Harmonically Excited Vibrations

Post on 19-Dec-2015

19 views 3 download

description

Mechanical Vibrations - Harmonically Excited Vibrations

Transcript of Harmonically Excited Vibrations

Harmonically Excited Vibrations

ME-304 – Mechanical Vibrations

π‘š π‘₯ + π‘˜π‘₯ = 𝐹 cosπœ”π‘‘

Undamped system under Harmonic Excitation:

π‘Šπ‘’ π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘’ β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘œπ‘’π‘  π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘‘β„Ž 𝐹 = 0 :π‘₯β„Ž 𝑑 = A1 cosπœ”π‘›π‘‘ + 𝐴2 sinπœ”π‘›π‘‘

π‘€π‘Žπ‘›π‘¦ π‘€π‘Žπ‘¦π‘  π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›.π‘Šπ‘’β€²π‘™π‘™ 𝑒𝑠𝑒 π‘‘β„Žπ‘’ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘ π‘œπ‘“ π‘’π‘›π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’π‘‘ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘ π‘₯𝑝 𝑑 = 𝑋 cosπœ”π‘‘

π‘Šπ‘’β€²π‘™π‘™ 𝑝𝑙𝑒𝑔 π‘‘β„Žπ‘–π‘  π‘π‘Žπ‘π‘˜ 𝑖𝑛 π‘‘π‘œ π‘‘β„Žπ‘’ 𝐸𝑂𝑀 π‘Žπ‘›π‘‘ π‘ π‘–π‘šπ‘π‘™π‘–π‘“π‘¦π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘–π‘›π‘” 𝑑𝑀𝑖𝑐𝑒:βˆ’πœ”2π‘šπ‘‹ + π‘˜π‘‹ = 𝐹

𝑿 =𝑭

π’Œ βˆ’π’ŽπŽπŸπ’™π’‘ 𝒕 =

𝑭

π’Œ βˆ’π’ŽπŽπŸπ’„π’π’”πŽπ’•

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠π‘₯ 𝑑 = π‘₯β„Ž 𝑑 + π‘₯𝑝 𝑑 = A1 cosπœ”π‘›π‘‘ + 𝐴2 sinπœ”π‘›π‘‘ + X cosπœ”π‘‘

π‘ˆπ‘ π‘–π‘›π‘” 𝐼𝐢𝑠: π‘₯ 0 = π‘₯π‘œ; π‘₯ 0 = π‘£π‘œπ‘€π‘’ π‘π‘Žπ‘› 𝑓𝑖𝑛𝑑 𝐴1π‘Žπ‘›π‘‘ 𝐴2

𝐴1 = π‘₯π‘œ βˆ’ 𝑋

𝐴2 =π‘£π‘œπœ”π‘›

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠

π‘₯ 𝑑 = (π‘₯π‘œ βˆ’ 𝑋) cosπœ”π‘›π‘‘ +π‘£π‘œπœ”π‘›

sinπœ”π‘›π‘‘ + X cosπœ”π‘‘

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =𝐹

π‘˜ βˆ’ π‘šπœ”2

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2

𝐷𝑒𝑓𝑖𝑛𝑒 π‘ π‘‘π‘Žπ‘‘π‘–π‘ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘›: 𝛿𝑠𝑑 =𝐹

π‘˜

π‘Žπ‘›π‘‘ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘Ÿπ‘Žπ‘‘π‘–π‘œ: π‘Ÿ =πœ”

πœ”π‘›

This term is called the amplification factor, amplitude ratio, magnification factor or simply gain

Gain is a function of frequency ratio

In Phase Response(Frequency ratio, r < 1)

Out of Phase Response(Frequency ratio, r > 1)

Resonance(Frequency Ratio, r = 1)

π΄π‘ π‘ π‘’π‘šπ‘–π‘›π‘” π‘§π‘’π‘Ÿπ‘œ π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘›π‘ : π‘₯ 0 = 0 ; π‘₯ 0 = 0

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠π‘₯ 𝑑 = X (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘)

𝐷𝑒𝑓𝑖𝑛𝑒 𝛿𝑠𝑑 =𝐹

π‘˜π‘Žπ‘›π‘‘ π‘Ÿ =

πœ”

πœ”π‘›

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

𝐴𝑑 π‘Ÿ = 1,πœ” = πœ”π‘›; π‘‡β„Žπ‘’ π‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘ π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘¦π‘ π‘‘π‘’π‘š π‘Žπ‘  𝑔𝑖𝑣𝑒𝑛 π‘π‘¦π‘‘β„Žπ‘’ π‘π‘’π‘™π‘œπ‘€ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›, π‘π‘’π‘π‘œπ‘šπ‘’π‘  𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

We can use L'HΓ΄pital's rule:

Beating Phenomenon(Frequency Ratio, r close to 1)

We found the response of the system with zero initial conditions to be:

Using trigonometric identities, we can rewrite:

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

When the difference between the driving frequency and natural frequency is small. We define a small quantity epsilon, Ο΅ :

Rewriting the response of the system:

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

π‘₯(𝑑) =πœ”π‘›2𝛿 𝑠𝑑

πœ”π‘›2 βˆ’ πœ”2

(2 sin(πœ”π‘› + πœ”

2𝑑) sin(

πœ”π‘› βˆ’ πœ”

2𝑑) )

π‘₯(𝑑) =

π‘˜π‘šΓ—πΉπ‘˜

4πœ–πœ”(2 sin(

πœ”π‘› + πœ”

2𝑑) sin(

πœ”π‘› βˆ’πœ”

2𝑑) )

π‘₯(𝑑) =𝐹

2π‘šπœ–πœ”(sinπœ”π‘‘ 𝑠𝑖𝑛 πœ–π‘‘ )

𝑆𝑖𝑛𝑐𝑒 πœ– 𝑖𝑠 π‘Ÿπ‘Žπ‘‘β„Žπ‘’π‘Ÿ π‘ π‘šπ‘Žπ‘™π‘™: sin πœ–π‘‘ 𝑀𝑖𝑙𝑙 β„Žπ‘Žπ‘£π‘’π‘Ž π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘‘π‘–π‘šπ‘’ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

𝐴𝑛𝑑 πœ” 𝑖𝑠 π‘šπ‘’π‘β„Ž π‘™π‘Žπ‘Ÿπ‘”π‘’π‘Ÿ, sinπœ”π‘‘ 𝑀𝑖𝑙𝑙 β„Žπ‘Žπ‘£π‘’π‘Ž π‘ π‘šπ‘Žπ‘™π‘™ π‘‘π‘–π‘šπ‘’ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝐹 cosπœ”π‘‘

Damped System with Harmonic Force

Many ways to get the particular solution.

1. Using undetermined coefficientsa. Assume a particular solution of the form:

b. Plug it back in to the EOM:

c. Use trigonometric identities to expand cos and sin terms:

d. Equate the coefficients of cos(Ο‰t) and sin(Ο‰t) in above equation

e. Solve for Ξ± and X

f. Solution may be expressed in terms of dimensionless numbers

𝜁 π‘Žπ‘›π‘‘ π‘Ÿ

2. Using Complex Form

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = πΉπ‘’π‘–πœ”π‘‘

π‘Šπ‘’ π‘π‘Žπ‘› π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘ π‘Ž β„Žπ‘Žπ‘Ÿπ‘šπ‘œπ‘›π‘–π‘ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘’π‘ π‘–π‘›π‘” π‘π‘œπ‘šπ‘π‘™π‘’π‘₯ π‘›π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›:𝐼𝑓 𝑀𝑒 𝑒𝑠𝑒 π‘Ž π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š πΉπ‘’π‘–πœ”π‘‘ , π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ πΉπ‘’π‘–πœ”π‘‘ 𝑖𝑠 𝐹 cosπœ”π‘‘ . π‘†π‘œ π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘™π‘™π‘π‘œπ‘Ÿπ‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘‘ π‘‘π‘œ π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘‘β„Ž π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐹 cosπœ”π‘‘

π΄π‘ π‘ π‘’π‘šπ‘’ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š:

π‘₯ 𝑝 = π‘‹π‘’π‘–πœ”π‘‘

π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ 𝑑𝑀𝑖𝑐𝑒 π‘Žπ‘›π‘‘ 𝑝𝑒𝑑 𝑖𝑑 π‘π‘Žπ‘π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝐸𝑂𝑀:

βˆ’π‘šπœ”2π‘‹π‘’π‘–πœ”π‘‘ + π‘–π‘πœ”π‘‹π‘’π‘–πœ”π‘‘ + π‘˜π‘‹π‘’π‘–πœ”π‘‘ = πΉπ‘’π‘–πœ”π‘‘

𝑋 π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ” = 𝐹

𝑋 π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ” = 𝐹

This is called the β€œMechanical impedance” of the system: 𝑍 π‘–πœ” = π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”Γ—π‘˜ βˆ’π‘šπœ”2 βˆ’ π‘–π‘πœ”

π‘˜ βˆ’π‘šπœ”2 βˆ’ π‘–π‘πœ”

There is an imaginary term in the denominator. We can get rid of that and separate the real and imaginary parts by multiplying and dividing by the complex conjugate of the denominator.

𝑋 = πΉπ‘˜ βˆ’π‘šπœ”2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2βˆ’ 𝑖

π‘πœ”

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

𝑋 𝑖𝑠 π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š π‘Ž βˆ’ 𝑖𝑏

𝑁𝑒𝑒𝑑 π‘‘π‘œ π‘Ÿπ‘’π‘€π‘Ÿπ‘–π‘‘π‘’ 𝑋 𝑖𝑛 π‘‘π‘’π‘Ÿπ‘šπ‘  π‘œπ‘“ π‘Ž π‘šπ‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’ π‘Žπ‘›π‘‘ π‘β„Žπ‘Žπ‘ π‘’ π‘Žπ‘›π‘”π‘™π‘’:

𝑋 = π΄π‘’βˆ’π‘–πœ™, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐴 = π‘Ž2 + 𝑏2 π‘Žπ‘›π‘‘ πœ™ = tanβˆ’1𝑏

π‘Ž

𝐴 = πΉπ‘˜ βˆ’π‘šπœ”2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

2

+π‘πœ”

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

2

𝐴 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2 πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’π‘šπœ”2

π‘₯ 𝑝 = π‘‹π‘’π‘–πœ”π‘‘ = 𝐴𝑒𝑖(πœ”π‘‘βˆ’πœ™) =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

Use these results to rewrite the particular solution of the system:

π‘₯ 𝑝 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2cos πœ”π‘‘ βˆ’ πœ™

The real part of the particular solution is the same as what we got before:

The equation,

can rewritten in terms of dimensionless numbers:

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 + 𝑖2πœπ‘Ÿβ‰‘ 𝐻(π‘–πœ”)

This term is called the β€œFrequency Response Function”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹/π‘˜

1 βˆ’π‘šπœ”2

π‘˜+π‘–π‘πœ”π‘˜

𝑏𝑦 𝑒𝑠𝑖𝑛𝑔 π‘Ÿ =πœ”

πœ”π‘›; πœ”π‘› =

π‘˜

π‘š; 𝛿𝑠𝑑 =

𝐹

π‘˜π‘Žπ‘›π‘‘ 𝜁 =

𝑐

2 π‘˜π‘š

Total Solution:

𝛼

Using ICs, we can find unknowns

Note that only the particular solution doesn’t decay exponentially, whereas the homogenous part will decay and die out eventually. So the particular part is often called the β€˜Steady State’ solution, and the homogenous part is called the β€˜transient’ solution

f. Solution may be expressed in terms of dimensionless numbers

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

𝑋 =𝐹/π‘˜

1 βˆ’π‘šπ‘˜πœ”2

2+ 2

𝑐

2 π‘˜π‘šπœ”

π‘šπ‘˜

2

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘†π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿπ‘™π‘¦ πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’π‘šπœ”2= tanβˆ’1

2πœπ‘Ÿ

1 βˆ’ π‘Ÿ2

This expression gives us the Gain of the system as a function of β€˜frequency ratio’ r and damping ratio ΞΆThis is plotted on the next slide, for different damping ratios

Base Excitation

Lets look at the response of the system when the base of a mass-spring-damper system undergoes harmonic motion.

The Equation of Motion of the system (using the free-body diagram) looks like:

π‘š π‘₯ = βˆ’π‘˜ π‘₯ βˆ’ 𝑦 βˆ’ 𝑐( π‘₯ βˆ’ 𝑦)

𝐹 =π‘š π‘₯

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝑐 𝑦 + π‘˜π‘¦

𝐼𝑓 𝑦 𝑑 = π‘Œ sinπœ”π‘‘

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›: π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘π‘π‘Žπ‘› 𝑏𝑒 rewritten in the fom A sin(πœ”π‘‘ βˆ’ 𝛼)

A sin(πœ”π‘‘ βˆ’ 𝛼) = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘π΄ sinπœ”π‘‘ cos 𝛼 βˆ’ 𝐴 sin 𝛼 cosπœ”π‘‘ = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘

Must find A and Ξ±, by comparing the terms on either side of the equation

𝐴 sin 𝛼 = βˆ’π‘πœ”π‘Œπ΄ cos 𝛼 = π‘˜π‘Œ

𝐴 = π‘Œ π‘πœ” 2 + π‘˜2

𝛼 = tanβˆ’1 βˆ’π‘πœ”

π‘˜= tanβˆ’1(βˆ’2πœπ‘Ÿ)

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼)

And the equation of motion is:

This shows that giving excitation of the base is equivalent to applying a harmonic force of magnitude A.

We’ve already solved this for a slightly different forcing function, we don’t really need to solve this again. We can just borrow results we derived before with a few modifications.

One way of doing this, is by comparing with the solution we got using complex notation

π’Ž 𝒙 + 𝒄 𝒙 + π’Œπ’™ = π‘­π’†π’ŠπŽπ’• π’Ž 𝒙 + 𝒄 𝒙 + π’Œπ’™ = π‘¨π’†π’Š(πŽπ’•βˆ’πœΆ)

𝒙 𝒑 = π‘Ώπ’†π’ŠπŽπ’•

𝒙 𝒑 =𝑭

π’Œ βˆ’π’ŽπŽπŸ 𝟐 + π’„πŽ πŸπ’†π’Š(πŽπ’•βˆ’π“)

Assume particular solution: Assume particular solution:

𝒙 𝒑 = π‘Ώπ’†π’Š(πŽπ’•βˆ’πœΆ)

𝒙 𝒑 =𝑨

π’Œ βˆ’π’ŽπŽπŸ 𝟐 + π’„πŽ πŸπ’†π’Š(πŽπ’•βˆ’πœΆβˆ’π“πŸ)

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐹 cosπœ”π‘‘ π‘–π‘ π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’π‘‘ 𝑏𝑦 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ 𝐹 π‘’π‘–πœ”π‘‘

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼) π‘–π‘ π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’π‘‘ 𝑏𝑦 π‘‘β„Žπ‘’ π‘–π‘šπ‘Žπ‘”π‘–π‘›π‘Žπ‘Ÿπ‘¦ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“π΄π‘’π‘–(πœ”π‘‘βˆ’π›Ό)

Solution in complex form: Solution in complex form:

π’˜π’‰π’†π’“π’† 𝝓 = π’•π’‚π’βˆ’πŸπ’„πŽ

π’Œ βˆ’π’ŽπŽπŸπ’˜π’‰π’†π’“π’† π“πŸ = π’•π’‚π’βˆ’πŸ

π’„πŽ

π’Œ βˆ’π’ŽπŽπŸ

The real part of this solution represents the solution for the forcing function F cos πœ”π‘‘

The imaginary part of this solutionrepresents the solution for the forcingfunction 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼)

Base ExcitationHarmonic Excitation

π‘₯ 𝑝 =𝐹

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™) π‘₯ 𝑝 =

𝐴

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’π›Όβˆ’πœ™1)

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

Here, we were trying to compare the β€˜static displacement’ Ξ΄st with the magnitude of the particular solution, (or steady state solution), X

π‘₯ 𝑝 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

We’re trying to compare the magnitude of the input displacement, Y and the magnitude of the particular solution, X

𝑋

π‘Œ=

π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2

𝑋

π‘Œ=

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

We can rewrite this in terms of frequency ratio and damping ratio:

π‘€β„Žπ‘’π‘Ÿπ‘’ πœ™ = 𝛼 + πœ™1

This term is called displacement transmissibility:

Base Excitation – Force Transmissibility

In base excitation, a force F is transmitted to the base or support due to the reactions from the spring and the dashpot. This force can be determined as:

𝐹 = π‘˜ π‘₯ βˆ’ 𝑦 + 𝑐 π‘₯ βˆ’ 𝑦 = βˆ’π‘š π‘₯

π‘₯ 𝑝 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

Consider the particular solution:

π‘₯ 𝑝 = 𝑋 sin(πœ”π‘‘ βˆ’ πœ™)

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2

𝐹 = π‘šπœ”2X sin πœ”π‘‘ βˆ’ πœ™

𝐹 = π‘šπœ”2π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2sin πœ”π‘‘ βˆ’ πœ™

The maximum value of this force FT is given by:

𝐹𝑇 = π‘šπœ”2π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

πΉπ‘‡π‘Œ= π‘šπœ”2

π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

πΉπ‘‡π‘Œ= π‘šπœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

Lets try to rewrite this in terms of frequency ratio and damping ratio:

πΉπ‘‡π‘˜π‘Œ

=π‘š

π‘˜πœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

πΉπ‘‡π‘˜π‘Œ

= π‘Ÿ21 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

This term is called the β€˜force transmissibility’

Rotating Unbalance

Rotating Unbalance

Rotating Unbalance

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = moeπœ”2 sinπœ”π‘‘

𝐹 =π‘š π‘₯

π‘₯ 𝑝 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

π‘€β„Žπ‘’π‘Ÿπ‘’ πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’ π‘šπœ”2

This is effectively the same problem as before, with F= moeω2

π‘₯ 𝑝 = 𝑋 sin(πœ”π‘‘ βˆ’ πœ™)

𝑋 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

Time to make this non-dimensional. Rewrite in terms of zeta and r

𝑋 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2 𝑋 =

π‘šπ‘œπ‘’πœ”2

π‘˜

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

𝑋 =

π‘šπ‘œπ‘’πœ”2

π‘˜Γ—π‘šπ‘š

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘šπ‘‹

π‘šπ‘œπ‘’=

πœ”2 Γ—π‘šπ‘˜

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘šπ‘‹

π‘šπ‘œπ‘’=

π‘Ÿ2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

This term is the β€˜dimensionless displacement magnitude’ of the system.

The force F is transmitted to the foundation due to the rotating unbalanced force is given by:

𝐹 𝑑 = π‘˜π‘₯ 𝑑 + 𝑐 π‘₯(𝑑)

𝐹𝑇 = π‘šπ‘œπ‘’πœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

The maximum value of this force FT is given by: