محاضرات نظرية الحوسبة Theory of Computation

download محاضرات نظرية الحوسبة  Theory of Computation

If you can't read please download the document

  • Upload

    -
  • Category

    Documents

  • view

    4.390
  • download

    46

description

محاضرات ألقاها د.ايمن حمارشه على طلبة قسم الحاسوب تم تجميعها في كتاب نظرا لقلة المصادر باللغة العربية

Transcript of محاضرات نظرية الحوسبة Theory of Computation

Theory of Computation

.

1

Theory of Computation (calculating counting) . intermediate steps . algorithm . , , .() . Algorithms Inputs . . Computational Complexity Theory theoretical computationally solvable : Computability Theory science computer . computational , solvable complexity theory , . .( ) : (Computation) . "Computing" and

outputs input computation

Computability Theory

.

2

: Computational Complexity (, ) . ( ) , :

.

( . . .

)

. models of computation . . Turing machine . RAM . )( cache memory . external-memory model . . Computations .

3

(. (.

) )

. .

.

. writing .

. . . . , , . . . . ) (Alphabets ): (Strings . .

4

. a1a2-an

a1,a2,..,an

.

Empty String

: } 1={a,..,z }9,..,1{=2 : 1 2 1 1 abb 321 21ba 413 . . 1 2(2 U 1) ,

Binary Alphabet . Unary String =0. Empty String 0 . . X 2. : 11 } 1{ X

Unary Alphabet )(String Length

: }1,0{

5

Xi . X

,X=X1X2 ..Xn Reverse String

n

X

: 1. X = XnXn-1 X : X = abcd . X = dcba Substring X . X . abracada : X X n XY Y XY m Y X Z : cad Concatenation . XY=X1X2.XmY1Y2Yn X k . : 10= Y=100 , X 00110=XY . . X X

: 10= X . X =010101 , X =0101 , X =01 , X = Permutations Strings . X * . }. =* - { 110= X 110, 101, 011

X

: 110= X 110, 11, 10, 1, 0,

10, 0, Proper Prefixes Strings 11, 1, . Proper Suffixes Strings

6

Searching

: Ordering of Strings Information

.

.

: 00110 )

.

}1,0{= 10 10 1110 00110 00110 (.

1110 00110. 3 }111,011,11,101,001,01,1,110,010,10,100,000,00,0,* = { . }1,0{= 1 Canonical . * Canonically Smaller : X Y 1. X Y Y 000= Y X.7

. .,000,00,0 . Ordering

2. X }1,0{= 11=X :

X . Y

00= X 11=Y :

}111,011,101,001,110,010,100,000,11,01,10,00,1,0,* = { Objects . Encoding . . : } . . . ,0000 ,000 ,00 ,0{ = )0(1f } . . . ,1000 ,100 ,10 ,1{ = )1(1f } . . . ,01000 ,0100 ,010 ,01{ = )2(1f } . . . ,11000 ,1100 ,110 ,11{ = )3(1f } . . . ,001000 ,00100 ,0010 ,001{ = )4(1f : ,}f2(0) = { ,}0{ = )1(2f ,}1{ = )2(2f 2f : Representation of Information

: }1,0{= 1f

8

,}00{ = )3(2f ,}10{ = )4(2f ,}01{ = )5(2f ,}11{ = )6(2f ,}000{ = )7(2f ,}0001{ = )8(2f . . . ,}1001{ = )9(2f }1{= : ,}f3(0) = { ,}1{ = )1(3f ,}11{ = )2(3f ,}111{ = )3(3f . .. . . ,}1111{ = )4(3f : : }f3(i) = {1i 3f

9

Representation Interpretation . 7 . 111 ) ( 3 Parties Interpretation . : Languages L Subset * L Sender Process 111 Function

Representation Receiver . Programs

Sentence Word . String *}1,0{

Language L : *}1,0{ ,}01,{0,11,001} , { }1,0{ .

01

}{

}{ 2L1 U L }2. {x x is in L1or X is in L 2L1L }2{x x is in L1 and in L 2L1,L Union

1 L 2L L1, L2 Intersection 1 L 2 L

Complementation L L }. {x x is in * but not in L L

: }1,0 , L2= {, 01, 11} , L1= { }11 ,10 ,1 ,0 ,L1 U L2 = { }L1 L2 = { }. ,100 ,000 ,11 ,01 ,10,00{ = 1L UL=L L= * = * =

11

L1

(L1-L2)

L2 L1

Difference L2

. {x x is in L1 but not in L2} (L1 L2) : L2 L1

Cross Product (x,y)

L2 y L1 x

{(x, y) | x is in L1 and y is in L2 } : (L1L2) L2 L1 Composition { xy | x is in L1 and y is in L2 } : L2={1,01,101} L1= {,1,01,11} : : L1 L2 = {, 11} L2 L1 = {101} : L2= {01,11} L1={,0,1} : L1 L2 = {(, 01), (, 11), (0, 01), (0, 11), (1, 01), (1, 11)} L1L2 = {01, 11, 001, 011, 101, 111} L - = L, - L = , L = , {}L = L.

12

0 L L

Composition i L 1 ..... L3 L2 L

Li } , { 0L *. L

Kleene closure

positive closure L +. L

.......

1L3 L2 L

}1,0, L1= { }11,10{=2 L : }11,01,10,00,1,0,L1 2 = { }111111,1011111,111011,101011,111110,111010,101010{ = 3 2L . , * * x 2 R1,R * * x: } 2{ (x, y) | (x, y) is in R1 or in R 2 R1 U R

2 R1 R } 2{ (x, y) | (x, y) is in R1 and in R 2 R1R } 2{ (x1x2, y1y2) | (x1, y1) is in R1 and (x2, y2) is in R : } )1,01(,)0, R1={( })01,0(,) R2= {( 1,: })10 ,0( ,) ,1( ,)1 ,01( ,)0 , ({ = 2R1 U R R1 R2 = })011 ,001( ,)1 ,101( ,)010 ,0( ,)0 ,1({ = 2R1R })101 ,010( ,)001 ,0( ,)1 ,011( ,)0 ,1({ = 1R2R } { (x, y) | (x, y) is in * * but not in R R

1- R } { (y, x) | (x, y) is in R31

: })10, R= {( ,) , ( : })R-1 = {( , ), (01, })R0 = {( , })1010 , R2 = {( , ), (, 01), ( Formal System Formal axioms . Language : Grammars . )( Subject )( Predicate . Noun Noun Phrase . Mary sang a song : > < > < > < >

> < > < a >