04_01eng

download 04_01eng

of 16

Transcript of 04_01eng

  • 7/30/2019 04_01eng

    1/16

    VECTOR CONTROLLED

    RELUCTANCE SYNCHRONOUSMOTOR DRIVES WITH

    PRESCRIBED CLOSED-LOOPSPEED DYNAMICS

  • 7/30/2019 04_01eng

    2/16

    Model of Reluctance SynchronousMotor

    Non-linear differential equations formulated in rotor-

    fixed d,q co-ordinate system describe the reluctance

    synchronous motor and form the basis of the control

    system development.

  • 7/30/2019 04_01eng

    3/16

    Control Structure for ReluctanceSynchronous Motor

  • 7/30/2019 04_01eng

    4/16

    Master Control Law

    Linearising function

    1 1

    15T J c L L i id r d q d q L

    Demanded dynamic behavior

    d

    d t T

    rd r

    1

    1

    Dynamic torque equation

    ddt J c L L i ir

    d q d q L 1 5

    Vector control condition

    for maximum torquea) per unit stator current

    b) for a given stator flux

    baser

    r

    basedKd

    baserdKd

    forii

    forii

    tanLLc

    T

    J

    i qd5

    Lrd1

    d

    i

    J

    Tc i

    cq dem

    d r L q dK

    d

    1

    5

    5

    *

    *

    a) b)

    i i sign Tq dem d dem d

    tan

  • 7/30/2019 04_01eng

    5/16

    SET OF OBSERVERS

    FOR STATE ESTIMATION

    AND FILTERING

  • 7/30/2019 04_01eng

    6/16

    Pseudo-Sliding Mode Observer for Rotor

    Speed

    i d 1

    s

    Ksm

    i d*

    ud

    1

    Ld

    R

    L

    s

    d

    v d eq

    Ksm

    R

    L

    s

    q

    1

    s

    1

    Lq

    i q uqiq

    *

    vq eq

    d

    d t

    i

    i

    R

    L

    R

    L

    i

    i

    L

    L

    u

    u

    v

    vd

    q

    s

    d

    s

    q

    d

    q

    d

    q

    d

    q

    d eq

    q eq

    *

    *

    *

    *

    0

    0

    10

    01

    d

    d t

    i

    i

    R

    Lp

    L

    L

    pL

    L

    R

    L

    i

    i

    L

    L

    u

    ud

    q

    s

    dr

    q

    d

    rd

    q

    s

    q

    d

    q

    d

    q

    d

    q

    10

    01

    a)

    *

    *

    d d d

    q q q

    i i

    i i

    d d d

    q q q

    i i

    i i

    *

    *

    Motor equations

    Model system

    definition of error

  • 7/30/2019 04_01eng

    7/16

  • 7/30/2019 04_01eng

    8/16

    The Filtering Observer

    r

    L

    1

    s

    1

    s

    K K

    r

    1 5~ ~ ~ ~J

    c L L i id q d q

    VJ

    where design of:

    needs adjustment of the

    one parameter only or astwo different poles:

    k J Ts 9 0~

    k J Ts 81 4 02~

    k J ~

    1 2 k J ~

    1 2

    Electrical torque of

    SRM is treated as an

    external model input

    Filtered values of and are produced by the

    observer based on Kalman filter

    r

    e

    Jc L L i i k e

    k e

    r

    r d q d q L

    L

    ~

    15

    L

    Load torque is modeled

    as a state variable

  • 7/30/2019 04_01eng

    9/16

    Original control structure of speed

    controlled RSM

    q

    rotor

    position

    sensor

    external load

    torque L

    r

    UqUd

    I2- I 3I q

    I d

    Id dem

    demanded d_q

    stator currentsdemanded three-

    phase voltages

    vd_eq

    Iq dem

    U 1

    U2

    U3

    I 1

    Reluctance

    Synchronous

    Motor

    Master

    Control

    Law

    Angular

    velocity

    extractor

    Power

    electronic

    drive

    circuit

    a_b &

    d_q

    transf.

    Rotor flux

    calculator

    demanded

    rotor speed

    Sliding-mode

    observer

    Slave

    control law

    Filteringobserver

    r

    I dUdI q

    d_q

    &

    a,b,c

    transf

    Switching

    table

    s

    r

    d

    T

    Udc

    Measured variables:

    rotor position,

    stator current,

    DC circuit voltage

    Uq

    d

    vq_eq

    q

    L

    r

    q r q r

  • 7/30/2019 04_01eng

    10/16

    Reference Model

    (of closed-loop system)

    Inner & Middle Loop

    (real system)

    correction

    loop

    mrK

    Ts

    Kd

    1

    Ts1

    1

    d

    rd

    id

    Model TF

    r

    d

    s

    s sT

    1

    1

    Parameter mismatch

    increases a correction

    Kmr r id

    Ts

    KK

    sT

    K

    Ts

    K

    s

    s

    d

    mr

    mr

    d

    d

    r

    11

    1

    1

    11

    Masons rule

    Kmr

    r

    d

    s

    s sT

    1

    1

    MRACouter loop

  • 7/30/2019 04_01eng

    11/16

    Simulation results

    a1) id=const without MRAC

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0. 3 0. 35 0. 40

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0. 05 0. 1 0. 15 0.2 0. 25 0. 3 0. 35 0. 40

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0 .3 0. 35 0 .4-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4-20

    0

    20

    40

    60

    80

    100

    a) id,iq = f(t) b) d, q = f(t) c) Ld= f(t)

    d) id, est = f(t) e) L, Lest = f(t) f) id, r = f(t)

  • 7/30/2019 04_01eng

    12/16

    Simulation results

    a2) id=const with MRAC

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0 .3 0. 35 0 .4-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4-0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 0.05 0.1 0. 15 0. 2 0. 25 0.3 0.35 0.40

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0. 3 0. 35 0. 4-1

    0

    1

    2

    3

    4

    5

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0.3 0. 35 0.4-20

    0

    20

    40

    60

    80

    100

    120

    a) id,iq = f(t) b) d, q = f(t) c) Ld= f(t)

    d) id, est = f(t) e) L, Lest = f(t) f) id, r = f(t)

  • 7/30/2019 04_01eng

    13/16

    Simulation results (without MRAC)

    b1) dq-current angle control

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0 .3 0. 35 0 .4-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    0 0. 05 0.1 0. 15 0.2 0.25 0. 3 0.35 0.4-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.05 0.1 0. 15 0. 2 0. 25 0. 3 0. 35 0.40

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0. 05 0. 1 0.15 0. 2 0. 25 0 .3 0.35 0. 4-0.5

    0

    0.5

    1

    1.5

    22.5

    3

    3.5

    4

    4.5

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4-20

    0

    20

    40

    60

    80

    100

    120

    0 0.05 0. 1 0. 15 0.2 0.25 0. 3 0. 35 0.40

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    a) id,iq = f(t) b) d, q = f(t) c) Ld= f(t)

    d)id

    ,est

    = f(t) e)L

    ,Lest

    = f(t) f)id

    ,r

    = f(t)

  • 7/30/2019 04_01eng

    14/16

    Simulation results (with MRAC)

    b2) dq-current angle control

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0 .3 0. 35 0 .40

    0.5

    1

    1.5

    2

    2.5

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4-20

    0

    20

    40

    60

    80

    100

    120

    0 0. 05 0. 1 0. 15 0. 2 0. 25 0. 3 0. 35 0. 40

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.05 0.1 0. 15 0. 2 0. 25 0.3 0. 35 0. 4-1

    0

    1

    2

    3

    4

    5

    6

    a) id,iq = f(t) b) d, q = f(t) c) Ld= f(t)

    d)id

    ,est

    = f(t) e)L,

    Lest= f(t) f)

    id,

    r= f(t)

  • 7/30/2019 04_01eng

    15/16

    Effect of MRAC on Various

    Types of Prescribed Dynamics

    a) constant torque

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

    b) first order dyn.

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

    c) second ord. dyn

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-50

    0

    50

    100

    150

    200

    250Ideal, Estim. & Real Speed

  • 7/30/2019 04_01eng

    16/16

    Conclusions and Recommendations

    The simulation results of the proposed new controlmethod for electric drives employing SRM show a

    good agreement with the theoretical predictions.

    The only departure of the system performance

    from the ideal is the transient influence of the

    external load torque on the rotor speed.

    This effect is substantially reduced if MRAC outer

    loop is applied. It is highly desirable to employ suggested control

    strategy experimentally.