食品化学 Food Chemistry

216

Click here to load reader

description

食品化学 Food Chemistry. 西南大学 Southwest University. 第一章 绪论. 什么是食品化学 食品化学的历史 食化学的分类 现代食品化学的发展方向 参考文献. 1 什么是食品化学. 食品:经特定方式加工后供人类食用的食物。 食物:可供人类食用的物质原料统称为食物。 化学:研究物质组成、性质及其功能和变化的科学,包括分析化学、有机化学、物理与胶体化学、分离化学、普通化学和生物化学等。 - PowerPoint PPT Presentation

Transcript of 食品化学 Food Chemistry

Page 1: 食品化学 Food Chemistry

食品化学食品化学Food ChemistryFood Chemistry

西南大学Southwest University

Page 2: 食品化学 Food Chemistry

第一章 绪论第一章 绪论 什么是食品化学 食品化学的历史 食化学的分类 现代食品化学的发展方向 参考文献

Page 3: 食品化学 Food Chemistry

1 1 什么是食品化学什么是食品化学 食品:经特定方式加工后供人类食用的食物。 食物:可供人类食用的物质原料统称为食物。 化学:研究物质组成、性质及其功能和变化的科学,包

括分析化学、有机化学、物理与胶体化学、分离化学、普通化学和生物化学等。

食品化学:指研究食物的组成、性质以及功能和食物在贮藏、加工和包装过程中可能发生的化学和物理变化的科学。食品化学、微生物学、生物学和工程学是食品科学的四大支柱学科。

Page 4: 食品化学 Food Chemistry

2 2 食品化学的分类食品化学的分类 食品成分化学 食品分析化学 食品生物化学 食品工艺化学 食品功能化学 食品风味化学

Page 5: 食品化学 Food Chemistry

3 3 食品化学的历史食品化学的历史

古代食品化学

近代食品化学

现代食品化学

Page 6: 食品化学 Food Chemistry

4 4 现代食品化学的发展方向现代食品化学的发展方向

高新技术在食品工业中的应用新型食品材料的研究现有食品材料功能的改良食物成分的生理功能研究。

Page 7: 食品化学 Food Chemistry

5 5 主要参考文献主要参考文献O . R 菲尼马著,王璋译 食品化学(第

三版) 中国轻工业出版社 2003 韩雅珊 食品化学 北京农业大学出版社

1992 Food ChemistryJournal Agricultural and Food

Chemistry

Page 8: 食品化学 Food Chemistry

第二章 水分第二章 水分 水的功能 水的状态 食品中水的组成 食品中水与非水组分之间的相互作用 水分活度 水分活度与食品的安全性 食品的等温吸湿线 分子流动性及其与水分活度的比较

Page 9: 食品化学 Food Chemistry

1 1 食品中水的功能食品中水的功能

水在食品工艺学方面的功能 水在食品生物学方面的功能

Page 10: 食品化学 Food Chemistry

水在食品工艺学方面的功能水在食品工艺学方面的功能

食品理化性质 --- 溶解、分散 食品质地 --------- 鲜度、硬度、流动性、

呈味、耐贮性和加工适应性食品安全性 ------ 微生物 、化学变化食品工艺 --------- 膨润、浸透、均匀化

Page 11: 食品化学 Food Chemistry

水在食品生物学方面的功能水在食品生物学方面的功能体内化学作用的介质,化学反应的反应

物和产物,物质转运的载体体温良好的稳定剂水是构成肌体的重要成分对体内的机械摩擦产生润滑,减少损伤

Page 12: 食品化学 Food Chemistry

2 2 水的状态水的状态

冰的导热系数在 0℃ 时近似为同温度下水的导热系数的 4 倍,冰的热扩散系数约为水的 5 倍

冻结速度与解冻速度 冻结对食品品质的影响( 9% )

Page 13: 食品化学 Food Chemistry

3 3 食品中水的组成食品中水的组成 按照食品中的水与其他成分之间相互作

用强弱可将食品中的水分成结合水、毛细管水( 0.1μm )和自由水

结合水与自由水的区别:能否作为溶剂,能否在 -40℃ 结冰,能否被微生物所利用

结合水分成单分子层水和多分子层水aw/m(1-aw)=1/m1c+(c-1)aw/m1c 式中:aw - 水分活度, m- 水分含量, m1 单分子层水含量, c- 常数

Page 14: 食品化学 Food Chemistry

4 4 食品中水与非水组分之间的相互作用食品中水与非水组分之间的相互作用

水与离子基团之间的相互作用——构成水或结合水

水与氢键型基团的作用——结合水 水与非极性基团的作用——疏水相互作

Page 15: 食品化学 Food Chemistry

5 5 水分活度水分活度 水分活度的定义

水分活度与温度的关系

冻结食物的水分活度

食品在冻结点上下水分活度的比较

Page 16: 食品化学 Food Chemistry

水分活度的定义水分活度的定义

水分活度表示食品中水分可以被微生物所利用的 程度,在物理化学上水分活度是指食品的水分蒸汽压与相同温度下纯水的蒸汽压的比值,可以用公式aw=P/P0, 也可以用相对平衡湿度表示 aw=ERH/100 。

相对平衡湿度:食品水汽分压与相同温度下纯水的饱和蒸汽压之比

食品的平衡相对湿度是指食品中的水分蒸汽压达到平衡后,食品周围的水汽分压与同温度下水的饱和蒸汽压之比。

Page 17: 食品化学 Food Chemistry

水分活度与温度的关系水分活度与温度的关系

水分活度与温度的函数可用克劳修斯 -克拉伯龙方程来表示,lnaw=-ΔH/RT+c

T-绝对温度, R-气体常数, ΔH-样品中水分的等量净吸着热

Page 18: 食品化学 Food Chemistry

冻结食物的水分活度冻结食物的水分活度在计算冻结食物的水分活度时 aw=P/P0 中

P0 的应该是冰的蒸汽压还是是过冷水的蒸汽压?因为这时样品中水的蒸汽压就是冰的蒸汽压,如果 P0再用冰的蒸汽压,这样水分活度的就算就失去意义,因此,冻结食物的水分活度的就算式为 aw=P (纯水) /

P0 (过冷水)。

Page 19: 食品化学 Food Chemistry

食品在冻结点上下水分活度的比较食品在冻结点上下水分活度的比较 冰点以上,食物的水分活度是食物组成和食品温度的函

数,并且主要与食品的组成有关;而在冰点以下,水分活度与食物的组成没有关系,而仅与食物的温度有关

冰点上下食物的水分活度的大小与食物的理化特性的关系不同。如在 -15℃ 时,水分活度为 0.80 ,微生物不会生长,化学反应缓慢,在 20℃ 时,水分活度为 0.80 时,化学反应快速进行,且微生物能较快的生长

不能用食物冰点以下的水分活度来预测食物在冰点以上的水分活度,同样,也不能用食物冰点以上的水分活度来预测食物冰点以下的水分活度

Page 20: 食品化学 Food Chemistry

6 6 水分活度与食品的安全性水分活度与食品的安全性 微生物活动与食物水分活度的关系

酶促反应与食物水分活度的关系

水分活度与非酶反应的关系

Page 21: 食品化学 Food Chemistry

微生物活动与食物水分活度的关系微生物活动与食物水分活度的关系各类微生物生长都需要一定的水分活度。换句话说,只有食物的水分活度大于某一临界值时,特定的微生物才能生长。一般说来,细菌为 aw>0.9 ,酵母为aw>0.87 ,霉菌为 aw>0.8 。一些耐渗透压微生物除外

Page 22: 食品化学 Food Chemistry

酶促反应与食物水分活度的关系酶促反应与食物水分活度的关系一方面影响酶促反应的底物的可移动性一方面影响酶的构象食品体系中大多数的酶类物质在水分活

度小于 0.85 时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。但也有一些酶例外,如酯酶在水分活度为 0.3甚至 0.1 时也能引起甘油三酯或甘油二酯的水解

Page 23: 食品化学 Food Chemistry

水分活度与非酶反应的关系水分活度与非酶反应的关系脂质氧化作用:在水分活度较低时食品中的水与氢过氧化物结合而使其不容易产生氧自由基而导致链氧化的结束,当水分活度大于 0.4 水分活度的增加增大了食物中氧气的溶解。加速了氧化,而当水分活度大于0.8 反应物被稀释,氧化作用降低

Maillard 反应:水分活度较低时底物的移动受限制,大于 0.7 时底物被稀释。

水解反应:水分是水解反应的反应物,所以随着水分活度的增大,水解反应的速度不断增大

Page 24: 食品化学 Food Chemistry

7 7 食品的等温吸湿线食品的等温吸湿线 等温吸湿线

食品的等温吸湿线方程

Page 25: 食品化学 Food Chemistry

等温吸湿线等温吸湿线

等温吸湿线区域划分

等温吸湿线形状

滞后现象

等温吸湿线与温度的关系

Page 26: 食品化学 Food Chemistry

等温吸湿线区域划分等温吸湿线区域划分

Page 27: 食品化学 Food Chemistry

I 区: aw=0~0.25 ,水分含量为 0~0.07g/g干物质,这部分水是食品中与非水物质结合最为紧密的水,吸湿时最先吸入,干燥时最后排除,不能使干物质膨润,更不能起到溶解的作用。 A 区最高水分活度对应的含水量就是食物的单分子层水。

II 区: aw=0.25~0.80 ,水分含量为 0.07~0.32g/g

干物质,该部分水实际上是多层水,他们将起到膨润和部分溶解的作用,会加速化学反应的速度。

III 区: aw=0.80~0.99 ,水分含量大于 0.40g/g干物质,起到溶解和稀释作用,冻结时可以结冰。

Page 28: 食品化学 Food Chemistry

等温吸湿线形状等温吸湿线形状

一般说来,大多数食品的等温吸湿线都成 S形,而含有大量糖及可溶性小分子但不富含高聚物的水果、糖果以及咖啡提取物的等温吸湿线呈 J形

Page 29: 食品化学 Food Chemistry

滞后现象滞后现象

吸附等温吸湿线与解吸等温吸湿线

“滞后”现象

“滞后”现象产生的原因

Page 30: 食品化学 Food Chemistry

等温吸湿线与温度的关系等温吸湿线与温度的关系 食品的等温吸

湿线与温度有关,由于水分活度随温度的升高而增大,所以同一食品在不同温度下具有不同的等温吸湿线。

Page 31: 食品化学 Food Chemistry

食品的等温吸湿线方程食品的等温吸湿线方程 一般将食品的等温吸湿线方程表示如

aw/(m(1-aw))=1/(m1c)+(c-1)aw/(m1c)

利用 aw/(1-aw) 对 aw 作图,可得一直线,此直线的截距为 1/(m1c) ,斜率为 (c-1)/

(m1c)

Page 32: 食品化学 Food Chemistry

分子流动性及其与水分活度的比较分子流动性及其与水分活度的比较分子流动性( molecular mobility ,简写

为 Mm )是指食品中的水分子的旋转移动和平动移动的总度量。食品中的水处于冻结状态(结晶)时,其分子流动性为零,食品处于完全的玻璃态时,其中的水分子的流动性也为零,而水分子处于汽化状态时分子流动性最大

Page 33: 食品化学 Food Chemistry

水分活度与分子流动性在预测食品安全性上的优缺点 在估计食品由扩散限制的性质时,如冷冻食品的物理性质、冷冻干燥的最佳条件、结晶作用、凝胶化作用和淀粉的老化等物理变化时,分子流动性明显的比水分活度有效,而水分活度在预测冷冻食品的物理或化学性质上基本是无能为力的。

在预测保藏在接近室温的产品发生结块、粘结和脆性的条件时分子流动性和水分活度的效果大致相同。

预测在未冻结的食品中微生物的生长情况或该食品中由扩散限制的化学反应的速度时,分子流动性的实用性和预测结果的可靠性都不及水分活度。

相对于水分活度来说,分子流动性是一个崭新的概念,她还处于一个逐步完善的阶段,所以就现阶段来说,在预测食品的稳定性方面,分子流动性在实用性方面还不可能与水分活度婢美。

由于水分活度和分子流动性都是以单个参数为基础的,因此他们都不可能是食品稳定性完全可靠的预告因子,因此,发展由水分活度和分子流动性结合的“结合方法处理”成为目前研究和预告食品稳定性的研究热点。

Page 34: 食品化学 Food Chemistry

第三章 碳水化合物第三章 碳水化合物 概述

单糖、双糖在食品应用方面的物理性质

单糖、双糖在食品应用方面的化学性质

多糖在食品应用方面的性质

Page 35: 食品化学 Food Chemistry

1 1 概述概述

碳水化合物的定义与来源

碳水化合物的分类

碳水化合物在食品体系中的功能

Page 36: 食品化学 Food Chemistry

碳水化合物的定义与来源碳水化合物的定义与来源

碳水化合物是多羟基的醛类和多羟基酮类化合物及其缩合物和某些衍生物的总称。碳水化合物广泛存在于各种生物有机体内,是绿色植物经过光合作用形成的产物,一般占植物体干重的 80%左右。

Page 37: 食品化学 Food Chemistry

碳水化合物的分类碳水化合物的分类

水解程度 ----- 单糖、寡糖、多糖 组成 ----- 均多糖、杂多糖 非糖基团 ----- 纯粹多糖、复合多糖 生物学功能 ----- 构成多糖、功能多糖

Page 38: 食品化学 Food Chemistry

碳水化合物在食品体系中的功能碳水化合物在食品体系中的功能 食品工艺学赋予食品香甜味;饼干、面包。增加食品体系的粘稠性;饮料。 改善和维持食品体系的质地稳定性;果胨、果汁。 改善食品体系的香味和色泽。 食品生物化学 作为人类活动的能源物质; 构成机体或食品体系; 转化形成生命必需物质,蛋白质和脂类。

Page 39: 食品化学 Food Chemistry

2 2 单糖、双糖在食品应用方面的物理性质单糖、双糖在食品应用方面的物理性质甜度 溶解度 结晶性 吸湿性和保湿性 渗透性 冰点降低 抗氧化性 粘度

Page 40: 食品化学 Food Chemistry

甜度甜度

各种单糖或双糖的相对甜度为:蔗糖1.0 ,果糖 1.5 ,葡萄糖 0.7 ,半乳糖0.6 ,麦芽糖 0.5 ,乳糖 0.4

Page 41: 食品化学 Food Chemistry

溶解度溶解度果糖 78.94% , 374.78g/100g 水,蔗糖

66.60% , 199.4g/100g 水 , 葡 萄 糖46.71% , 87.67g/100g 水

工 业 上 一 般 在 较 高 温 度 下55℃ ( 70% )

果汁和蜜饯类食品就是利用糖作为保藏剂的。

Page 42: 食品化学 Food Chemistry

结晶性结晶性 蔗糖 >葡萄糖 >果糖和转化糖 淀粉糖浆是葡萄糖、低聚糖和糊精的混

合物,自身不能结晶并能防止蔗糖结晶 生产硬糖时添加一定量的( 30%-

40% )的淀粉糖浆 ( 1 )不含果糖,不吸湿,糖果易于保存;( 2 )糖浆中含有糊精,能增加糖果的韧性;( 3 )糖浆甜味较低,可缓冲蔗糖的甜味,使糖果的甜味适中。

Page 43: 食品化学 Food Chemistry

吸湿性和保湿性吸湿性和保湿性 吸湿性、保湿性 果糖、转化糖 >葡萄糖、麦芽糖 >蔗糖 对于生产硬糖要求生产材料的吸湿性低,如蔗糖;对于生产软糖的材料要求吸湿性要高,如转化糖和果葡糖浆

Page 44: 食品化学 Food Chemistry

渗透性渗透性 相同浓度下(质量百分浓度),溶质分

子的分子质量越小,溶液的摩尔浓度就越大,溶液的渗透压就越大,食品的保存性就越高。对于蔗糖来说: 50% 可以抑制酵母的生长, 65% 可以抑制细菌的生长, 80% 可以抑制霉菌的生长

Page 45: 食品化学 Food Chemistry

冰点降低冰点降低 当在水中加入糖时会引起溶液的冰点降低

葡萄糖 >蔗糖 >淀粉糖浆 生产糕点类冰冻食品时,混合使用淀粉糖浆和蔗糖,可节约用电

Page 46: 食品化学 Food Chemistry

抗氧化性抗氧化性

糖类的抗氧化性实际上是由于糖溶液中氧气的溶解度降低而引起的。

Page 47: 食品化学 Food Chemistry

粘度粘度 在相同浓度下,溶液的粘度有以下顺序:葡萄糖、果糖 <蔗糖 <淀粉糖浆

葡萄糖溶液的粘度随温度的升高而增大,但蔗糖溶液的粘度则随温度的增大而降低

糖类物质的粘度不同,在产品中选用糖类时就要加以考虑

Page 48: 食品化学 Food Chemistry

3 3 单糖、双糖在食品应用方面的化学性质单糖、双糖在食品应用方面的化学性质 水解反应——转化糖的形成

碱作用

酸的作用

Page 49: 食品化学 Food Chemistry

水解反应——转化糖的形成水解反应——转化糖的形成

C12H22O11+H2O → C6H12O6+ C6H12O6

蔗糖(左旋) H + \ 转化酶 果糖 葡萄糖(右旋)

蔗糖在酶或酸的水解作用下形成的产物叫做转化糖。所谓转化是指水解前后溶液的旋光度从左旋转化到右旋。

产用于转化糖生产的酸是盐酸,酶是 β-葡萄糖苷酶和 β-果糖苷酶。

Page 50: 食品化学 Food Chemistry

碱作用碱作用 变旋现象(异构化):果葡糖浆(人造蜂蜜)

分解反应:碱的浓度过高,引起糖转化生成糖醛酸,并发生分解

Page 51: 食品化学 Food Chemistry

酸的作用酸的作用 复合反应:如 2C6H12O6→C12H22O12+ H2O ,盐酸 >硫酸 >草酸,在工业上用酸水解淀粉产生葡萄糖时,产物往往含有 5%左右的异麦芽糖和龙胆二糖 。( 1 )严格控制加酸量和淀粉乳液的浓度, 0.15%盐酸, 35Be 的淀粉乳液是比较合适的。( 2 )控制液化温度;( 3 )控制液化时间

脱水反应:戊糖(加热和酸性条件)→糠醛;己糖(加热和酸性条件)→ 5-羟基糠醛→(分解)甲酸等→(聚合)有色物质

Page 52: 食品化学 Food Chemistry

4 4 多糖在食品应用方面的性质多糖在食品应用方面的性质 淀粉

果胶

Page 53: 食品化学 Food Chemistry

淀粉淀粉淀粉的物理性质

淀粉的化学性质

淀粉的糊化和老化

化学改性淀粉

Page 54: 食品化学 Food Chemistry

淀粉的物理性质淀粉的物理性质分子形状 ------直链淀粉和支链淀粉 直链淀粉 ----- 成螺旋状( 6个残基)淀粉粒,其形状有圆形、卵形(椭圆形)、多角形等。马铃薯 -卵形,玉米淀粉 -圆形和多角形,稻米淀粉 - 多角形 ;马铃薯淀粉粒 65μm ,小麦淀粉粒20μm ,甘薯淀粉粒 15μm ,玉米淀粉粒16μm ,稻米淀粉粒 5μm

支链淀粉易分散在冰水中,而直链淀粉不易分散在冰水中。

Page 55: 食品化学 Food Chemistry

甘薯淀粉

Page 56: 食品化学 Food Chemistry

马铃薯淀粉

Page 57: 食品化学 Food Chemistry

豌豆淀粉

Page 58: 食品化学 Food Chemistry

玉米淀粉

Page 59: 食品化学 Food Chemistry
Page 60: 食品化学 Food Chemistry
Page 61: 食品化学 Food Chemistry
Page 62: 食品化学 Food Chemistry
Page 63: 食品化学 Food Chemistry
Page 64: 食品化学 Food Chemistry

淀粉的化学性质淀粉的化学性质 与碘反应

水解反应

Page 65: 食品化学 Food Chemistry

与碘反应与碘反应直链淀粉与碘反应呈棕蓝色,而支链淀粉与碘反应呈蓝色

糊精与碘的反应随分子质量的减小,溶液呈色依次变化为:蓝色 -紫色 -橙色 -无色。

淀粉、糊精与碘的反应是一个物理过程。是由于碘在淀粉分子螺旋中吸附而引起的。在淀粉分子的每一个螺旋中能吸附一分子的碘,吸附的作用力为范得华力。

Page 66: 食品化学 Food Chemistry

水解反应水解反应

酸法

酶法

Page 67: 食品化学 Food Chemistry

酸法酸法糖化 ---- 用无机酸作为催化剂使淀粉发生水解反应转变

成葡萄糖淀粉的种类:不同淀粉的可水解难易程度不一样,由难到易依次为马铃薯淀粉 -玉米、高粱等谷类淀粉 - 大米淀粉。

淀粉的形态:无定性的淀粉比结晶态的淀粉容易被水解。淀粉的化学结构:直链淀粉比支链淀粉易于水解, α-

1 , 4糖苷键比 α-1 , 6糖苷键易于水解。催化剂:不同的无机酸对淀粉水解反应的催化效果不一样,在相同浓度下,催化强弱顺序为:盐酸 >硫酸 >草酸。

温度。

Page 68: 食品化学 Food Chemistry

酶法酶法 酶法对淀粉的水解包括糊化、液化和糖化三个工序。 常用于淀粉水解的酶有 α-淀粉酶、 β-淀粉酶和葡萄糖淀粉酶。 α-淀粉酶用于液化淀粉又称为液化酶, β-淀粉酶和葡萄糖淀粉酶用于淀粉糖化,又称为糖化酶。

α-淀粉酶 : 是一种内切酶,只能水解 α-1 , 4糖苷键,不能水解α-1 , 6糖苷键,但可越过 α-1 , 6糖苷键水解 α-1 , 4糖苷键,但不能水解麦芽糖中的 α-1 , 4糖苷键,利用 α-淀粉酶对淀粉进行水解,产物中含有葡萄糖、麦芽糖、麦芽三糖。

β-淀粉酶:是一种外切酶,从淀粉的还原端开始对淀粉进行水解,能水解 α-1 , 4糖苷件,不能水解 α-1 , 6糖苷键,且不能越过α-1 , 6糖苷键水解 α-1 , 4糖苷键,利用 β-淀粉酶对淀粉进行水解,产物中含有 β-麦芽糖和 β- 极限糊精。

葡萄糖淀粉酶:是一种外切酶,从淀粉的非还原端水解 α-1 , 4 , α-1 , 6 和 α-1 , 3糖苷键,最终产物为葡萄糖。

Page 69: 食品化学 Food Chemistry

淀粉的糊化和老化淀粉的糊化和老化 β-淀粉:指具有胶束结构的生淀粉;α-淀粉:指不具有胶束结构的淀粉,也就是处于糊化状态的淀粉;

膨润现象:淀粉颗粒因吸水,体积膨胀数十倍,生淀粉的胶束结构即行消失的现象。

糊化 与老化

Page 70: 食品化学 Food Chemistry

糊化糊化 生淀粉在水中加热至胶束结构全部崩溃,淀粉分子形成

单分子,并为水所包围而成为溶液状态。由于淀粉分子是链状或分支状,彼此牵扯,结果形成具有粘性的糊状溶液,这种现象称为糊化。

淀粉糊化温度必须达到一定程度,不同淀粉的糊化温度不一样

A淀粉的种类和颗粒大小; B 食品中的含水量; C添加物:高浓度糖降低淀粉的糊化,脂类物质能与淀粉形成复合物降低糊化程度,提高糊化温度,食盐有时会使糊化温度提高,有时会使糊化温度降低; D酸度:在pH4-7 的范围内酸度对糊化的影响不明显,当 pH 大于10.0 ,降低酸度会加速糊化

Page 71: 食品化学 Food Chemistry
Page 72: 食品化学 Food Chemistry

老化老化 经过糊化后的淀粉在室温或低于室温的条件下放置后,溶液变得不透明甚至凝结而沉淀,这种现象称为淀粉的老化

A 淀粉的种类:直链淀粉比支链淀粉更易于老化; B 食品的含水量:食品中的含水量在 30%-60%淀粉易于老化,当水分含量低于 10% 或者有大量水分存在时淀粉都不易老化; C 温度:在 2-4℃淀粉最易老化,温度大于 60℃ 或小于 -20℃颠覆你呢都不易老化; D 酸度:偏酸或偏碱淀粉都不易老化。

将糊化后的淀粉在 80℃ 以上高温迅速去除水分使食品的水分保持在 10% 以下或在冷冻条件下脱水。

Page 73: 食品化学 Food Chemistry

化学改性淀粉化学改性淀粉预糊化淀粉

淀粉磷酸酯

交联淀粉

等等

Page 74: 食品化学 Food Chemistry

果胶果胶果胶的定义及果胶的酯化度

果胶的分类及果胶形成凝胶的条件

影响果胶形成凝胶的因素

Page 75: 食品化学 Food Chemistry

果胶的定义及果胶的酯化度果胶的定义及果胶的酯化度果胶是指不同程度酯化和中和的 α-半乳糖醛酸以 1 , 4-苷键形成的聚合物。

果胶的酯化度 =果胶中酯化的半乳糖醛酸的残基数 /果胶中总半乳糖醛酸的残基数。

Page 76: 食品化学 Food Chemistry

果胶的分类及果胶形成凝胶的条件果胶的分类及果胶形成凝胶的条件在果蔬成熟过程中,果胶由 3种形态:原果

胶:高度甲酯化的多聚半乳糖醛酸;果胶:中等度甲酯化的多聚半乳糖醛酸;果胶酸:未甲酯化的多聚半乳糖醛酸。

果胶形成凝胶的条件:糖含量 60-65% , pH2.0-3.5 ,果胶含量 0.3%-0.7% 。

Page 77: 食品化学 Food Chemistry

影响果胶形成凝胶的因素影响果胶形成凝胶的因素果胶分子量:凝胶的强度与果胶的分子量呈正比;酯化度:酯化度在 30-50 时,凝胶形成时间随酯

化度的增大而增加,酯化度在 50-70 时,凝胶形成时间随酯化度的增大而减小。酯化度( DE )小于 50 的果胶称为低甲氧基果胶,低甲氧基果胶形成凝胶不需要糖,但必须有多价离子存在,如钙离子、铝离子等。

pH 的影响:果胶一般在 pH2.7-3.5 形成凝胶,最适 pH3.2 ,低甲氧基果胶在 pH2.5-6.5形成凝胶。

温度。

Page 78: 食品化学 Food Chemistry

第四章 蛋白质第四章 蛋白质概述

蛋白质的化学反应及与食品成分的相互作用

蛋白质在加工贮藏过程中的变化

蛋白质新资源

Page 79: 食品化学 Food Chemistry

1 1 概述概述蛋白质是指氨基酸通过肽键连接形成的高化合

物蛋白质的分类 分子组成 -----简单蛋白质、结合蛋白质 辅基 -----核蛋白、脂蛋白、糖蛋白、磷蛋 白、血红素蛋白、金属蛋白 空间形状 -----纤维蛋白、球蛋白 功能性质 ----- 结构蛋白、生物活性蛋白, 食品蛋白

Page 80: 食品化学 Food Chemistry

2 2 蛋白质的化学反应及与食品蛋白质的化学反应及与食品成分的相互作用成分的相互作用

蛋白质的水溶性 织构化 凝胶形成 面团形成 乳化性质 起泡性质 风味结合作用

Page 81: 食品化学 Food Chemistry

蛋白质的水溶性蛋白质的水溶性蛋白质与水分之间的相互作用

影响蛋白质水溶性的因素

蛋白质依水溶性的分类

Page 82: 食品化学 Food Chemistry

蛋白质与水分之间的相互作用蛋白质与水分之间的相互作用

蛋白质与水之间的作用力主要是蛋白质中的肽键(偶极 -偶极相互作用或氢键),或氨基酸的侧链(解离的、极性甚至非极性基团)同水分子之间发生了相互作用。

Page 83: 食品化学 Food Chemistry

影响蛋白质水溶性的因素影响蛋白质水溶性的因素 pH (等电点 pI ) pH<pI 正电荷, pH=pI 无电荷, pH>pI 负电荷 离子强度 μ=0.5∑CiZi2

盐溶与盐析 非水溶剂 介电常数下降 温度 变性

Page 84: 食品化学 Food Chemistry

蛋白质依水溶性的分类蛋白质依水溶性的分类清蛋白:可溶于 pH6.6 的水中,血清清蛋白,卵清蛋白, α-乳清蛋白;

球蛋白:能溶于 pH7 的稀碱溶液, β-乳球蛋白;

醇溶蛋白:能溶于 70% 的乙醇,玉米醇溶蛋白;

谷蛋白:在上述溶剂中都不溶解,但可溶于酸( pH2 )或碱( pH12 )

Page 85: 食品化学 Food Chemistry

织构化织构化热凝固和薄膜形成

纤维形成

热塑挤压

Page 86: 食品化学 Food Chemistry

凝胶形成凝胶形成蛋白质形成凝胶有两个过程,首先是蛋白质变性而伸展,而后是伸展的蛋白质之间相互作用而积聚形成有序的蛋白质网络结构。

影响蛋白质凝胶形成的因素有 :蛋白质的浓度 、蛋白质的结构 、添加物 、 pH

Page 87: 食品化学 Food Chemistry

面团形成面团形成小麦胚乳中的面筋蛋白质在当有水分存

在时在室温下混合和揉搓能够形成强内聚力和粘弹性糊状物的过程。水合的面粉在混合揉搓时,面筋蛋白质开始取向,排列成行或部分伸展,这样将增强蛋白质的疏水相互作用并通过二硫交换反应形成二硫键。最初的面筋颗粒形成薄膜,形成三维空间上具有粘弹性的蛋白质网络。

Page 88: 食品化学 Food Chemistry

影响蛋白质面团形成的因素影响蛋白质面团形成的因素氧化还原剂 溴酸盐 半胱氨酸

面筋含量

面筋蛋白质的种类:利用不同比例的麦醇溶蛋白和麦谷蛋白进行实验,发现麦谷蛋白决定面团的弹性、粘结性、混合耐受性等,而麦醇溶蛋白决定面团的延伸性和膨胀性

Page 89: 食品化学 Food Chemistry

乳化性质乳化性质 影响蛋白质乳化的因素:蛋白质的溶解性:蛋白质的溶解性越好,其乳

化性也越好,但蛋白质的乳化性主要与蛋白质的亲水 -亲油平衡性有关;

pH :有些蛋白质在 pI 时乳化性最好,而有些蛋白质在 pI乳化性最差;

盐: 0.5-1.0mol/L 的氯化钠有利于肉馅中蛋白质的乳化;

热作用:热不利于蛋白质乳化性的发挥。

Page 90: 食品化学 Food Chemistry

起泡性质起泡性质 影响蛋白质起泡的因素有:盐类:氯化钠一般能提高蛋白质的发泡性能,但会使泡沫的稳定性降低, Ca2+则能提高蛋白质泡沫的稳定性。

糖类:糖类会抑制蛋白质起泡,但可以提高蛋白质泡沫的稳定性。

脂类:脂类对蛋白质的起泡和泡沫的稳定性都不利。

其他:蛋白质浓度为 2-8% 时,起泡效果最好,除此之外还与搅拌时间,强度、方向等有关。

Page 91: 食品化学 Food Chemistry

风味结合作用风味结合作用 影响蛋白质风味结合作用的因素有: 水:水可以提高蛋白质对极性风味化合物的结

合作用,但对非极性风味化合物的结合没有影响;

盐:凡能使蛋白质解离或二硫键断裂的盐类,都能提高蛋白质的风味结合能力;

水解作用:蛋白质水解后其风味结合作用严重被破坏;

热变性:热变性一般会使蛋白质的风味结合作用有所加强;

其他:脱水,脂类存在。

Page 92: 食品化学 Food Chemistry

3 3 蛋白质在加工贮藏过程中的变化蛋白质在加工贮藏过程中的变化蛋白质的变性

加工对蛋白质营养价值的影响

Page 93: 食品化学 Food Chemistry

蛋白质的变性蛋白质的变性蛋白质变性 的概念

导致蛋白质变性的因素

影响蛋白质变性的因素

Page 94: 食品化学 Food Chemistry

蛋白质变性的概念蛋白质变性的概念蛋白质变性是指当天然蛋白质受到物理

或化学因素的影响时,使蛋白质分子内部的二、三、四级结构发生异常变化,从而导致生物功能丧失或物理化学性质改变的现象。

Page 95: 食品化学 Food Chemistry

导致蛋白质变性的因素导致蛋白质变性的因素物理因素:热作用、高压、剧烈震荡、辐射等;

化学因素有:酸、碱、重金属离子、高浓度盐、有机溶剂

Page 96: 食品化学 Food Chemistry

变性对蛋白质功能的影响变性对蛋白质功能的影响失去生物活性,如酶、免疫球蛋白等;理化性质改变:不能结晶、溶解度降低、

特性粘度增大、旋光值改变等;生物化学性质改变:营养功能,血蛋白持氧能力;

构象发生改变。

Page 97: 食品化学 Food Chemistry

加工对蛋白质营养价值的影响加工对蛋白质营养价值的影响 热变性虽然会导致蛋白质生物活性的丧失,但

经热变性后的蛋白质更易于消化吸收; 热烫或蒸煮可以使对食品保藏不利的酶失活,如脂酶、脂肪氧化酶、多酚氧化酶,从而可以防止食品在贮藏过程中发生变色、风味变差、维生素损失等现象;

热变性可使一些具有毒性的蛋白质和抗营养因子失活,如肉毒杆菌毒素在 100℃失活,而金黄色葡萄球菌毒素在 100℃仍然不失活,蛋白酶抑制剂、凝集素等

Page 98: 食品化学 Food Chemistry

蛋白质新资源蛋白质新资源单细胞蛋白质

叶蛋白

浓缩鱼蛋白

Page 99: 食品化学 Food Chemistry

第五章 油脂第五章 油脂

概述 油脂的物理性质 油脂在贮藏加工过程中的变化 油脂的精炼 油脂的分析

Page 100: 食品化学 Food Chemistry

1 1 概述概述

油脂的分类

油脂的功能

Page 101: 食品化学 Food Chemistry

油脂的分类油脂的分类物理状态 -----脂肪和油 化学结构 -----简单脂 、复合脂 、衍生脂 来源 -----乳脂类、植物脂、动物脂、海

产品动物油、微生物油脂 不饱和程度 -----干性油:碘值大于

130 ,如桐油、亚麻籽油、红花油等;半干性油:碘值介于 100-130 ,如棉籽油、大豆油等;不干性油:碘值小于 100 ,如花生油、菜子油、蓖麻油

构成的脂肪酸 ----- 单纯酰基油,混合酰基油

Page 102: 食品化学 Food Chemistry

油脂的功能油脂的功能生命功能:构成机体,调节生命过程;

营养功能:提供必需脂肪酸和热能,运输脂溶性维生素;

风味功能

Page 103: 食品化学 Food Chemistry

2 2 油脂的物理性质油脂的物理性质油脂的晶体特性

油脂的热性质

油脂的油性和粘性 塑性

Page 104: 食品化学 Food Chemistry

油脂的晶体特性油脂的晶体特性同质多晶现象

影响油脂晶型的因素

Page 105: 食品化学 Food Chemistry

同质多晶现象同质多晶现象天然油脂一般都存在 3-4种晶型,按熔点增加

的顺序依次为:玻璃质固体(亚 α 型或 γ 型),α 型, β’ 型和 β 型,其中 α 型, β’ 型和 β 型为真正的晶体。 α 型:熔点最低,密度最小,不稳定,为六方堆切型; β’ 和 β 型熔点高,密度大,稳定性好, β’ 型为正交排列, β 型为三斜型排列。 X衍射发现 α 型的脂肪酸侧链无序排列, β’ 型和 β 型脂肪酸侧链有序排列,特别是 β 型油脂的脂肪酸侧链均朝一个方向倾斜,有两种方式排列: DCL- 二位碳链长, β-2 型,TCL- 三位碳链长, β-3 型。

Page 106: 食品化学 Food Chemistry

六方碓切 正交型 三斜型

Page 107: 食品化学 Food Chemistry
Page 108: 食品化学 Food Chemistry

影响油脂晶型的因素影响油脂晶型的因素油脂分子的结构:一般说来单纯性酰基甘油酯容易形成

稳定的 β 型结晶,而且为 β-2 型,而混合酰基甘油酯由于侧链长度不同,容易形成 β’ 型,并以 TCL排列。

油脂的来源:不同来源的油脂形成晶型的倾向不同,椰子油、可可脂、菜籽油、牛脂、改性猪油易于形成β’ 型;豆油、花生油、玉米油、橄榄油、等易于形成 β型。

油脂的加工工艺:熔融状态的油脂冷却时的温度和速度将对油脂的晶型产生显著的影响,油脂从熔融状态逐渐冷却时首先形成 α 型,当将 α 型缓慢加热融化后在逐渐冷却后就会形成 β’ 型,再将 β’ 型缓慢加热融化后逐渐冷却后则形成 β 型。实际应用的例子:用棉籽油加工色拉油时进行冬化处理,这一过程要求缓慢进行,使优质尽量形成粗大的 β 型,如果冷却过快,则形成亚 α 型,不利于过滤 。

Page 109: 食品化学 Food Chemistry

油脂的热性质油脂的热性质熔点 :油脂的凝固点比其熔点低 1-5 ℃;甘油三酯 <甘油二酯 <甘油一酯 ;组成脂肪酸的饱和程度越高,熔点越高 。

沸点和蒸汽压 :沸点 ---甘油三酯 >甘油二酯 >甘油一酯 >脂肪酸 >脂肪酸的低级醇酯 ;蒸汽压则按相反的顺序变化 ;

烟点,闪点,着火点

Page 110: 食品化学 Food Chemistry

烟点,闪点,着火点烟点,闪点,着火点烟点:在不通风的情况下加热油脂观察到油脂发烟时的温度,一般为 240℃ 。

闪点:油脂在加热时油脂的挥发物能被点燃但不能维持燃烧的温度,一般为340℃ 。

着火点:油脂在加热时油脂的挥发物能被点燃且能持续燃烧的时间不少于 5秒的温度,一般为 370℃ 。

Page 111: 食品化学 Food Chemistry

油脂的油性和粘性油脂的油性和粘性油性是指液态油脂能形成润滑薄膜的能力。当颗粒直径大于 5 微米时,人的口感粗糙 。

粘性,这是由酰基甘油分子侧链之间的引力引起的。蓖麻油之所以粘性较其他油高,是因为含有蓖麻酸醇。

Page 112: 食品化学 Food Chemistry

塑性塑性油脂的塑性是指在一定压力下表观固体脂肪具有的抗应变能力。

固体脂肪指数

Page 113: 食品化学 Food Chemistry

3 3 油脂在贮藏加工过程中的变化油脂在贮藏加工过程中的变化水解 -----无机酸(浓硫酸)、碱(氢氧

化钠)、酶、金属氧化物(氧化锌、氧化镁)

异构化 -----几何异构、位置异构 热反应 ----- 热聚合 、热氧化聚合 、油脂的缩合 、热分解 、热氧化分解

油脂的辐照裂解 油脂的氧化

Page 114: 食品化学 Food Chemistry

油脂的辐照裂解油脂的辐照裂解

高剂量 10kGy-50kGy :肉、肉制品灭菌;中等剂量 1kGy-10kGy :冷藏鲜鱼、鸡、

水果、蔬菜的保藏;低剂量低于 1kGy :防止马铃薯、洋葱

发芽,延迟水果蔬菜的成熟,粮食杀虫。含油食品在辐照时其中的油脂会在临近羰基的位置发生分解,形成辐照味。

Page 115: 食品化学 Food Chemistry

油脂的氧化油脂的氧化自动氧化

光氧化

酶促氧化

Page 116: 食品化学 Food Chemistry

自动氧化自动氧化 自动氧化是一种自由基链式反应。引发期:油脂分子在光、热、金属催化 剂的作用下产生自由基,如 RH + Mx+→R·+H++M(x-1)+;传播期: R·+3O2→ROO· , ROO·+RH→ROOH+R·; 终止期: ROO·+ROO·→ROOR+O2 , ROO·+R·→ROOR , R·+R·→R-R 。

Page 117: 食品化学 Food Chemistry

油酸形成氢过氧化物油酸形成氢过氧化物11 10 9 8

-CH2-CH=CH-CH2-

-CH=CH-CH- -CH-CH=CH- -CH=CH-CH- -CH-CH=CH-11 10 9 11 10 9 10 9 8 10 9 8

O2 O2 O2 O2

-CH=CH-CH- -CH-CH=CH- -CH=CH-CH- -CH-CH=CH-|OO

|OO

|OO

|OO

-CH=CH-CH- -CH-CH=CH- -CH=CH-CH- -CH-CH=CH-|OOH

|OOH

|OOH

|OOH

9 8 1011

. . . .

. . . .

Page 118: 食品化学 Food Chemistry

亚油酸形成氢过氧化物亚油酸形成氢过氧化物13 12 11 10

-CH=CH-CH2-CH=CH-

-CH-CH=CH-CH=CH-13

O2

9

-CH=CH-CH-CH=CH-.

. -CH=CH-CH=CH-CH-9

O2.

-CH-CH=CH-CH=CH- -CH=CH-CH=CH-CH-

.|OO .

|OO

-CH-CH=CH-CH=CH-13

|OOH

-CH=CH-CH=CH-CH-9

|OOH

Page 119: 食品化学 Food Chemistry

亚麻酸形成氢过氧化物亚麻酸形成氢过氧化物16 15 13 12 10 9

14 11

.14

.11

.16 .12 .13.9

O2

H.

O2

H.

O2

H.

O2

H.16OOH

12OOH

13OOH 9

OOH

Page 120: 食品化学 Food Chemistry

光氧化光氧化光敏素( 基 态 ) +hυ→ 光敏素 * (激发

态)

光敏素 * (激发态) +3O2→ 光敏素(基态) +1O2

不饱和脂肪酸 +1O2→ 氢过氧化物

Page 121: 食品化学 Food Chemistry
Page 122: 食品化学 Food Chemistry
Page 123: 食品化学 Food Chemistry

亚油酸

V 光敏氧化 1500V 自动氧化

13 12 10 9

Sens+hv

H...O2 O2...H H...O2

O2...H

OOHHOO OOH OOH

Page 124: 食品化学 Food Chemistry

酶促氧化酶促氧化脂肪氧合酶可以使氧气与油脂发生反应而生成氢过氧化物,植物体中的脂氧合酶具有高度的基团专一性,他只能作用于 1 , 4-顺,顺 -戊二烯基位置,且此基团应处于脂肪酸的 ω-8位。

在脂氧合酶的作用下脂肪酸的 ω-8先失去质子形成自由基,而后进一步被氧化。

大豆制品的腥味就是不饱和脂肪酸氧化形成六硫醛醇。

Page 125: 食品化学 Food Chemistry

CH = CH-6 c

CH = CHc

-8CH2

Lox

CH = CH CH = CH

CH

CH - CH t CH = CH CH = CH t CH - CH-6

CH CH

-10

CH - CH CH = CH CH = CH CH - CH

OOH CH CH OOH

Òì¹¹ »¯

c c

Page 126: 食品化学 Food Chemistry

油脂酸败油脂酸败 水解型酸败:油脂在一些酶 / 微生物的作

用下水解形成一些具有异味的酸,如丁酸、己酸、庚酸等,造成油脂产生汗臭味和苦涩味;

酮型酸败:指脂肪水解产生的游离饱和脂肪酸在一系列酶的作用下氧化,最后形成酮酸和甲基酮所致。如污染灰绿青霉、曲霉等;

氧化型酸败:油脂氧化形成的一些低级脂肪酸、醛、酮所致。

Page 127: 食品化学 Food Chemistry

影响油脂氧化的因素影响油脂氧化的因素

油脂的脂肪酸组成 温度 氧气 水分 光和射线 助氧化剂

Page 128: 食品化学 Food Chemistry

油脂的脂肪酸组成油脂的脂肪酸组成

不饱和脂肪酸的氧化速度比饱和脂肪酸快,花生四烯酸:亚麻酸:亚油酸:油酸 =40 : 20 : 10 : 1 。

顺式脂肪酸的氧化速度比反式脂肪酸快,共轭脂肪酸比非共轭脂肪酸快,游离的脂肪酸比结合的脂肪酸快, Sn-1 和 Sn-2位的脂肪酸氧化速度比 Sn-3 的快;

Page 129: 食品化学 Food Chemistry

温度 氧气温度 氧气 温度越高,氧化速度越快,在 21-63℃范围内,温度每上升 16℃ ,氧化速度加快 1 倍;

有限供氧的条件下,氧化速度与氧气浓度呈正比,在无限供氧的条件下氧化速度与氧气浓度无关;

Page 130: 食品化学 Food Chemistry

助氧化剂助氧化剂过渡金属: Ca 、 Fe 、 Mn 、 Co 等,

他们可以促进氢过氧化物的分解,促进脂肪酸中活性亚甲基的 C-H 键断裂,使样分子活化,一般的助氧化顺序为 Pb>Cu>Se>Zn>Fe>Al>Ag

特殊情况下 Vc 、 VE 等抗氧化剂也能成为助氧化剂

Page 131: 食品化学 Food Chemistry

油脂抗氧化剂油脂抗氧化剂 ( 1 )自由基清除剂:酚类抗氧化剂,形成低活性的自

由基; ( 2 )氢过氧化物分解剂:含硫或含硒化合物,分解氢

过氧化物形成非自由基产物; ( 3 )抗氧化剂增效剂:能够提高抗氧化剂的抗氧化效率,根据抗氧化剂增效剂的原理分: A 抗氧化剂还原剂:本身不具有抗氧化作用,但可使氧化状态的抗氧化剂还原为还原态的抗氧化剂,从而增长其寿命; B 抗氧化剂混用剂:本身可以抗氧化 BHA , BHT 等,具有协同效应; C 金属螯合剂:柠檬酸、磷酸、 Vc 、 EDTA 等;

( 4 )单线态氧淬灭剂: VE 、 β-胡箩卜素等; ( 5 )脂氧合酶抑制剂:重金属等。

Page 132: 食品化学 Food Chemistry

3 3 油脂的精炼油脂的精炼

Page 133: 食品化学 Food Chemistry

脱胶:在一定温度下用水去除毛油中磷脂和蛋白质的过程,从而可以防止油脂在高温时的起泡、发烟、变色发黑等现象;

碱炼:用碱中和毛油中的游离脂肪酸形成皂脚而去除的过程;

脱色:在毛油中加入一定量的活性白土和活性碳而吸附除去色素的过程;

脱臭:在真空条件下将蒸汽通过油脂而带走一些异味物质;

Page 134: 食品化学 Food Chemistry

氢化:氢气在油脂不饱和分子上的加成反应,是液态油脂、固态催化剂和气态氢气的三相反应体系。油脂氢化的选择性( SR 或 S )是指不饱和程度较高的脂肪酸的氢化速度与不饱和程度较低的脂肪酸的氢化速度的比值,例如在豆油氢化时亚麻酸的选择性是 2.3 ,表示亚麻酸的氢化速度是亚油酸的 2.3 倍。

酯交换反应:由于油脂的性质受到脂肪酸在油脂分子中分布的位置的影响,所以通过改变油脂分子中脂肪酸的位置分布就可以改变油脂的性质,一般油脂的酯交换反应有分子内酯交换和分子间酯交换,随机酯交换和定向酯交换。所用的催化剂有碱性催化剂,如 Na 、 K 、 Na-K 合金、 NaOH 、甲醇钠等,现在开始用酶。

Page 135: 食品化学 Food Chemistry

油脂的分析油脂的分析

油脂特征值的分析

油脂氧化稳定性的分析

Page 136: 食品化学 Food Chemistry

油脂特征值的分析油脂特征值的分析 酸价:中和 1g油脂所需要的 KOH 的 mg 数,我国规定食用油脂的酸价必须小于或等于 5;

皂化值:完全皂化 1g油脂所需 KOH 的 mg 数,一般油脂的皂化值为 200;

碘值: 100g油脂完全加成碘化所需要的 I2 的 g

数,这与油脂的不饱和程度呈正比;乙酰值:将 1g油脂完全乙酰化后水解,中和

所产生的酸需要的 KOH 的 mg 数。

Page 137: 食品化学 Food Chemistry

油脂氧化稳定性的分析油脂氧化稳定性的分析 测定指标: 过氧化值:用碘量法测定,即在酸性条件下,政治放中的过氧化物与过量的 KI 反应生成 I2 ,用Na2S2O3滴定生成的 I2 ,求出每 kg油脂中所含过氧化物的毫摩尔数,即为油脂的过氧化值;

硫代巴比妥酸法:此法以测定油脂的氧化产物丙二醛为对象,以此衡量油脂的氧化程度。

油脂氧化稳定性测定方法: 活性氧法:在 97.8℃ 下,以 2.33ml/s 的速度向油脂中通入空气,测定当过氧化值达到 100 (植物油)或 20 (动物油)时的时间;

Schaal法:油脂在 60℃ 下贮存达到一定过氧化值所需要的时间。

Page 138: 食品化学 Food Chemistry

第六章 色素第六章 色素

概述

食品中的天然色素

食品的褐变作用

Page 139: 食品化学 Food Chemistry

1 1 概述概述

颜色和色素

色素的分类

物质呈色的原理

Page 140: 食品化学 Food Chemistry

颜色和色素颜色和色素

颜色:人对眼睛视网膜接受到的光信号作出反应,在大脑中产生的某种感觉。

色素:食品中呈现各种颜色的物质。

Page 141: 食品化学 Food Chemistry

色素的分类色素的分类来源 天然色素和人工合成色素;动物色素(红血素、虾青素等)、植物色素(叶绿素、胡箩卜素、花青素等)、微生物色素(红曲色素);

溶解性 脂溶性和水溶性 结构 吡咯类色素(叶绿素、红血素等)、多烯

类(类胡箩卜素)、酚类(花青素、儿茶素、花黄素等)、醌酮类(红曲色素、姜黄素、虫胶色素等)、其他

Page 142: 食品化学 Food Chemistry

物质呈色的原理物质呈色的原理在可见光中,不同波长的光呈现不同的颜色,这是因为不同的物质能够吸收不同波长的光,如果某种物质吸收的光的波长范围在可见光以外,这种物质就是无色的,如果吸收可见光区的某些波长的光,那这种物质是有颜色的,而它所呈现的颜色就在可见光中未被吸收的关的颜色,即被吸收关的互补色。

Page 143: 食品化学 Food Chemistry

不同波长光的的光 透过光(互补色)

波长( nm ) 相应的颜色

400 紫 黄绿

425 蓝青 黄

450 青 橙黄

490 青绿 红

510 绿 紫

530 黄绿 紫

550 黄 蓝青

590 橙黄 青

640 红 青绿

730 紫 绿

Page 144: 食品化学 Food Chemistry

1. 发色团 (Chromophore )

在紫外或可见光区 (200~800nm )具有吸收峰的基团被称为发色团 , 发色团均具有双键。

如: -N=N-, -N=O, C=S, C=C , C=O 等 .

2.助色团 ( Auxochrome)

有些基团的吸收波段在紫外区,不可能发色,但当它们与发色团相连时,可使整个分子对光的吸收向长波方向移动,这类基团被称为助色团。

如: -OH, -OR, -NH2, -NHR, -NR2, -SR, -Cl, -Br 等。

Page 145: 食品化学 Food Chemistry

2 2 食品中的天然色素食品中的天然色素

吡咯类色素

多烯类

酚类

Page 146: 食品化学 Food Chemistry

吡咯类色素吡咯类色素吡咯色素由四个吡咯环的 α-碳原子通过次甲基相连而形成的共轭体系,也就是卟啉环。中间通过共价键或配位键与金属元素形成配合物,而呈现各种颜色。

叶绿素 血红素

Page 147: 食品化学 Food Chemistry

叶绿素叶绿素 吡咯环中间为镁原子 叶绿素是由叶绿酸与叶绿醇和甲醇形成的二酯 高等植物中有 a 、 b两种, a:b=3:1 叶绿素对酸敏感,在酸性条件下,其中的镁原子被氢原

子代替而形成暗绿色或绿褐色的去镁叶绿素;在碱性溶液中会被水解为仍为鲜绿色的叶绿酸盐,且形成的绿色更为稳定

而在适当条件下叶绿素中的 Mg还可以被其他元素如:Cu 、 Fe 、 Zn 等取代或置换,形成的取代物的颜色仍为鲜绿色,且稳定性大为提高,尤其以叶绿素铜钠的颜色最为鲜亮

因此在蔬菜技术工中可用石灰水或氢氧化镁处理,以提高溶液的 pH ,保持蔬菜的鲜绿色

Page 148: 食品化学 Food Chemistry

叶绿素

植醇

Page 149: 食品化学 Food Chemistry

叶绿素的稳定性

(绿色,水溶性)脱植叶绿素 -植醇 叶绿素(绿色,脂溶性) 叶绿素酶

-Mg2+ 酸 / 热 -Mg2+ 酸 / 热

脱镁脱植叶绿素(橄榄绿,水溶性) 脱镁叶绿素(橄榄绿 ,脂溶性)

-COCH3 热 -COCH3 热

焦脱镁脱植叶绿素(褐色,水溶性) 焦脱镁叶绿素(褐色,脂溶性)

Page 150: 食品化学 Food Chemistry

血红素血红素 血红素吡咯环中是铁原子 肉的颜色是由血红蛋白和肌红蛋白形成的。 血红蛋白是由四分子血红素与一分子由四条肽链

组成的球蛋白组成,存在于血液中,而肌红蛋白是由一分子血红素与一分子一条肽链的蛋白质组成

血红蛋白的分子质量为 68000 ,肌红蛋白为17000

在空气条件下肉的颜色变化 腌制肉的发色

Page 151: 食品化学 Food Chemistry
Page 152: 食品化学 Food Chemistry

肌红蛋白结构简图

Page 153: 食品化学 Food Chemistry

Figure 1: The picturearethe right is of the hemegroup in hemoglobin and shows the Fe(II) iron atom.

Figure 2: The picture is the secondary structure of hemoglobin, with only the protein backbone and without the side chains

Page 154: 食品化学 Food Chemistry

在空气条件下肉的颜色变化在空气条件下肉的颜色变化当动物屠宰后,由于组织供氧停止,肉

中原来处于还原态的紫红色的肌红蛋白受到空气中氧气的作用,形成氧合肌红蛋白和氧合血红蛋白,肉色边的鲜红,当氧合肌红蛋白或氧合血红蛋白继续被氧化形成高铁血红素时,则肉的颜色变成棕黑色。

Page 155: 食品化学 Food Chemistry

+Fe Fe Fe++ ++

++

O 2

N

N

N

N

N

N

N

N

H 2 O

N N

NN

OH

氧 合 肌 红 蛋 白( o x y m y o g l o b i n )

鲜 红 色

肌 红 蛋 白( m y o g l o b i n )

红 紫 色

高 铁 肌 红 蛋 白( m e t m y o g l o b i n )

褐 色

珠 蛋 白珠 蛋 白 珠 蛋 白

Page 156: 食品化学 Food Chemistry

腌制肉的发色腌制肉的发色在对肉进行腌制时肌红蛋白等会同亚硝酸盐的分

解产物 NO 等发生反应,生成不太稳定的亚硝酰基肌红蛋白 (NO - Mb) ,它在加热后可以形成稳定的亚硝基血色原(Nitrosylhemochrome) ,这是腌肉中的主要色素 。

Mb+No(NO 由 HNO2 分解而成 ) →NO–Mb( 不稳定 , 呈鲜红色 ) →No–Mb( 稳定 , 呈红色 )

Page 157: 食品化学 Food Chemistry

多烯色素多烯色素多烯色素是以异戊二烯残基为单位的共轭链为基础的一类色素,习惯上又称为类胡箩卜素,属于脂溶性色素

一些类胡箩卜素能在提内转变形成VA ,所以又将这些类胡箩卜素称为 VA前体。如 β-胡箩卜素

类胡箩卜素分为胡箩卜素和叶黄素两大类,胡箩卜素为共轭多烯,叶黄素为共轭多烯的氧化物

类胡箩卜素的加工稳定性较强。

Page 158: 食品化学 Food Chemistry

¦Â¡ª ºú Âܲ· ËØ ¦Á¡ª ºú Âܲ· ËØ

¦Ã¡ª ºú Âܲ· ËØ ·¬ÇѺì ËØ

Page 159: 食品化学 Food Chemistry

HO

OH

Ò¶»ÆËØ

HO

OH

ÓñÃ×»ÆËØ

HO

Òþ»ÆËØ

HO

·¬ÇÑ»ÆËØ

Page 160: 食品化学 Food Chemistry

酚类酚类

酚类色素是一类水溶性色素,有花青素、花黄素、儿茶素和鞣质四大类

花青素多以糖苷的形式存在于生物体中,其基本结构为 2-苯基并吡喃

花黄素主要指类黄酮及其衍生物,其基本结构为 2-苯并吡喃酮

酚类色素易发生变色反应

Page 161: 食品化学 Food Chemistry

影响酚类呈色的因素影响酚类呈色的因素

pH结构金属盐二氧化硫其他

OHO

OH

OH

R1

R2OGLU

Page 162: 食品化学 Food Chemistry

pHpH花青素分子中的 O 为四价,是碱性,而苯基上的酚羟基具有酸性,从而使花青素分子具有两性,在不同 pH 介质中呈现不同的颜色

如矢车菊色素: pH<3.0 为阳离子,为红色→ pH8.5 为中性分子,呈紫色→ pH11为阴性分子,呈蓝色。

Page 163: 食品化学 Food Chemistry

OO

OH

R1

R2

OH H+ OH2

OH

R1

R2

OHOH

OH

OH

R1

R2

OH

HO O

OH

R1

R2

OH

OH OH

OGLU OGLU

OGLU

¼îʽ£¨ À¶£©

OGLU

PH > 4áàÑΣ¨ ºì £©

²é ¶ûͪ £¨ dz»Æ£©PH = 7

²é ¶ûͪ ¼Ù¼î£¨ ÎÞÉ«£©

ͼ7.8 »¨ ÇàÜյĽṹ ËæPHÖµ±ä»¯µÄÇé¿ö

Page 164: 食品化学 Food Chemistry

结构结构

不同花青素之间的区别主要为苯基上的取代不一样,并直接影响花青素的呈色,羟基越多,颜色越深(蓝色),甲氧基越多,颜色越浅(红色)

Page 165: 食品化学 Food Chemistry

金属盐金属盐

花青素与金属盐呈灰紫色,因此含有花青素的蔬菜在加工时要尽量避免与金属容器的接触

Page 166: 食品化学 Food Chemistry

二氧化硫二氧化硫

二氧化硫能于花青素形成发生加成反应,使花青素褪色

OHO

OHOG

R1

OH

R2

HSO3OHO

OHOG

R1

OH

R2

SO3H

H+

(ºì É«) (ÎÞÉ«)

+-

»ò¡¡ ¡¡

Page 167: 食品化学 Food Chemistry

其他其他

在光、热作用下花青素很快变成褐色,在氧或氧化剂的作用下褪色,在糖苷酶的作用下也褪色

Page 168: 食品化学 Food Chemistry

3 3 食品的褐变作用食品的褐变作用

褐变

非酶褐变

酶促褐变

Page 169: 食品化学 Food Chemistry

褐变褐变

褐变指食品在加工、贮藏过程中颜色发生变化而趋向加深的现象

根据褐变的原因,可分为非酶褐变和酶促褐变

Page 170: 食品化学 Food Chemistry

非酶褐变非酶褐变

非酶褐变类别

非酶褐变对食品的影响

非酶褐变的控制

Page 171: 食品化学 Food Chemistry

非酶褐变 类别非酶褐变 类别

Maillard 反应

焦糖化作用

抗坏血酸褐变

Page 172: 食品化学 Food Chemistry

MaillardMaillard 反应反应

Maillard 反应又称为羰氨反应,指食品体系中含有氨基的化合物与含有羰基的化合物之间发生反应而使食品颜色加深的反应。可分为 3个阶段:

初始阶段:中间阶段:终止阶段:

Page 173: 食品化学 Food Chemistry

»¹ Ô ÌÇ

²®°· Àà

°±»ù¶ÔÈ©»ù»òôÊ»ù½øÐÐÇ×ºË¼Ó³É Ê§Ë®¹Ø»· ÆÏÌÇ°· »ò

¶þÆÏÌÇ°·

AmoadriÖØÅÅ1-°±»ù-2-ͪ ÌÇ

¦Â-Ïû È¥ÍÑË®

3-ÍÑÑõ¼ºÌÇȩͪ°ÂËÕÏ©ÌÇ HMF

Maillard·´ Ó¦ºó ÆÚºÚ¾«É«ËØ

£¨ HMF¡¢ »¹ Ô Íª ¡¢ ßäßò»· ÑÜÉúÎï µÈ£©

ÖÐÆÚ

³õÆÚ

Ä©ÆÚ

Page 174: 食品化学 Food Chemistry

初始阶段初始阶段:包括羰基缩合与分子重排,羰氨反应的:包括羰基缩合与分子重排,羰氨反应的第一步是含氨基的化合物与含羰基的化合物之间缩第一步是含氨基的化合物与含羰基的化合物之间缩

合而形成合而形成 SchiffSchiff 并随后环化成为并随后环化成为 N-N- 葡萄糖基胺葡萄糖基胺

CHO

CH2OH

RNH2

- H2O

CH2OH

C

H N R

CH2OH

C

H N RH

O

ÆÏÌÑÌÇ Schiffs¼î ÆÏÌÇ°·

Page 175: 食品化学 Food Chemistry

N-N-葡萄糖基胺,再经葡萄糖基胺,再经 AmadoriAmadori 分子重排生分子重排生成果糖胺成果糖胺

CH2OH

C

H N RH

O

ÆÏÌÇ°·

H+

+

CH2OH

C

H N RH

+ - H+

CH2OH

C

H N RH

1-°±»ù-1-ÍÑÑõ-2-ͪÌÇ

CH2OH

C

N RH

O

H

H

ͪʽ¹ûÌÇ°· »·Ê½¹ûÌÇ°·

CH2OH

C

N RH

O

H

H

Page 176: 食品化学 Food Chemistry

中间阶段:中间阶段:果糖胺脱水生成羟甲基果糖胺脱水生成羟甲基糠醛,羟甲基糠醛积累后导致褐变糠醛,羟甲基糠醛积累后导致褐变

CH2OH

C

N RH

O

H

H

ͪʽ¹ûÌÇ°·

CH2OH

C

H N RH

H+

CH2OH

C

H N R

- H2OCH

C OH+

RNH2-H2O

CH2OH

C

H

CH2

C O - H2O

CH2OH

C

H

C O

CH

CH

O O

- H2O

O CHOHOH2C

Ï©́ ¼Ê½¹ûÌÇ»ù°· Schiffs¼î 3-ÍÑÑõ°ÂËÕÌÇ ²»±¥ºÍ°ÂËÕÌÇ

ôǼ׻ù¿·È©

Page 177: 食品化学 Food Chemistry

果糖胺重排形成还原酮,还原酮不果糖胺重排形成还原酮,还原酮不稳定,进一步脱水后与氨类化合物稳定,进一步脱水后与氨类化合物

缩合缩合

CH2OH

C

N RH

O

H

H

ͪʽ¹ûÌÇ°·

2,3-Ï©́ ¼»¯

CH2OH

C OH

C

C

N RH

H

H

RNH2-

CH2OH

C OH

C

CH2

O

CH2OH

C

C

CH3

O

O

CH2OH

C

C

CH3

OOH

OH

OH

»¹Ô­Íª

Page 178: 食品化学 Food Chemistry

氨基酸与二羰基化合物作用氨基酸与二羰基化合物作用

C

C O

O

R CH

NH2

COOH

RCHO + CO2

ºÖÉ«É«ËØ

Page 179: 食品化学 Food Chemistry

终止阶段终止阶段:羟醛缩合与聚合形成:羟醛缩合与聚合形成褐色素褐色素

Page 180: 食品化学 Food Chemistry

焦糖化作用焦糖化作用 焦糖化作用是指在没有含氨基化合物的情况下

将糖类物质加热到其熔点以上温度,使其发焦变黑的现象。焦糖化作用有三个阶段:

从蔗糖熔融开始,有一段时间的起泡,蔗糖脱去一分子水形成异蔗糖酐,起泡暂时停止,形成的产物无甜味有温和的苦味;

继续加热,第二次起泡,持续时间更长,失水量 约 为 9% ,形成焦糖酐, 平 均 分 子 式 为C24H36O18 ,熔点为 138℃ ,有苦味;

焦糖酐进一步脱水生成焦糖烯,继续加热形成难溶性的深色物质焦糖素。焦糖素有一定的等电点, pH3.0-6.9 。

Page 181: 食品化学 Food Chemistry

O

O

OH

OH

OHOH

OH

OH

OH

OH

OH

OH

O

OH

OH

OH

O

O

OH

OH

OH

O

-D-ÆÏÌÑÌÇ

ÎÞË®¼ÓÈÈ

ÎÞË®¼ÓÈÈ

-D-ÆÏÌÑÌÇ

1,2-ÍÑË®-

1,6-ÍÑË®-

-D-ÆÏÌÑÌÇ

-D-ÆÏÌÑÌÇ

O

CH2OH

HOH2C

OH

OH

O

OH

OH

OH

OH

O

O

CH2OH

HOH2C

OH

O

OH

OH

OH

O

O

ÎÞË®¼ÓÈÈ

Ò»́ ÎÆðÅÝ

¶þ́ ÎÆðÅݶþ¾ÛºÏ

4H2O

C24H36O18

ÒìÕáÌÇôû

½¹ÌÇôû8H2O

C36H50O25

½¹ÌÇÏ¡

Page 182: 食品化学 Food Chemistry

抗坏血酸褐变抗坏血酸褐变

抗坏血酸氧化形成脱氢抗坏血酸,再水合形成 2 , 3- 二酮古洛糖酸,脱水,脱羧后形成糠醛,再形成褐色素

Page 183: 食品化学 Food Chemistry

酶促褐变酶促褐变 酶促褐变的机理

酶促褐变的防止

Page 184: 食品化学 Food Chemistry

酶促褐变的机理酶促褐变的机理催化酶有酚酶、抗坏血酸氧化酶、过氧化物酶等。酚酶:酚酶是一个寡聚体,催化两类反应,一是羟

基化,产生酚的邻羟基;二是氧化,使邻二酚氧化为醌

酚酶是一个多酶体系,一种是酚氧化酶,又称为甲酚酶,另一种是多酚氧化酶,又称为儿茶酚酶。而被称为酪氨酸氧化酶的酚酶则同时能催化这两类反应。

不同的底物的酶促褐变的速度大不相同,邻二酚 >一元酚 > 对位二酚 > 间位二酚,间位而 2酚有一定的抗氧化作用,如愈创木酚。

抗坏血酸氧化酶。 过氧化物酶

Page 185: 食品化学 Food Chemistry

酶促褐变的防止酶促褐变的防止

热处理:热烫、巴氏杀菌和微波加热 90-95℃酸处理:多数酚酶的最适 pH 为 6-7 , pH<3.0 基本失活 , 常 用 VC 、柠檬酸、苹果酸来降低pH 。

SO2 及 Na2SO3 :在 pH=6 时,效果最好, 10mg/

kg 的 SO2足以使酚酶失活,但考虑到挥发,反应损失等 , 一般增加 为 300mg/kg ,残留低于20mg/kg 。驱氧法

底物改性

Page 186: 食品化学 Food Chemistry

第七章 食品风味第七章 食品风味

概述

味觉

嗅觉

Page 187: 食品化学 Food Chemistry

概述概述 风味的概念是指摄入口腔的食物使人的感觉器官,包括味觉、嗅觉、痛觉、触觉和温觉等所产生的感觉印象,即食物客观性使人产生的感觉印象的总和。

风味的分类根据风味产生的刺激方式不同可将其分为化学感觉、物理感觉和心理感觉。

Page 188: 食品化学 Food Chemistry

食物风味的分类食物风味的分类

Page 189: 食品化学 Food Chemistry

味觉味觉

味觉的概念与分类 味觉的生理基础 味的阈值 影响味觉产生的因素

Page 190: 食品化学 Food Chemistry

味觉的概念与分类味觉的概念与分类 味觉是指食物在人的口腔内对味觉器官化学感受

系统的刺激并产生的一种感觉。不同地域的人对味觉的分类不一样。日本:酸、甜、苦、辣、咸欧美:酸、甜、苦、辣、咸、金属味印度:酸、甜、苦、辣、咸、涩味、淡味、不正常味中国:酸、甜、苦、辣、咸、鲜、涩 从味觉的生理角度分类,只有四种基本味觉:酸、甜、苦、咸

Page 191: 食品化学 Food Chemistry

辣味和涩味辣味和涩味辣味:食物成分刺激口腔黏膜、鼻腔黏膜、皮肤、和三叉神经而引起的一种痛觉。

涩味:食物成分刺激口腔,使蛋白质凝固时而产生的一种收敛感觉。

Page 192: 食品化学 Food Chemistry

味觉的生理基础味觉的生理基础 味觉产生的过程 呈味物质刺激口腔内的味觉感受体,然

后通过一个收集和传递信息的神经感觉系统传导到大脑的味觉中枢,最后通过大脑的综合神经中枢系统的分析,从而产生味觉。不同的味觉产生有不同的味觉感受体,味觉感受体与呈味物质之间的作用力也不相同。

Page 193: 食品化学 Food Chemistry

味蕾口腔内感受味觉的主要是味蕾,其次是

自由神经末梢 味蕾数量随年龄的增大而减少 味蕾一般有 40-150个味觉细胞构成,大

约 10-14天更换 1次 舌头不部位对不同味觉的敏感度不一样人对不同味觉的感觉速度不一样

Page 194: 食品化学 Food Chemistry

一般人的舌尖和边缘对咸味比较敏感舌的前部对甜味比较敏感舌靠腮的两侧对酸味比较敏感舌根对苦、辣味比较敏感。

在四种基本味觉中,人对咸味的感觉最快,对苦味的感觉最慢,但就人对味觉的敏感性来讲,苦味比其他味觉都敏感,更容易被觉察。

Page 195: 食品化学 Food Chemistry

味的阈值味的阈值 阈值:感受到某中成为物质的味觉所需要的该物质的最低浓度。常温下蔗糖(甜)为 0.1% ,氯化钠(咸) 0.05% ,柠檬酸(酸) 0.0025% ,硫酸奎宁(苦) 0.0001% 。

阈值分为:差别阈值:指人感觉某中物质的味觉有显著差别的刺激量

的差值。绝对阈值:指人从感觉某中物质的味觉从无到有的刺激量。最终阈值:指人感觉某中物质的刺激不随刺激量的增加而增加的刺激量。

Page 196: 食品化学 Food Chemistry

影响味觉产生的因素影响味觉产生的因素

物质的结构 物质的水溶性 温度 味觉的感受部位 味的相互作用

Page 197: 食品化学 Food Chemistry

物质的结构物质的结构糖类—甜味酸类—酸味盐类—咸味 生物碱—苦味

Page 198: 食品化学 Food Chemistry

物质的水溶性物质的水溶性完全不溶于水的物质是无味的,溶解度小于阈值的物质也是无味的

水溶性越高,味觉产生的越快,消失的也越快

一般呈现酸味、甜味、咸味的物质有较大的水溶性,而呈现苦味的物质的水溶性一般

Page 199: 食品化学 Food Chemistry

温度温度 一般随温度的升高,味觉加强,最适宜的味觉产

生的温度是 10-40℃ ,尤其是 30℃最敏感,大于或小于此温度都将变得迟钝。

温度对呈味物质的阈值也有明显的影响。25℃ :蔗糖 0.1% , 食盐 0.05% ,柠檬酸

0.0025% ,硫酸奎宁 0.0001%0℃ :蔗糖 0.4% , 食盐 0.25% ,柠檬酸

0.003% ,硫酸奎宁 0.0003% 。

Page 200: 食品化学 Food Chemistry

味觉的感受部位味觉的感受部位 舌尖 舌边 舌根氯化钠(咸味): 0.25 0.24-0.25 0.28盐酸(酸味): 0.01 0.006-0.007 0.016蔗糖(甜味): 0.49 0.72-0.76 0.79硫酸奎宁(苦味): 0.00029 0.0002 0.00005

Page 201: 食品化学 Food Chemistry

味的相互作用味的相互作用

两种相同或不同的呈味物质进入口腔时,会使二者呈味味觉都有所改变的现象,称为味觉的相互作用。

味的对比现象 味的相乘作用 味的消杀作用 味的变调作用 味的疲劳作用

Page 202: 食品化学 Food Chemistry

味的对比现象味的对比现象 指两种或两种以上的呈味物质,适当调配,可使某中呈味物质的味觉更加突出的现象。

如在 10% 的蔗糖中添加 0.15%氯化钠,会使蔗糖的甜味更加突出,

在醋中添加一定量的氯化钠可以使酸味更加突出,

在味精中添加氯化钠会使鲜味更加突出。

Page 203: 食品化学 Food Chemistry

味的相乘作用味的相乘作用

指两种具有相同味感的物质进入口腔时,其味觉强度超过两者单独使用的味觉强度之和,又称为味的协同效应。

甘草铵本身的甜度是蔗糖的 50 倍,但与蔗糖共同使用时末期甜度可达到蔗糖的100 倍。

味精与核苷酸( I+G )。

Page 204: 食品化学 Food Chemistry

味的消杀作用味的消杀作用

指一种呈味物质能够减弱另外一种呈味物质味觉强度的现象,又称为味的拮抗作用。

如蔗糖与硫酸奎宁之间的相互作用。

Page 205: 食品化学 Food Chemistry

味的变调作用味的变调作用指两种呈味物质相互影响而导致其味感

发生改变的现象。刚吃过苦味的东西,喝一口水就觉得水

是甜的。刷过牙后吃酸的东西就有苦味产生。

Page 206: 食品化学 Food Chemistry

味的疲劳作用味的疲劳作用 当长期受到某中呈味物质的刺激后,就感觉刺激量或刺激强度减小的现象。

连续的吃糖。

Page 207: 食品化学 Food Chemistry

嗅觉嗅觉 嗅觉:指挥发性物质刺激鼻腔的嗅觉神经而在

中枢引起的一种感觉其中产生的令人愉快的挥发性物质称为香气产生令人厌恶的挥发性物质称为臭气香气是混合物所致。一般用香气值来表示某种物质在香气产生中的

作用大小。香气值 =嗅觉物质的浓度 /阈值,若香气值小于 1 ,则说明该物质在香气产生中没有发生作用。

Page 208: 食品化学 Food Chemistry

食品中香气形成的途径食品中香气形成的途径 生物合成酶直接作用酶间接作用(氧化作用) 高温分解作用 发酵作用调香作用

Page 209: 食品化学 Food Chemistry

第八章 食品中的有毒物质第八章 食品中的有毒物质

概述

食品中的毒素

Page 210: 食品化学 Food Chemistry

概述概述

食品中的有毒成分主要有:食品中天然存在的毒素,如苦杏仁中的氰化物

食品中生物污染的毒素,如黄曲霉毒素食品中化学污染的毒素,如重金属等食品加工过程中形成的毒素,如赖丙氨酸等

Page 211: 食品化学 Food Chemistry

食品中的毒素食品中的毒素

食品中天然存在的毒素 生物污染 化学污染 食品加工中形成的毒素

Page 212: 食品化学 Food Chemistry

食品中天然存在的毒素食品中天然存在的毒素 动物类食品中的天然毒素

植物类食物中的天然毒素

Page 213: 食品化学 Food Chemistry

动物类食品中的天然毒素动物类食品中的天然毒素 动物肝脏中的毒素:主要为胆酸、内胆酸、脱氧胆酸和牛磺胆酸构成的混合物,毒性依次为牛磺胆酸>脱氧胆酸 >胆酸,摄入量小不会中毒,脱氧胆酸对人肠道上皮细胞癌如结肠癌、直肠癌有促进作用。

海洋鱼类毒素 :金枪鱼、蓝鱼,贮藏在不适宜的条件下容易产生组胺导致中毒;

河豚毒素:河豚的卵巢、皮肤、肝脏甚至肌肉中,其 LD50 为 8.7μg/kg 体重,人经口服的最大致死量为 408.7μg/kg 体重。

贝类毒素:主要为麻痹性贝类毒素和腹泻性贝类毒素

Page 214: 食品化学 Food Chemistry

植物类食物中的天然毒素植物类食物中的天然毒素

致甲状腺肿大物质:某些十字花科甘蓝属的蔬菜如油菜、包心菜、花菜、芥菜等一会致病,其主要物质是以黑芥子硫苷为前体的物质和硫氰酸酯。

生氰糖苷:广泛存在于豆科、蔷薇科和稻科中的糖苷水解形成氢氰酸,如木薯、杏仁、枇杷、豆类等。

消化酶抑制剂:胰蛋白酶抑制剂、胰凝乳蛋白酶抑制剂、 α-淀粉酶抑制剂;

生物碱糖苷

Page 215: 食品化学 Food Chemistry

生物污染、化学污染、加工中形成生物污染、化学污染、加工中形成 生物污染主要是一些真菌毒素。如黄曲霉毒素、杂色曲霉毒素、金黄色葡萄球菌毒素,大肠杆菌毒素等。

化学污染的食品毒素主要有:重金属、多环芳烃、多氯联苯、残留农药、食品添加剂等。

加工形成一些加工过程如烟熏、煎炸、烘烤、高温杀菌等中形成的毒素,常见的有:苯并 [a]芘、 Maillard 反应产物和一些杂环胺,腌肉中形成的亚硝基胺等

Page 216: 食品化学 Food Chemistry

谢谢 !Thank you!