реавиз ферменты

95
ENSIMES ENSIMES Konstantin GERMAN Konstantin GERMAN - - Chair Head of Chair Head of Natural Sciences, Medical Institute Natural Sciences, Medical Institute REAVIZ REAVIZ - - www.reaviz.ru www.reaviz.ru

Transcript of реавиз ферменты

Page 1: реавиз ферменты

ENSIMESENSIMES Konstantin GERMAN Konstantin GERMAN - - Chair Head of Chair Head of Natural Sciences, Medical Institute Natural Sciences, Medical Institute REAVIZREAVIZ - - www.reaviz.ruwww.reaviz.ru

Page 2: реавиз ферменты

ЛЕКЦИЯ № 19: ЛЕКЦИЯ № 19:

ФЕРМЕНТЫ ФЕРМЕНТЫ СТРОЕНИЕ, СВОЙСТВА СТРОЕНИЕ, СВОЙСТВА

Зав. кафедрой естественных наукКонстантин Эдуардович

Герман

Page 3: реавиз ферменты

3

ФерментыФерменты

Е + S ↔ ES ↔ EP → E + P

Природные биокатализаторы, обеспечивающие протекание большинства химических реакций в

живых организмах называются ферментами

(энзимами).

Схема процесса катализа:

Е – фермент;S (субстрат) – лиганд, взаимодействующий с активным центром фермента;Р – продукт реакции.

Page 4: реавиз ферменты

4

Ферме́нты, или энзи́мы[1]

(от лат. fermentum, греч. ζύμη, νζυμον — закваска) — ἔобычно белковые молекулы или молекулы РНК(рибозимы)

или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами.

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы — повышают, ингибиторы — понижают).Белковые ферменты синтезируются на рибосомах, а РНК — в ядре.

Page 5: реавиз ферменты

5

Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).

АТФаза

Аденозинтрифосфата́зы (АТФ-азы) — группа ферментов класса гидролаз (КФ 3.6.1.3), катализирующих отщепление от аденозинтрифосфорной кислоты (АТФ) одного или двух остатков фосфорной кислоты с освобождением энергии, используемой в процессах мышечного сокращения, транспорта веществ через мембраны, биосинтеза различных соединений.[1][2]

Page 6: реавиз ферменты

6

Киназа фосфорилазы фосфорилирует только фосфорилазу

Аденилатциклазная система рассматривается на примере действия адреналина на клетки печени. Адреналинвызывает в организме эффект,

называемый «fight or flight» (бой или бегство) — усиливается тонус мышц, увеличивается частота сердечных сокращений. Для мобилизации организма

требуется повышение концентрации глюкозы в крови. Связывание адреналина с рецепторами на поверхности клеток печени запускает распад гликогена,

запасенного в клетках печени и высвобождение глюкозы

Page 7: реавиз ферменты

Свойства ферментовСвойства ферментов

1. Специфичность.2. Каталитическая эффективность.3. Лабильность ферментов.4. Способность ферментов к регуляции.5. Высокий коэффициент полезного

действия (100 %).

7

Page 8: реавиз ферменты

Строение активного центра ферментаСтроение активного центра ферментаА – присоединение субстрата к

ферменту в активном центре. Б – положение аминокислотных остатков, формирующих активный центр фермента в первичной структуре белка.

В – активный центр фермента условно разделяется на участок связывания и каталитический участок. Участок связывания представлен радикалами аминокислот, функциональные группы которых обеспечивают связывание субстрата. Каталитический участок образован радикалами аминокислотных остатков, функциональные группы которых обеспечивают химические превращения субстрата. 8

Page 9: реавиз ферменты

9

Активный центр ферментовИзучение механизма химической реакции, катализируемой ферментом

наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп

его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат, а также химической

природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно

молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие

размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи — «активный центр» — уникальная комбинация

остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое

участие в акте катализа[10].

Page 10: реавиз ферменты

10

Наиболее реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты — слишком

большие или слишком маленькие — не подходят к активному центру

Page 11: реавиз ферменты

В активном центре условно выделяютВ активном центре условно выделяют[10][10]::каталитический центр — непосредственно химически каталитический центр — непосредственно химически взаимодействующий с субстратом;взаимодействующий с субстратом;связывающий центр (контактная или «якорная» площадка) — связывающий центр (контактная или «якорная» площадка) — обеспечивающий специфическое сродство к субстрату и обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.формирование комплекса фермент-субстрат.Чтобы катализировать реакцию, фермент должен связаться с Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.связывания кофакторов или ионов металлов.Фермент, соединяясь с субстратом:Фермент, соединяясь с субстратом:очищает субстрат от водяной «шубы»очищает субстрат от водяной «шубы»располагает реагирующие молекулы субстратов в пространстве располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образомнужным для протекания реакции образомподготавливает к реакции (например, поляризует) молекулы подготавливает к реакции (например, поляризует) молекулы субстратов.субстратов.Обычно присоединение фермента к субстрату происходит за счет Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко — за счет ковалентных. В ионных или водородных связей, редко — за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от конце реакции её продукт (или продукты) отделяются от фермента.фермента. 11

Page 12: реавиз ферменты

В результате фермент снижает энергию активации В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически фермента реакция идет по другому пути (фактически происходит другая реакция), например:происходит другая реакция), например:В отсутствие фермента:В отсутствие фермента:А+В = АВА+В = АВВ присутствии фермента:В присутствии фермента:А+Ф = АФА+Ф = АФАФ+В = АВФАФ+В = АВФАВФ = АВ+ФАВФ = АВ+Фгде А, В — субстраты, АВ — продукт реакции, Ф — фермент.где А, В — субстраты, АВ — продукт реакции, Ф — фермент.Ферменты не могут самостоятельно обеспечивать энергией Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества реакциями, идущими с выделением большего количества энергии. Например, реакции синтезаэнергии. Например, реакции синтеза биополимеров часто биополимеров часто сопрягаются с реакцией гидролиза АТФ.сопрягаются с реакцией гидролиза АТФ.Для активных центров некоторых ферментов характерно Для активных центров некоторых ферментов характерно явление кооперативности.явление кооперативности.

12

Page 13: реавиз ферменты

ФерментыФерменты

Специфичность ферментов

1. Субстратная

2. Каталитическая

13

Page 14: реавиз ферменты

Функциональная значимость отдельных Функциональная значимость отдельных участков активного центра ферментаучастков активного центра фермента

14

Page 15: реавиз ферменты

Субстратная специфичность Субстратная специфичность (способность каждого фермента

взаимодействовать лишь с одним или несколькими определёнными

субстратами): АбсолютнаяГрупповаяСтереоспецифичность

15

Page 16: реавиз ферменты

16

Абсолютная субстратная специфичностьАбсолютная субстратная специфичность

мочевина

Page 17: реавиз ферменты

Групповая субстратная Групповая субстратная специфичностьспецифичность

17

Page 18: реавиз ферменты

Стереоспецифичность к Стереоспецифичность к

DD-сахарам-сахарам 18

Page 19: реавиз ферменты

Стереоспецифичность к Стереоспецифичность к цис-транс-изомерамцис-транс-изомерам

19

Page 20: реавиз ферменты

20

Фермент катализирует превращение присоединённого субстрата по одному из возможных путей его превращения. Это свойство обеспечивается строением каталитического центра фермента и называется каталитической специфичностью, или специфичностью пути превращения субстрата.

Page 21: реавиз ферменты

Каталитическая эффективностьКаталитическая эффективность

21

Большинство катализируемых ферментами реакций высокоэффективны. Они протекают в 108-1014 раз быстрее, чем некатализируемые реакции.

Каждая молекула фермента способна за секунду трансформировать от 100 до 1000 молекул субстрата в продукт.

Количество молекул субстрата, превращённого в продукт с помощью одной молекулы фермента за 1 с, называют числом оборотов фермента, или молярной активностью.

Page 22: реавиз ферменты

Классификация ферментов по классамКлассификация ферментов по классам

1. Оксидоредуктазы2. Трансферазы3. Гидролазы4. Лиазы5. Изомеразы6. Лигазы (синтетазы)

22

Page 23: реавиз ферменты

1. Оксидоредуктазы1. Оксидоредуктазы Подкласс дегидрогеназы

23

Page 24: реавиз ферменты

1. Оксидоредуктазы1. Оксидоредуктазы Подкласс оксидазы

24

Page 25: реавиз ферменты

1. Оксидоредуктазы1. Оксидоредуктазы Подкласс оксигеназы (гидроксилазы)

25

Page 26: реавиз ферменты

2. Трансферазы2. Трансферазы26

Page 27: реавиз ферменты

3. Гидролазы3. Гидролазы27

Page 28: реавиз ферменты

4. Лиазы4. Лиазы28

Page 29: реавиз ферменты

29

5. Изомеразы5. Изомеразы

Page 30: реавиз ферменты

30

5. Изомеразы5. Изомеразы

Когда изомеризация состоит из внутримолекулярного

переноса группы, фермент называют «мутазой»

Page 31: реавиз ферменты

31

6. Лигазы (синтетазы)6. Лигазы (синтетазы)

В случае, когда источником энергии служит любое другое макроэргическое соединение (не АТФ), ферменты называют синтазами

Page 32: реавиз ферменты

Кофакторы и коферментыКофакторы и коферменты Большинство ферментов для проявления

активности нуждаются в низкомолекулярных органических соединениях небелковой природы (коферментах) и/или в ионах металлов (кофакторах).

Белковая часть сложного фермента называется апоферментом (в отсутствии кофермента не обладает каталитической активностью).

Кофермент с белковой молекулой называется холоферментом (обладает каталитической активностью).

32

Page 33: реавиз ферменты

Роль кофакторовРоль кофакторов

33

1.Роль металлов в присоединении субстрата в активном центре фермента

2. Роль металлов в стабилизации третичной и четвертичной структуры фермента

3. Роль металлов в ферментативном катализе

4. Роль металлов в регуляции активности ферментов

Page 34: реавиз ферменты

КофакторыКофакторы

1. Роль металлов в присоединении субстрата в активном центре фермента:

Ионы металлов – стабилизаторы молекулы субстрата

• Ионы металла – стабилизаторы активного центра фермента

34

Page 35: реавиз ферменты

Кофакторы (металлы)Кофакторы (металлы)

35

Page 36: реавиз ферменты

Кофакторы (металлы)Кофакторы (металлы)Участие ионов магния в присоединении субстрата в

активном центре гексокиназы

36

В активном центре гексокиназы есть участки связывания для молекулы глюкозы и комплекса Mg2+ -АТФ.

В результате ферментативной реакции происходит перенос концевого γ-фосфатного остатка молекулы АТФ на глюкозу с образованием глюкозо-6-фосфата.

Page 37: реавиз ферменты

37

Кофакторы (металлы)Кофакторы (металлы)

Ионы металла – стабилизаторы активного центра фермента

Page 38: реавиз ферменты

38

2. Роль металлов в стабилизации третичной и 2. Роль металлов в стабилизации третичной и четвертичной структуры ферментачетвертичной структуры фермента

Участие ионов магния в присоединении субстрата в активном центре пируваткиназы

Активный центр пируваткиназы имеет участки связывания для фосфоенолпирувата и АДФ. Mg2+ участвует в стабилизации активного центра, что облегчает присоединение фосфоенолпирувата. В ходе ферментативной реакции образуется пируват и АТФ.

Page 39: реавиз ферменты

39

2. Роль металлов в стабилизации третичной и четвертичной структуры фермента

Роль ионов цинка в стабилизации четвертичной структуры алкогольдегидрогеназы

Page 40: реавиз ферменты

40

3. Роль металлов в ферментативном катализе3. Роль металлов в ферментативном катализе Участие в электрофильном катализе

Page 41: реавиз ферменты

3. Роль металлов в ферментативном катализе3. Роль металлов в ферментативном катализе

Участие в окислительно-восстановительных реакциях

41

Page 42: реавиз ферменты

3. Роль металлов в ферментативном катализе3. Роль металлов в ферментативном катализе

Участие ионов меди в активации молекулы кислорода при функционировании дофамингидроксилазы

1 – восстановление Cu2+ , входящего в состав активного центра дофамингидроксилазы, до Cu+ c помощью аскорбиновой кислоты

2 – взаимодействие Cu+ c кислородом с образованием перекисного соединения

3 – перенос гидроксильной группы на молекулу дофамина с образованием норадреналина

42

Page 43: реавиз ферменты

КоферментыКоферменты

Кофермент, локализуясь в каталитическом участке активного центра, принимает непосредственное участие в химической реакции, выступая в качестве акцептора и донора химических группировок, атомов, электронов.

Кофермент может быть связан с белковой частью молекулы ковалентными и нековалентными связями. В первом случае он называется простетической группой (ФАД, ФМН, биотин, липоевая кислота).

Примером кофермента, связанного с ферментом нековалентной связью, является тиаминдифосфат, НАД+, НАДФ+.

43

Page 44: реавиз ферменты

Разнообразие коферментовРазнообразие коферментов

Производные витаминов.Гемы, входящие в состав цитохромов, каталазы,

пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой.

Нуклеотиды – доноры и акцепторы остатка фосфорной кислоты.

Убихинон, или кофермент Q, участвующий в переносе электронов и протонов в цепи переноса электронов.

S-аденозилметионин – донор метильной группы.Глутатион, участвующий в окислительно-

восстановительных реакциях.44

Page 45: реавиз ферменты

Мультисубстратные реакцииМультисубстратные реакции

1. Механизм «пинг-понг» (механизм двойного замещения).

2. Последовательный механизм (для протекания ферментативной реакции требуется одновременно взаимодействие двух субстратов).

45

Page 46: реавиз ферменты

1. Механизм «пинг-понг»1. Механизм «пинг-понг»

46

Page 47: реавиз ферменты

1. Механизм «пинг-понг»1. Механизм «пинг-понг»

События в активном центре аминотрансферазы как пример механизма «пинг-понг». Кофермент пиридоксальфосфат (ПФ), связанный с ферментом, принимает α-аминогруппу от первой аминокислоты (АК1), которая при этом превращается в α-кетокислоту 1 (КК1) и высвобождается из активного центра фермента. Далее в активный центр фермента присоединяется α-кетокислота 2 (КК2), которая забирает аминогруппу от кофермента и превращается в α-аминокислоту (АК2).

47

Page 48: реавиз ферменты

Структура (А) и химическое строение (Б) коферментов FMN и FAD 48

МеханизмМеханизм «пинг-понг» «пинг-понг»

Page 49: реавиз ферменты

1. Механизм «пинг-понг»1. Механизм «пинг-понг»

49

Page 50: реавиз ферменты

1. Механизм «пинг-понг»1. Механизм «пинг-понг»

АН2 – донор водорода, окисляемый субстрат 1;

А – окисленная форма субстрата 1;

В – акцептор водорода – субстрат 2;

Е (FAD), E (FADH2) – окисленная и восстановленная формы кофермента FAD, входящего в состав фермента Е

50

Page 51: реавиз ферменты

1. Механизм «пинг-понг»1. Механизм «пинг-понг»

51

Page 52: реавиз ферменты

52

2. Последовательный механизм2. Последовательный механизмМеханизм упорядоченного взаимодействия субстрата с активным центром фермента

Механизм случайного взаимодействия субстрата с активным центром фермента

Page 53: реавиз ферменты

2. Последовательный механизм2. Последовательный механизм

Структура (А) и химическое строение (Б) коферментов NAD+ и NADP+53

Page 54: реавиз ферменты

2. Последовательный механизм2. Последовательный механизм54

Page 55: реавиз ферменты

2. Последовательный механизм2. Последовательный механизм(сопряжённые реакции)(сопряжённые реакции)

АН2 – донор водорода, восстановленная форма субстрата 1;

А – окисленная форма субстрата 1;

В – акцептор водорода – второй субстрат;

ВН2 – восстановленная форма субстрата 2;

NAD+, NADH – окисленная и восстановленная формы кофермента;

Е1 и Е2 - ферменты 55

Page 56: реавиз ферменты

22. Последовательный механизм . Последовательный механизм (сопряжённые реакции)(сопряжённые реакции)

56

Page 57: реавиз ферменты

Механизм действия ферментовМеханизм действия ферментов

Энергетические изменения при химических реакцияхЭнергетические изменения при химических реакциях

Изменение свободной энергии при разложении угольной кислоты 57

Page 58: реавиз ферменты

Энергия активацииЭнергия активации

Энергией активации называют дополнительное количество кинетической энергии, необходимое молекулам вещества, чтобы они вступили в реакцию.

При достижении этого энергетического барьера в молекуле происходят изменения, вызывающие перераспределение химических связей и образование новых соединений.

Разницу энергий между исходным реагентом и конечными продуктами называют изменением свободной энергии реакции (ΔG).

58

Page 59: реавиз ферменты

Механизм действия ферментовМеханизм действия ферментовЭнергетические изменения при химических реакцияхЭнергетические изменения при химических реакциях

Изменение свободной энергии в ходе химической реакции, некатализируемой и катализируемой ферментами

Фермент понижает энергию активации Еа, т.е. снижает высоту энергетического барьера. В результате возрастает доля реакционно-способных молекул, следовательно, увеличивается скорость реакции. 59

Page 60: реавиз ферменты

Сходство ферментов с небиологическими Сходство ферментов с небиологическими катализаторами:катализаторами:

1. Ферменты катализируют энергетически возможные реакции (т.е. реакции, которые не противоречат законам термодинамики).

2. Энергия химической системы остаётся постоянной.

3. В ходе катализа направление реакции не изменяется.

4. Ферменты не расходуются в процессе катализа.

60

Page 61: реавиз ферменты

Отличия ферментов от Отличия ферментов от небиологических катализаторов:небиологических катализаторов:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых небелковыми катализаторами.

2. Ферменты обладают высокой специфичностью.

3. Ферментативная реакция проходит в клетке, т.е. при температуре 37оС, постоянном атмосферном давлении и физиологическом значении рН.

4. Скорость ферментативной реакции может регулироваться.

61

Page 62: реавиз ферменты

Механизм действия ферментовМеханизм действия ферментовЭтапы ферментативного катализаЭтапы ферментативного катализа

I – этап сближения и ориентации субстрата относительно активного центра фермента;

II – образование фермент-субстратного комплекса (ES) в результате индуцированного соответствия;

III – деформация субстрата и образование нестабильного комплекса фермент0продукт (ЕР);

IV – распад комплекса (ЕР) с высвобождением продуктов реакции из активного центра фермента и освобождением фермента 62

Page 63: реавиз ферменты

Молекулярные механизмы ферментативного катализаМолекулярные механизмы ферментативного катализа

Кислотно-основный катализ на примере работы Кислотно-основный катализ на примере работы алкогольдегидрогеназы печениалкогольдегидрогеназы печени

I – молекула этилового спирта имеет центр связывания, обеспечивающий гидрофобное взаимодействие активного центра и метильной группы спирта;

II – положительно заряженный атом цинка способствует отщеплению протона от спиртовой группы этанола с образованием отрицательно заряженного атома кислорода. Отрицательный заряд перераспределяется между атомом кислорода и соседним атомом водорода, который затем в виде гидрит-иона переносится на четвёртый углеродный атом никотинамида кофермента NAD+;

III – в результате формируется восстановленная форма NADH и уксусный альдегид. 63

Page 64: реавиз ферменты

Молекулярные механизмы ферментативного катализаМолекулярные механизмы ферментативного катализаКовалентный катализКовалентный катализ

Механизм ковалентного катализа в активном центре химотрипсина

64

Page 65: реавиз ферменты

Основы кинетики ферментативных Основы кинетики ферментативных

реакцийреакций

Зависимость скорости ферментативной реакции (V) от концентрации фермента

65

Page 66: реавиз ферменты

Основы кинетики ферментативных реакцийОсновы кинетики ферментативных реакций

Зависимость скорости ферментативной реакции (V) от температуры 66

Ea

Page 67: реавиз ферменты

67

Поскольку динамика температуры тела пойкилотермных организмов определяется

изменениями температуры среды, Интенсивность их метаболизма также оказывается в прямой зависимости от внешней температуры.

Влияние температуры на обменные процессы прослеживается при изучении онтогенетического

развития пойкилотермных организмов. Оно протекает тем быстрее, чем выше температура окружающей среды.

Длительность развития икры сельди при температуре 0,5 0С составляет 40 – 50 сут,

а при 16 0С — всего 6 – 8; развитие икры форели при 2 0С продолжается 205 сут,

при 5 0С — 82, при 10 0С — 41 сут

Page 68: реавиз ферменты

Основы кинетики ферментативных реакцийОсновы кинетики ферментативных реакций

Зависимость скорости ферментативной реакции (V) от рН среды

68

Page 69: реавиз ферменты

Оптимальные значения рН для некоторых Оптимальные значения рН для некоторых ферментовферментов

69

Page 70: реавиз ферменты

Основы кинетики ферментативных реакцийОсновы кинетики ферментативных реакций

Зависимость скорости реакции (V) от концентрации субстрата (S)

Vmax – максимальная скорость реакции при данной концентрации фермента в оптимальных условиях проведения реакции;

Km – константа Михаэлиса. 70

Page 71: реавиз ферменты

Кинетика ферментативных Кинетика ферментативных реакцийреакций

Леонор Михаэлис — немецкий биохимик, известен по совместной работе с Мод Ментен в области кинетики ферментативных

реакций и разработке уравнения Михаэлиса-Ментен.

где•Vm — максимальная скорость реакции, равная kcatE0;•KM — константа Михаэлиса, равная концентрации субстрата, при которой скорость реакции составляет половину от максимальной;•S — концентрация субстрата.

EE ++ SS ⟺⟺ ESES ⟶⟶ EE ++ PPУравнение имеет вид:Уравнение имеет вид:V V == VVmmSS /( /(SS++KKMM)),,

Page 72: реавиз ферменты

Зависимость скорости реакции (V) от концентрации субстрата (S)

Vmax – максимальная скорость реакции при данной концентрации фермента в оптимальных условиях проведения реакции;

Km – константа Михаэлиса. 72

Page 73: реавиз ферменты

Схема конкурентного ингибирования

активности фермента

73

Ингибирование ферментативной активностиИнгибирование ферментативной активностиОбратимое ингибирование Обратимое ингибирование - - Конкурентное ингибированиеКонкурентное ингибирование

Page 74: реавиз ферменты

74

Для фермент-субстратного комплекса применим метод

квазистационарности, так как в подавляющем большинстве реакций

Kонстанта скорости превращения фермент-субстратного комплекса в фермент и продукт

много больше, чем константа скорости образования ферменто-субстратного комплекса

из фермента и субстрата K(E+P) >> KES

Фермент, изначально находившийся только в свободной форме, в процессе реакции

находится как в виде фермент-субстратного комплекса, так и в виде молекул свободного

фермента : E0 = E + ES

Page 75: реавиз ферменты

Если k-1>>k2, то на первой стадии ферментативной реакции с течением времени устанавливается равновесие (квазиравновесный режим протекания реакции), и в выражение для скорости ферментативной реакции входит уже не константа Михаэлиса, а субстратная константа KS, характеризующая взаимодействие фермента с субстратом в равновесных условиях:

75

Page 76: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активностиОбратимое ингибирование Обратимое ингибирование

Конкурентное ингибирование сукцинатдегидрогеназы малоновой кислотойКонкурентное ингибирование сукцинатдегидрогеназы малоновой кислотой

I – сукцинат связывается с активным центром фермента сукцинатдегидрогеназы;

II – в ходе ферментативной реакции происходит отщепление двух атомов водорода от сукцината и присоединение их к коферменту FAD. В результате образуется фумарат, который высвобождается из активного центра сукцинатдегидрогеназы;

III – малоновая кислота – структурный аналог сукцината,Э она также связывается с активным центром сукцинатдегидрогеназы. При этом химическая реакция не идёт.

76

Page 77: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активностиОбратимое ингибирование Обратимое ингибирование

Конкурентное ингибирование ацетилхолинэстеразы прозериномКонкурентное ингибирование ацетилхолинэстеразы прозерином

А – присоединение ацетилхолина в активном центре фермента. Стрелкой указано место гидролиза эфирной связи в молекуле ацетилхолина;

Б – присоединение конкурентного ингибитора – прозерина в активном центре фермента. Указано место гидролиза прозерина, однако, реакция идёт намного медленнее, чем с ацетилхолином;

В – присоединение конкурентного ингибитора в активном центре фермента – эндрофония. Эндрофоний связывается в активном центре ацетилхолинэстеразы, препятствуя присоединению ацетилхолина.

77

Page 78: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активностиОбратимое ингибирование Обратимое ингибирование

Схема неконкурентного ингибирования активности ферментаСхема неконкурентного ингибирования активности фермента

78

Page 79: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активностиНеобратимое ингибированиеНеобратимое ингибирование

Механизм действия ионов ртути как необратимого ингибитораИоны ртути в малых концентрациях блокируют сульфгидрильные группы

активного центра, что приводит к снижению скорости ферментативной реакции 79

Page 80: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активностиНеобратимое ингибированиеНеобратимое ингибирование

Ингибирование активности ферментов вследствие ковалентной модификации остатков цистеина

80

Page 81: реавиз ферменты

Ингибирование ферментативной активностиИнгибирование ферментативной активности Необратимое ингибированиеНеобратимое ингибирование

81

Page 82: реавиз ферменты

Организация химических реакций в метаболические путиОрганизация химических реакций в метаболические пути

82

Page 83: реавиз ферменты

Внутриклеточная локализация ферментовВнутриклеточная локализация ферментов

83

Page 84: реавиз ферменты

Регуляция скорости ферментативных реакций Регуляция скорости ферментативных реакций осуществляется на трёх независимых уровняхосуществляется на трёх независимых уровнях

1. Изменением количества молекул фермента.

2. Доступностью молекул субстрата и кофермента.

3. Изменением каталитической активности молекулы фермента.

84

Page 85: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путейРегуляция количества молекул ферментаРегуляция количества молекул фермента

85

Page 86: реавиз ферменты

Основные способы регуляции активности Основные способы регуляции активности ферментов:ферментов:

1. Аллостерическая регуляция.2. Регуляция с помощью белок-белковых

взаимодействий.3. Регуляция путём

фосфорилирования/дефосфорилирования молекулы фермента.

4. Регуляция частичным (ограниченным) протеолизом.

86

Page 87: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путейРегуляция каталитической активности ферментаРегуляция каталитической активности фермента

Схема, поясняющая работу аллостерического ферментаА – действие отрицательного эффектора (ингибитора):Б – действие положительного эффектора (активатора). 87

Page 88: реавиз ферменты

88

Принципы регуляции метаболических путейПринципы регуляции метаболических путейРегуляция каталитической активности ферментаРегуляция каталитической активности фермента

Page 89: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путейСхема положительной и отрицательной регуляции катаболизма Схема положительной и отрицательной регуляции катаболизма

глюкозыглюкозы

Молекула АТФ участвует в ретроингибировании аллостерических ферментов фосфофруктокиназы и пируваткиназы.

Фруктозо-1,6-бисфосфат – активатор метаболического пути распада глюкозы.

Плюсами отмечена активация, минусами – ингибирование ферментов.

89

Page 90: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путей Активация ферментов в результате присоединения регуляторных Активация ферментов в результате присоединения регуляторных

белковбелков

Регуляция активности аденилатциклазы

Гормон (Г), взаимодействуя с рецептором (R) на поверхности клеток, приводит к уменьшению сродства ГТФ-связывающего белка (G-белка, состоящего из протомеров α, β, γ ) к ГТФ и увеличению сродства к ГТФ. Присоединение молекулы ГТФ к активному центру G-белка вызывает диссоциацию комплекса на субъединицы α-ГТФ и димерβγ. Комплекс α-ГТФ активирует аденилатциклазу, что способствует синтезу из АТФ внутриклеточных регуляторных молекул цАМФ.

АЦ – аденилатциклаза.ПКА – протеинкиназа А.Pi – Н3РО4. 90

Page 91: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путей

Регуляция каталитической активности ферментов Регуляция каталитической активности ферментов ассоциациейассоциацией//диссоциацией протомеровдиссоциацией протомеров

91

Page 92: реавиз ферменты

Принципы регуляции метаболических путей Принципы регуляции метаболических путей

Регуляция каталитической активности ферментов путём Регуляция каталитической активности ферментов путём фосфорилированияфосфорилирования//дефосфорилированиядефосфорилирования

92

Page 93: реавиз ферменты

Принципы регуляции метаболических путейПринципы регуляции метаболических путей

Регуляция каталитической активности ферментов частичным Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом(ограниченным) протеолизом

Под действием фермента кишечника энтеропептидазы происходит гидролиз пептидной связи Лиз-Иле.

В результате отщепления гексапептида с N-конца формируется активный центр в оставшейся части фермента

93

Page 94: реавиз ферменты

Применение ферментов в медицинеПрименение ферментов в медицинеИзоформы лактат-

дегидрогеназыА – строение различных

изоформ ЛДГ;Б – распределение на

электрофореграмме и относительные количества изоформ ЛДГ в различных органах;

В – содержание изоформ ЛДГ в плазме крови в норме и при патологии (электрофореграммы – слева и фотометрическое сканирование - справа). 94

Page 95: реавиз ферменты

Применение ферментов в медицинеПрименение ферментов в медицине

Изменение активности ферментов в плазме крови при инфаркте миокарда

95