity)

    33

    35

  • :1∠1・:45-15:000-14

    Cllthodelum㎞escencelmagingofMetamcNanostrllctures……………37

    1RyujiNoda,S.Fukada,Y.l` rawa,A.0no,W.lnami,D.G.:Xliang,

    IE;.Saito,andY.Kawata(Shizuokaun沁ersity)

    15:00-15:15ClosingRemark

  • Proceedings

  • 001~叩p卜叫ncl)JasuoQqUI)g・dop-lun!qJa叫ltuo町μ押!ltunS;g‘I~V‘gd心oloJdWこ)VJo3叩uJ叫)susp!daplaJn匙I

    PuB9JU

    lu!sn3oJ

    fUO-p(1

    刈puu

    叩゙uduo!131aP

    s9Λ!p9叫oado3soJ3!砥

    fUOべ)oごI・(ld-!S明|

    r)9pgpppu13oluopsnQOJsl?Mgldtuus叫l

    qinoJ叩pgu!tusul?Jlulj!191LL°93Jnoslq聊IBsupaxoldlllasuMJasRlpuo3asolm弓uJligg・I~

    Etuo町lu圃qv・WDVJoこ)!1uuJ叫3Sli日

    j゚÷区E〕=l〔回ヅ(ljssl5t夥nsj 1ldglS

    j●puidxaug●a

    dnlaSI聊uaul!Jadxll’Z

    回jlUUI)S

    ‘jQs引puoQgsolm弓1)QsEq-Jgqg

    tuligg・I~ol((ld-!S)Q・l)o!I)olotlduo;)!I!s

    Jo9suods;MJBglIHuouuopsr皿叩Jado八DVlu;)sQJdaMりdQ3uo;)jojooJdusv‘lu!励uj!

    lujqJuo;)J(!Juo一一dlu!lu町)LIJgpuBgldul!sBsglquugq3!qMtpo!poloqd;1ドF凹AB

    XI!pBQJ‘球iu!sBolu!pau!qtuo3QJeluQJJnc)

    o!Jpg秤叫lolu!l叩!IJotlo!IBuJJqJsugJI叫|

    puuuo!ldJosql?J13;}u!luoupaJ!sapa叩‘JaAoaJOW°puno鳶puqsnc)oJjo-lnorlurllguii!s

    辿辿ふ超尨出匹s芯匹s回耳糾f畝峻Σy涼lsn;)oJ’u!叫l‘saslndlug}i)F)u!Jo9IUOJd凹秤dsPuBluJoduJal

    uoml}pua(I叩XI叩!qs!QsuodsQJ泥au!luou

    s!叩g;)u!S’心!Jll9LI!luouJOJ叩jo叫ls!乙j

    μ

    puBaJgug面卯ulqJop司叩g叩sげSraJall″`‘/1 £々7>jy>/IZ/1J()!l!puOC)叫lspalu

    O’/)yaJguguoloqdlual)!3u!叫IJ!uo!l山osqeJ圃u!luouolanpluaJJn;)oloUdusQ3npu!JopnPuo;)!ul;)sl3uoSu声u!duj!川再lpaslnd1叫l;)I印u!Jd那uopasuqs!‘(Wこ)xz)xdo9soJ9凹

    I圃〇Jtlo;)oUIBuUQIQMIF)!qM御聊ul叫1‘jopgl叩91Bls-p!losRu!110!laal叩F3oJuo3

    lurUJ!AuopQslqgnb!ulpa1λdoQsoJo!uJuo!ss!uJsuBJII石3oJuo;)pΛouBPgdolaAaPgM‘9nss!叫lsgJppBolJgpJoul

    ’uJuaq

    uo!113u凹nII!叫l限!超心srlouoJIF)u泡Qlollu!d

    叫IQA01uououlBaq叫lu圃s叩OII)ぷ!nbgJs!u明11叫3Qml)QIlx)!p叩l?‘sQiieuJりJ!nbolol

    j臥・(1Mdljla)sJol3mpg!l!sus郊拶川JOJ斜眼聯邦g2該5う原品uallj!』叫即tlsrU向I

    P知!tusuBJI叫丿叫lu!‘叩oul(uopal叩自!d9Jo)uo!paUgJ叫IJaAog}ii14uuΛpguBs叫‘ugtu!3ads叫ltlino刈□叩!lpaμ!ulsuuJI

    叫ISaJnSgUj叩!11M`apOⅢUO!SS!UIS眼JI叫l‘WSこ)lu!uo!lllJgdoJos叩otusno!』11AgqliiuoluV` punojii半)lqsnsqJ-jo-lnomolllt侈!IxuJ4siu!p9佃工叩1IAxpJnsuQulQqolμ侈!IJouo!1JodsnooJ-u!sMOIll

    軍)!tIM‘Xluld3涵uJ!a叩u!Qlotlu!d匹)!球qdB/(qrgl叩ugs!WSこ)lu!/{l!I!qE八losaJ印面p

    p回lsuJluo皿.pQ八〇Jd叫叫1‘心H!(41・du311u!uo!pQs一眼d叩叩!Msu91u!39ds押c)声olo!q

    JosQ励uJ!tlo!lnlosaJ-111!q4lsuJlu()3-卯!qiitl!;)npoJdJo哨udu3s!(WSこ)1)X(l()3soJ;)叩IB3(IJuo3ju!uuBc)s-JasBI

    uo!pnpoJlul’I

    ‘sgnss!II咎泌ぷnolo!qJosg訊1uH13uo!sugt11!P-9司nuasaJdl3uB‘uo!13alap

    lg3oJuo3JBgu!lolpolpuJJnoJOXI!I!qude;)uo!p9皿pun()Jipt?q;りlql?Judtuo389坪JlsuouJ叩QM・仇I!別叫3!d()3soJ3!ulju!uo!13;)s-Llld叩皿〇JJQdolpuBpulloJ靭ouqQsr!IJ!psn3oJこJojno

    pa帥olssa3ojduo!ldJosqEJI・g・u!luous!畢Moldx99MltuliこI四叩Jjiuol『βualaA13M叫Axl叩!IJouo!lml凹nlnPaslnd叫IJ叩unxl!suQltJHuc)!ldoluQppu!uoa3u;)l)uQd叩c)μuJpBnbu!sluQIJn3010tld;狛npoJdsJ(印司叩uo叫!S`QM)o!Pol叫duo3!1!sB叩卜uo!pQIQplu叩doJ13s)u!luouuopQsuqxd()こ)soJQ凹uo!ss!uJsu13JIlu3oJuo31)Qu即lujPs‘Qld叫sl叫男s叩9敵

    pgJlsqv

    祠‘3B`?SUOj ○01 3:1!BUI-Q.

    a8g-Eaひ乙一乙8十:XvjっylΞ11VSn‘60alAN‘四nx明s!N‘913J!こ)叩Jugsalll‘tF)Jugsalllu(lolD∃D乙

    uaJoうl‘(5紀-O乙IlnoaS‘olタsuo人Og痢!sJQ叫un?suoAiu!Jaau!iuEII13c)叩明oaWJI()lo()110S1

    j町uBPzuA苧BAB!SpuB‘jlju!り≒u明ZunqD‘.,loofu!uJlnllこ)

    uo!pal∂pJBau!luouuopasBqλd吠)soJ3!luuo!ss!ujsulJ11830Juo301nv

    レO-○

  • Fig.2:(a卜(t))lmagesofafixedratretialissu12rt=cordedwithSi-PDbasedACMandGe-PDbased

    linearcl(jtection,resljectively.NotetheirnprovedimallecontrastprovidedbySi-PDbasednonlinear

    &tection.(c)-(f)Si-PDbasedACMirnag5ofnxedraにhorokltissueElttissueにfhceand20,40,60

    μmbelowthetissuesuface,re5spectively.Vas㎝larstructuresaJld叩itheliumareclearlyvisibleateachdepthwithhighcontrast.Thescalebarrepresents50μm.

    亀ecandr(lpetitionrate~50MHz)iscollimated,magnined,andfocusedontothespec】menvla

    scatteredlijcollectedl

    幽に叩

    Foc-OBJ.Theforward斤omthesampleisthenthedetectionobjective

    (Det-OBJ)all(1ref1)cusedontoSi-PDwithadiameterof~10μm.TheasponseofSi-PDunderfbcusedilluminationofcontinuous

    (CW)andpulsed(PW丿ightat1.55μmwasthenexamined.FortheCWcase,nosignalwasobservedonthe(letector,since1.55μmli1111tenergy(~0.8ev)isbelowtheban(1gap()fSi(~1.12ev).However,PWilluillinationresultedinaremarkablesignE11increasedueton()nlinearabsorption(datanotshown).Weexaminedtheoutputsignalasafunctionoftheinci(1entopticalpowerfk)rthePWcase,andfoundthatthesignalexhibiteda

    quadraticdependenceontheincidentopticalpower(~2.01),whichsuggeststwo-photoninducedphotocurrents.

    3.ResultsandDiscussion

    HavingobservednonlinearresponseofSi-PDtotheemr)1oyedfbmtosecondlaser,theimprovedimagecontrastandrejectionofout-oflfbcusbackgroundbyACMwasassessedbyimagingnxedratretina.Figs.20)and2(b)showth6nlag・5sobtainedwiththeSi-PDbasedn(mlineardetectionand

    germaniumPDbasedlineardetection(Ge-PD).砥/hilevascularandmorphologicalstructureswerevisibleinbothim昭es,the

    12

    ()ut41n〕cusba(;1cground哨ection(;apal3111tyinACMrelsultedinamuchhighercontrmand nlore de狙nedmorphologicalin11)rrnation.Wealsoperfi)rmedACMimagingona~80μmthickflxedratchoroidbyscanningthesamplealongtheopticalaxistodemonstratethree-dimensionalimaging(;apability.Therepresentativeimagesatthetissuesurnlceandin~20μmstepsbelowthesurfllceareshowninFigs.4(c-f).Thedistributionofvascularstructuresandepitheliumatdifferentdepthsisclearlyvisible,whilehighimagecontrastismaintained.

    4.Summary

    Acheapandsimpleschemeforautoconfocaltransmissionmicroscopywasdemonstrated.Theselfalignedvirtual

    pinholewasachievedbyasinglelarge-areasiliconphotodiodethatgenerates

    photocu汀entsinaquadraticdependenceonincidentintensityof~1.55μmpulsedillumination.High-contrast,depth-resolvedimagesofbiologicaltissuesampleswere

    presented。

    Reference

    田C.Joomj・,0r)t.I-ett.35(57-(55)(2010)

  • ○-02

    Char£lderisticanalysisofCFRPcuttingwithnanosecondpulsedlaser

    Keisukeushidal*,Watarulnami2’3,YoshinobuShimamural,andYoshimasaKawatal’3

    1F11cultyofEngillaring,ShizuokauniversitM2Shizuokauniv.GRL,3JST-CREST

    3-5-1Johoku,Naka,Hamamatsu,Shizuoka432-8561,JapanTEL&FAX:+ISI-53-478-1076

    E-mail:kawata而e叩.sllizu()ka.ac.ip

    Abstract

    (JarbonFiberRe凶1)rcedP臨stics(CFRP)hElvefeaturc3sofhighspec姐cstren球h,highrigiditsnghtwe垣ht,etc,Thecuttingtechniquesusedf1)rCFRPtodayarewaterjetcuttingandmechanicalcuttingoperationssuchassawing,mming,o「

    grinding.However,theyhaveproblemsofhightool-wear,wastewaterdisposa1,etc.ThesedisadvantageshmittheapplicationsofCFRP.WeperformthecuttingofCFRPwithnanosecondpulsedlaserandanalyzeditschara(lteristics.Weinvestigatedmachining-depthdependencesontheconditionoffocuspositionandtheamountofoverlappingareaof7focusspotonCFRPE3urface.

    1.1ntroductiou

    CarbonFiberRein拓rcedPlastics(CFRP)ε12(;ompositemateri111(;omposedbycarbonfiberandl)Jticresin.Thefbaturesofthellmterialillcludehighsl)ecificstrerlgth,highriがdity,1ightweight,etc[1].1’herefore,CFRPhavebecomeanessential{lngineeringmaterialinmanymodemindustrialappli(;ations[21.

    Themaincuttingte(;11niquesusedfbrCFRPtodayarewaterjetcuttingandm(?(;11anicalcutting()I)c2rationssuchassawing,milling,orgrinding,However,theyhave

    problemsofhightoo1-wear,wastewaterdisposa1,etc.Therefore,itisdimculttosaythattheserxocssingmethodsaresimplyandeasyway.ThedisadvantageslimittheElpplicationsofCFRP.

    Lasercuttingispaidatterltionsbecauseithasl)otentialssolvingthedisadvantagesofwaterjetcuttingandmt?(;hanicalcutting()r){?rations[31.WepresentlaserprocessingcharE1(;teristicswithnanoscondlaserpulse.

    2.CFRPandlasersource

    lnthisstudy,981mmthickCFRPwereusedforlaserl)rocessing.Aplywascomposedofunidi祀ctionalnberandresinthathardenfiber.ltwaslam柚ated

    FO°/9()゚ /90°/Oo]orielltation.WeusedaQ-switchNd:YAGlaser(wElv・うlength=532nm,pulsewidth=4ns).NumericE11aperture

    13

    (N.A.)oftheo句(・ctivelenswas0.10.

    3.ExperimentalResultandDiscussion

    We・1/estigatedlhemachin㎞g-depthdependenceonscanningspeedswithvariousfocusedl)ositions.Thefocuspositionwasvariedintheregionfrom-500μmto500μmandscanningspeedswere0.2μm/s,0.4

    μmノs,0.8μm/s,1.6μm/s.Anerlaserirradiations,themachiningdepthandwidthweremeasuredwithscanningelectronmiaoscope(SEM).lntheseexperiments,wescannedlaserlightonlyonce。

    FigurelshowsSEMimagesofcrosssectionso臼aserr)r()cessedCFRP.Figure2showstheresultsofthemachining-clel)thdependenceoneachfocuspositionwithvariousscanningspeeds.ltwasfoundthatthemachiningdepthswereinaeasedwiththelargervalueoffbcusedpositions,anddepthswerelimitedatcertainvalues.WhenthefocuspositionwasmovedtotheinsideoftheCFRPsurfacemore,themE1(2hiningdepth(lecreased.Themaximaofmachiningdepthsbecamesmallerwithhillherscanningspeed.

    Fig.I.CrosssectionsofprocessedCFRJ).

  • IH 

    H 

    ljl 

    H 

    一llljlSE

    φ02μ❹・

    舘0,4μS/S

    40,S11Sゝ

    ●1.61&sz6

    ◇ Q I ■ ■ ・

    ◇ ■ 東○

    Q A s a △ △ A

    ○ △ 皿 “ △Q . ■ ● . A

    A = ● ● ● ・ ‾■ ● ・

    ・ -W

    - 4 { } に 2 0 0 0 2 Q 0 4 α )

    foeuspositioatoale(7RPsurfaa【μm】

    ぬ0

    Fig。2.Themachiningdepthforeachs(;anning町)eedandfbcusposition。

    l入/ealsoanalyzedthemachining-depthdependenceonoverlappingareaoffocusedspotandnumberoflaserscans.Figure3showstheoverlappingconditionoffocusspotonCFRPI;ul’face.lneachcondition,laserbeamwasscannedwiththenumberofl,5,10,20,50,100,200times.lnthese{5xperiments,thefocuspositionwasfixedontheCFRPsulface。

    I;` igure4showsthedel)tlndenceofthemachining-depthonthe(;onditionofoverlal)1)ingareaoffocusspotandnumberoflaserscans.ltwasfoundthatthemachiningdepthsbecamelargerasthelll.lmberofscanswereincreased.Themachiningdepthsalsobecamelargerasthesizeofoverlappingareaswa‘eincreased.Wecouldalsol゙ ecognizethatincreasingrateofthemachiningdepthstotheincreasingllumberofbeamscangraduallybecamesmaller.Focusedspotwasslightlydefocusedduringthelaserl:)ro(;essingbecausetheCFR)ヨ)surfllcewasminedbylaserirradiations.Therefore,wemaysaythatmoreemcientprocessingcanbeperlFormedbya(!justingthefocuspositionintointemalsideoneveryscan.

    四 回 ・ 咄 sSix箕鯉sval岡

    A (涵てぶ 30B ご 22jC (互皿Σ) 15D (遜皿) 7jFig。3.Theconditionofthesizeofoverlap

    offocusspotonCFIU)surface.

    14

    四四10070HHH01000

    【HmH 

    mml

    50 100

    numberonasa・

    150

    SCanS

    200

    Fig。4.Thedependenceofthemachiningdepthontheconditionofoverlappingareaoffocusspotandnumberoflaserscans.

    4.Conclusion

    Weinvestigatedthemachining-depth(kl)endenceons(llnningspeedwithvariousfocusedl)ositions.ltwasfoundthatthe

    叫北imumfbcuspositionsexistedineachs(;anningspeedinordertoachievelargemachiningdepths.ltwasfoundthattherewel‘ethresholdofthepowerdensityto

    l:)rocess.Wealsoanalyzedthemachining-depth

    del)tlndenceonovel°lappingareaoffocusedspotandnumber()flasgscans.ltwasfoundthatthemachining(lepthsalsobecamelargerasthesizeofover≒)pingareaswerei11(;reased.Wecouldalsol・gognizethathlcreaingrateof.themachiningdepthstotheincreasingnumberofbeamscans

    graduallybecamesmaller.Asnextresearchissuesweshould

    discusstheoptimumpl’ocessingconditionsfordecreasingl:)rocesstime.Heatefbctsinducedbylaserill皿linationonCFRPshouldbeanalyzedforfinelaserprocessing。

    References

    [1]K.Tohgo,UCHIDAROKAKUH0,2004[2]DirkHerzog,PeterJaeschke,011ver

    Meier,HeinzHafel’kamp,“lnvestigationsonthethermaleffectcausedbylasercuttingwithrespecttostaticstrengthofCFRP”,lntemationaoournalofMachine’R)ols&Manufilcture48,2008,pp・

    1464-1473.

    [3]K.C.’ゝ 1m11,S.M.Md,T.M.Yue,”Astudyoftheheat4ffbctedzoneintheUVYAGlaserdrillingofGFRPmaterials”,JournalofMaterialsR・ocessinglechnologyl22,20021):278-285

  • ○-03

    DynamicChilracl:eristicsPI°edictionofthePerforatedCyl㎞{lricaIShellinSIART

    UsingSilllilarityAnalysis

    Young-lnChoiβeunghoLim,Young-PilPark,l` Jヽo-CheoH)arlc,Kyoung-SuPark゙

    DepartmentofMechanicalEngilleerin9,Yonseiuniversity50Yonsei-『0,Seodaemun-9u,SeouS/120-749,KOrea

    TEL&FAX:+82-2123-3847*e-mail:pks6348@yonsei.ac.k「

    Abstract

    Thispaperintroducesdynamicchal゙ 11cteristicidentifi(;ationofraKtorintemalsusingfiniteelementmethod.Theresearchalsoconsklersnuid-strtl(;tureinl:11ractionbetween(;oolantwaterandl・eactorintemals.Thel’esultsareverifiedbycomparingtheresultsofthemodaltest.lnaddition,thispaperintroducessimilarityanalysisusinglsJAVMlfilctor.Fromthisfactor,(妙namiccharElcteristicsofsubmergedstructureswhichhavediarents(;alefa(;torcanbepl’{idicted.

    1.1ntroductionNowKoreanAtomicEnergyResearch

    lnstituteisdevelopingtheSystem-integratedModularAdvancedReacTor(SMART).TheSMARrrincludescomponentslikeac()re,steam

    gentlrators,coolantpumps,andapressurizerinsidetheonel’tlactorvtlssel.Thoughtheintegratedstillctureimprovesthesafbtyofther{lactor,itcanbeexcitedby飢earthquakeand

    pumppulsations.ltisimportanttoidentifyd)rnamiccharacteristicsofthereactorintemalsconsi(leringfluid-structurekaaction.Thus,modalanalysiswiththemodaltestandthefinite・slementmethod(FEM)iり)erformedinordertoidaltifythed)rnamiccllaracteristicsofthereact()rintemals。Thenowskirt,whichisaperfbrated

    (;ylindri(;alshelljslocatedinthelowerplenum()fthel’tlElctor.lnordertopelfomlthemodaltest,al/12sizes(;ale-simnaritymodelismanuf11(;turedandfiniteelementmodelisconstnlctedbasedonthisscale-simhritymodel.ThedynamiccharacteristicsofthesimilaritymodelareextractedbythemodaltestandFEmodelisverifiedbycomparingtheresultbetweenthemodaltestandtheFEanalysis.Thisstudy血rthercarriesoutthesimilarityanalysisforplでdictingthedynamiccharacteristicsofthereall‘eacta’intemals.Thellaturalfi’11(:111enciesoftherealreactorintemalsarecalculatedwiththeNj4VMlfactorandcalibratingfactors.Results

    ofthesilnilarityanalysisareverifledbycompal゙ ingthelresultsoftheFEanalysis。

    2.FiniteElement】VlodelThenowskirthastota11668holeswhichhaveatriangularpattem.ltis面曇ゑorcedbythreecircularribsontheinsideoftheshen.Sixlowernangesislocatedinthelowerpartofthenowskirtandtheyarefixedtohemisphericalsurfllceofthel・tlactorvessel.Afiniteelementmodelofal/12gale-simhritymodelisbuiltupandthefiniteelementanalysisisimplementedbyusingcolmnercialpackage,ANSYS.I;`igurelmustratesthefiniteelementmodelofthenowskirtandsurr()undingnuidswhichisappliedboundaryconditi()nsandthefluid-structureinttiraction.

    3.SimilarityAnalysisltisimpossibletopedormthemodaltest

    withlargescalestl’1.1ctl,1reslikethel’eactolジrhus,simnarityanalysisisusedforpl’edictingllaturalfi‘(1(luerlciesoftherealra1(;torintemalsfi’omthesimilaritymodel.Kwak[I]isexpressedtheinnuenceoftheaddedmasseflFbctbythel4AVMI(Non-dimensionalAddedⅥrtualMasslncremental)factor.Natl.u` alfi゙ equenciesofthesubmergedreaII’eactorintemalscanbecalculated丘omthenaturalfi゙ equenciesofthes(;ale-simhritymodelintheairbyusingtheNAVMlfactor.

    15

  • ailn , 。 w

    5aw●S。。.t

    Fig.IFEMModelofFlowSkirt

    Table1SmHalityanalysisofnowskirtwithNAVMlfactor

    Mode

    1-

    2-

    1/12ScaleSimilarityModelofFlowSkirt

    Aluminum(air)Aluminum(Water)

    F E M F E M

    988,1-

    1097-

    1974

    757

    789.3-

    1402

    NAVMIFactor

    1.90-

    2.52-

    2.65

    Fig.2explainsl)rocessofthesinlilarityEmalysis.Andnextequationshowsnatural介ci(lでlenciesofthesubmergedrealmodel.

    几,一

    た一

    八J 匹宍 (1)3.ResultsandDiscussion

    Tablelshowsresultsofthesimilarityanalysis.NAVMlfactorisobtainedbythenaturalfyquenciesofthegale-similaritymode1.FromNAVIVIlfhctor,natura1丘t2cltlenciesoftherealsizemodelofthenowskirtinthewaterare(j111clllated.The(;ε11(;ulatedresultsarewe11matchedwiththeresultsoftheFEanalysis.

    4.Conclusionlnthismsearch,dynamicchEll7acteristicsofthenowskirtinthereactorareextraetedbythenniteelementan211ysis.Furthermore,similarityanalysisiscarriedoutwiththeconstructedfiniteelementmodel.TheNAVINIlfactorisusedforcalculatingthe

    ExtxtngualSquax;iesofSia山4mjlaritymodelinblifatxiwttg

    Dcmi卜.Ela5ticModulusCalibriltionFactor

    Cak4at。stualfi。qussi。。「牡x認alslctgin扮malsi皿t奴血

    Nazllfiqll凹riaoftheraj

    s●cこori11加malsindllwltg

    Fig.2ProcessoSimilantyAnalysis

    Stee1(Air)-

    Calculation

    82.34-

    91.41-

    164.5

    RealSizeModelofFlowSkirt

    Steel(Water)

    Calculation

    76.85-

    78.63-

    142.62

    F E M-

    76.8-

    78.8

    141.3

    Error(%)

    0.06-

    ・0.21

    -

    0.94

    naturalfrequenciesoftherealsizemo(1elandtheseresultscomparewiththeresultsoftheFEanalysis.Theresultsshowvalidityofthesimilarityanalysis.

    Reference

    (1)M.K.KwakandK.C.Kim,1991,“AxisymmetricvibrationofCircularPlatesinContactwithFluid,”Joumal

    ()fSoundandvibration,146(3),pp.381-389

    Calcula加NAVMIFa£tor

    16

  • ○-04

    Two-PhotonExcitationwithvisibleFemtosecondLaserforobservationofWide-GapSemiconductors

    Kohei’akamatsul,W11tarulnalrli2’3,YoshimasaKawatal’3

    1FacultyofEnllineering,Shizuokauniversity,2Shizuokauniv.GRL,3JST-CREST

    3-5-IJohoku,Naka,111mamatsu,Shizuoka43:2-8561,JapanTEL&FAX:+81-53478-1076

    E-mail:kawata(lna.shizuoka.ac.‘

    Abstract

    Wehavedevelopedatechniqueoftwo-photonex(;itationinvisibleregion,andappliedtoobserveintemaldefectsofZnOcrystalwhichemitsphotoluminescenceinultravioletregion

    (36’7nm).lnordertoobserveaZnOcrystal,weintroduced521nmSHGfbmtosecondsolid-statelasel’[1,2]asalightsource

    1.1ntroduction

    Semiconductorlasersinultravioletregionhavebeendevelopedbymanyresearchers.Stl・1.1cturedefectsinthesemi-con血ctorcrystalda;reasetheemissionemciencyofthedevices.lnordertoimprovethedeviceemciency,itisrequiredtoreducethestrljl(;turedefectsinacrystalasmuchas

    l:)()ssibleinthestageofthecrystalgrowth.T11erefbre,11valuationofacrystalbecomesindispensable.

    Two-photonexcitationmicroscopeisusedforevaluationofasemiconductorcrystal,andTi:Sapphirelaserisusedasaex(;nationlightsource.Sincewavelengthregi()11oftypicalTi:Sal)1)hirelaseris’7::20-900nm,wide-gapsemiconductors(;annotbeexcitedwithtwoi)hotonpl` ocess.lnordertoobserveasemiconductorcrystalwithawiderbandgap,weintroducedaSHGfbmtosec()ndsond-statelaserasanexcitationnghtsource.Weobservel(lintemaldefectsofZnocrystals.

    :1’17wo-photonex{litationforevaluationofacrystal

    Theabsorptionofatypicalsemi-coductorcrystalinthewavelengthregionthatisshorterthanthewavelengthλbg,whichcorrespondstoband-gapenergyofthematerial.Sincetheexcitationwavelengthshollldbeshorterthanthewavelengthλb8,theex(;il:ationlightismuchabsorbedinthematerial.F4urelshowscomparisonof{5x(;itationregionbetweeningle-and

    two-photonexcitation.lnasingle-photonexcitation,theexcitationlightcannot

    penetrateintodeepareaofthematerial,becauseitabsorbedduringthepropagation.Thislimitstheusageofphotohlmintlscencestudiesinthree-dimensionalobservation。

    Two-photonexcitationwillallowthree-dimensionalimagingofthecrystalsbecausethewavelengthusedintwo-photonexcitationismuchlongerthanthewavelengthλbg・Photoluminescenceisexcitedonlyinthefocalvolumeintwo-photonexcitation.Thusobservationofthel)articularpositioninsideacrystalispossible.

    Laserlight

    ```‾’゛゛‾‾‾‾‾’゜‘ぺLens``’`「‾`‾’‾’ ’ ’ ’‾ ’ ’ ‘‾‾″゛ノ

    ニ J ヨ 1 c i t a t i o n r e g i o ぞ` ` ` - シ 帽 j

    ’ S e m i c o n d u c t o r j

    Single-photon’I`w()-photonexcitationexcitation

    I゙ igurel.Comparisonofexcitationregion

    3.0bservationofinternaldefectsinZnocrysta

    Figure2showstheeM)erimentalsetupof

    17

  • two-pholonQccitationmkr〔〕scope.ASHGfemtoseconds()1id-statelaser(pulsewidth:350R,repetition:2.85GHz)isusedasa(3)(citationlightsource,andscannedthroughthesampleareausinggalvanometermirrors。

    lnthisresearch,wechooseZnocrystalasasampleforobservation.BandgapofZnOis3.37evandwavelengthseqtl沁alenttothisbandgapenergyis368.9nm。

    Figure3showsresultsofobservationofZnO(;rystaltothedepthof10μminside.Weu刄,hievedthreedimensionalimagingofZno(;rystal,whichemitslumirlescenceinanultravioletregion.Theexcitationregionislimitednearthefbcalpointbytwo-photon

    processes,andwecouldalsoobservetheoutline()fintemaldefbctsofacrystal。

    Figure4showscomparisonofcross-stl(;tionalpromeofthemarkedpositioninFig.3.1naportionwithalowqualitycrystal,adecreaseinlurninotlsemciencyo(;curs.ltisthoughtofasanintemaldefbctexistsinthe

    portionwhichislowintensitycomparedtothecrystalsurface.

    Samplc

    皿 -()iectiveL4ns

    NA0.85,x40

    ロ コPMT

    Bcam

    Expandcr

    I . 1 1 1

    /S110rl-PassFiltcr

    (~450nm)

    NDFiher

    SHGFcmtosccondS()lid・StateLjscr

    λ=521nm

    Galvanometer

    Mirror

    ム こ

    λ に

    Figure3.ResultorlheobservationofZno

    吊m叩m 1叩m

    Fjgure2.Thee)cperimenlalsctupoflwo-

    photonexcitationrTlk;roscope

    ||

    Dichroic

    Mirror

    18

    1.2

    1一

    回0.8a一IUn

    0.6

    0.4

    0.2

    }ノ 溥 幕 矢

    ジ ー 六 大

    - O F l m

    一一-10μm

    0 5 1 0

    Length[μm]

    Figure4.Comparisonofcross-sectionalproflle

    4.Colclusion

    Weintroduced521nmSHGfemtoseconds()lid-statelaserfbr(3xcitationlightsource,andachievedthreedimensionalobservationofZnocrystalwhichemitslightinultravioletregion.Wearetrytoextendourtechniquetoobserveotherwidegapsemiconductors,suchasGaNandSiC.Wealsotrytilleうtspectralinfbrmationinordertoi(lentifythedefbctsorigins..

    Reference

    川S,Yamazoeeta1・,0皿Lett.,vo1.35,N0.5,plλ748-750,2010.

    [2]T.Kasamatsuetal・,IWHM&D2009paper4F-1

  • ○-05

    ’7『rackingServoMethodusingPre-patternsforHOlographicDataStorage

    Sun11-YongLim,Hyunse()kYang゙ ,Kyoung-SuPark,No-CheolPark,andYoung-Pi1Park

    D111)EIrtmentofMechanicalEngineerinlyyonseiuniv・,262Seorlgsanno,Se()daemun-Gu,Seoul,KoreaTEL&FAX:+82-2-2123-2824*e-mail:11町ang@yonsliLac.k「

    Abstract

    IF゙ age-orientedholographicdata就()rage(HDS)isverysnsitivetothedistul` banceswhichllffectthepositionofthergordingmedia.7rherefore,morer)recisetrackingservoisl` equiredfol’1’!1(;ordingprocessanditisalsoessentialforhighdensiりぐrherefore,comμ11sationmethodwhichisesentialforthel’ecordingprocessisneededinHDS.lnthispaper,wesu霜曇stsome

    pre-pattemfortrackingservoinl’ecordin1四宍)cess.ThismethodwasmotivatedbythetrackingservomethodinHardDiskDrive.Fordesigningthepattemshape,HDS(;hal’actel゙ isticswere(l{}nsidered.Secondly,thetrackerr()1゙ signalswereanalyzed.Lastly,intervalsofthepre-pattemscollsideringtracktolerancewere(kermined.

    1.1ntroduction

    Pag11-orientedHolographicDataStorage

    (HDS)isoneofthemostpromisingcandidatesfornext-容nerationst()ragesl:)e(;lluseofhighdensity,highdatatransfbrrateandshortaccesstime.ltslargeMorage(;ε11)acityisachievedbymukiplexingscheme.Theifilstdatatransferratecanbel・ealizedfi` omitsstorageinpag{lunits.Theone-pageunitcanincludemorethanonemillionbits,sothedatatransfbrratecanbefllsterthanconv(・ntionalopticalDiscDrive(ODD)[1].However,theconventionaloff・axisHDShassomedisadvantagesofconstructingtrackingservomechanismsystemjnlerefore,variouscompensationmethodsconsideredfortheHDScharacteristicshavebeenproposed.Thepreviousresearchesforde-trackcompensationhavelimitationsothattheyareonlyavailableforretrievalprocess.’I’herefore,wesuggestsomepre-pattemfor

    trackingservoinl’ecordingl:)rocess.Themethodl)1゛()posedinthis芦perwasmotivatedbythet警kingservomethodinHardDiskDrive(HDD).lndecision

    pa` ametersforproposedmethod,resultsf1°omtoleranceanalysisbyl㎡)haseCooperatewerereferred[2].

    2.Pre-patternsDesign

    Theeccentricityofthedisccanbe

    19

    regardedasam耐oreflbctformthetrackerrorinth{1ミl-H:}S.0thersde-tracksourceslikedeviationandunbalanceofdisccannotllffecttrackerror.Because,readingandre(;ordingl)1°ocessesareconductedwithstop-gorotationmechanism。

    Typicalsizeoffocusedservobeamfortrackingservoisinafbwμz71units.lnsimulations,focusedbeamsizeis2.75μ扉.However,theHDSdischasmuchbiggertrackpitchthanfocusedservobeamspotbecausesizeofmultiplexedhololgramspot(kerminedbypolytopicfilterisabout600芦77.Tosolvethisproblem,discformattingandproposedpattemsdesigningwillbemadeasfollowingprocedure.Firstofall,datazoneandservopattemsareplacedinthedisc,assllowninFig.1(a).Datatracksareincludedinthedatazone.Thedatabetweenservopattemsisl゛ecordedsequentiany.Thedataovell‘lapisavailableduetopolytopicmultiplexing[31,asshowninFig.1(b).Adiagonalpattemislocatedbetweentwostraightpattems,asshowninFig.1(c).PMtemsmustbeabletol‘decttheincidentbeam。

    1`heTrackErrorSignal(TES)is

    1111neratedbytimedmFclrenceamongthethreerenectedbeamsn゙ omthepre-pattems.Afterdiscisinsertedoverataperedspindle,thediscisrotatedwithaconstantspeeduntildetectingoneTESsignalsset.AlthoughservobeamspotissignificantlysmaUerthan

  • thetrackpitch,linearTEScanbegerleratedbyusingμ’oposemethod.lnotherwords,thismethodh4sTESrangewhichcancoverthetrackpitch.Therenectedservobeams丘omthel:)attemsgneratetheTES,asshowninFig.2.Whenservobearncrossesthepattems,A,R,B,I:)eakstimesoftherenectedbeamsarel‘el)resentedas7:,/ら,7;.TESislleneratedaccordingtoEq.1。

    :ZE;S’=(7;,-7;,)-(7;べ,)(1)

    QuantifledTESduetotheslountofeccentricityandl’otationangleofdiscisanalyzed.Firstofan,parEmletersforanalysis,whereeisamountofde-track,δisamountofe(;centricity,り,isdistancefi’omcenterofsl)indletooriginalbeamspot,Qisdistancefi・omcenterofec(;entricitydisctorotatedbeElmspot,andr’isdiぬmcef1°omcenterofe・c(;entricitydisctorol:atedbeamspotandθisanglebetweenQandら・

    Basedonthesepllal’neters,de-trackcanbい¥rittenasEq.2.Beanlspotisonthediscwhichisらfi’omcenterofspindlesothatthe

    l)roperdatarecordingandretrievalprocessispossible.Howeveらafterthediscisr()tatedinθforotherdata,distancebetweenspindleandbeamspotischangedasr’,asshowninFig.3.Therefore,ドーらlcanbedefinedasde-track.

    川一ド=e

    (y’=(Qcosθ+δ)2+(Qsiilθ)2,Q=らーダ)(2)

    ThroughtheEq.2,itiscertainthat

    l:sroperintervalangleofservotrackis∂=30・withδ=100z,。{lccentricityand25zj摺de-tracktokrance.

    tzldg

    Fig.IProposedpre’patternanddiscformatting

    20

    s-

    ・/

    A-

    -/--/-

    aボis&r.7177、

    i ’

    M H( C ) I S 、

    Fig.2TESduetodirectionofthetrackerrorS

    Θce幽afsiizde

    @g:;,血z・recceiiyifitydiz

    @8eagt

    I;` i11.3Analy818ofTESduetorotationofdiscwitheccentricity

    3.Conclusion

    lnthispaper,anadaptivede-trackcompensationmethodforconventionalofモf:・axisHDSwasproposed.Thismethodhasanadvant顎啓thatitcanbeappliedtore(;ordingl)n:)cessdUfel’㎝tly丘ompreviousl゙ {lseal’ches.Therefore,thehighqualitydata

    pagescanbereconstructed.Throughtheanalysisandsimulation,theproposedde-trackcompensationmethodwasverifiedthatitisenoughtocompensatede-track.

    Reference

    田Cou匍I・I.J・,PsaltisD.j;incerboxGT・,HolographicDataStorage,HclM{11berg,Germany(Springt・10000).

    [2]AlanHoskins,BradSisson,FrisoSchlottau,EdelineFotheringham,KevinCurtis,“Tole17ancesofaPage-BasedHolographicDataStorageSystem”Proc.ofSPIEVol.6620.

    [3]Ken勣ldersonandKevinCurtis,“POlytopicmultiplexing”,0PTICS

    LETTERSハ4)1.29,N0.12/2004.

  • ○-06

    SurfacePlasmonResonanceinDeep-UVRegion

    MasakazuKikawadal,AtsushiOno2・3,Wataru弛ami2・3,RentaroAkimotol,andM)shimasaKawatal・3*

    lacultyofEnがneering,S111zuokauniversity,2Shizuokauniv.{:iRL・,3JST・CREST3-5-1Johoku,Naka,}{厦namatsu,Shizuoka432-8561,Japan

    TEL&FAX:+8卜53-478-1076E-mail:kawataen.hiloka.゛

    Abstract

    WedemonMratedthesrfaceplasmonresollance(SPR)withde9-ultra-violet(Dt・q)-UV)region.WefoundthataluminumisgoodmaterialtoexciteSPRwithDeep-UVlightbycalculationsonrenectanceusingfiesnelequation.WealsodemonstratedtheexcitationofSPRinDeel)-UVregion.

    1.1ntroduction

    Therearemanystudiesonsurfilceplasmonresonance(SPR)anditsapplkationshavebeendevelopedinvariousl’ields[1].SPRhasmanyadvantages,suchasenhancementofdectricfieldinl:ensity,highsn血ivitytore丘activeindexchangeofsamplenearthemetalmr17ace.lnmanystudiesandlll)plicationsofSPR,visibleornear-infraredlightsourcehaveusedforex(;itationofSPR,1:)ecausegoldandsilverhaveverygood

    propertiesinthatwavelengthregion.Fewstudieshavebeenl` eportedonthe{lx(;itationofSPRusingDeep-UVlight.Wel)resenttoexcitesurfilceplasmonusing

    Deep-IJVlight.Deep-UVlighthashigher

    photonenergythanthatofvisiblelight,soSPRwithDeep-UVlightopensmanyapplicationssuchasenhancementfluorescenceexcitation,nuorescentobservationofthenon-labeledbiologicalspecimens.lnthispaper,wedemonstratetheexcitationofSPRwithDeep-UVlight。

    2.PI‘incipletoexciteSPR

    WeexplaintheprincipleofSPR.Surface

    plasmoncanbeexcitedwithaevanescentlightsatisfyingthedispersionrelationship・M41enwavenumbervectoroflongitudinalwaveandwavenumbervectorofpolarization

    paralleltoincidenceplane.Becausedistributionofthef1・eeelectroninmetalcondensesparalleHnmrface.Equation(1)showsthepropagationconstantoflrfaceplasmon.

    21

    KspニぞへRI?i?iJE(1)

    =糾疏既:侑廳脂配随?j皆i‾cRe【Em】+Esc匹’豆i∃i同JI

    where(1)istheangularfi’equencyofsllrfllce

    plasmon,ssisthedielectricconstantoftheぷelectricmaterials,andsmisthecomplexdiel{lctricconstantofthemetal,Here,imaginarypartofsmrepresentsdecayofsurfllceplasmon.lnordertoexciteSPR,weneedametalwithnegativerealpartandsmallimaginarydielectricconstant.I;゙ igurelshowsreall)artandimaがnarypartofthecomplexdielectri�