Harmonically Excited Vibrations

42
Harmonically Excited Vibrations ME-304 – Mechanical Vibrations

description

Mechanical Vibrations - Harmonically Excited Vibrations

Transcript of Harmonically Excited Vibrations

Page 1: Harmonically Excited Vibrations

Harmonically Excited Vibrations

ME-304 – Mechanical Vibrations

Page 2: Harmonically Excited Vibrations

π‘š π‘₯ + π‘˜π‘₯ = 𝐹 cosπœ”π‘‘

Undamped system under Harmonic Excitation:

π‘Šπ‘’ π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘’ β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘œπ‘’π‘  π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘‘β„Ž 𝐹 = 0 :π‘₯β„Ž 𝑑 = A1 cosπœ”π‘›π‘‘ + 𝐴2 sinπœ”π‘›π‘‘

π‘€π‘Žπ‘›π‘¦ π‘€π‘Žπ‘¦π‘  π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘‘β„Žπ‘’ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›.π‘Šπ‘’β€²π‘™π‘™ 𝑒𝑠𝑒 π‘‘β„Žπ‘’ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘ π‘œπ‘“ π‘’π‘›π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’π‘‘ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘ π‘₯𝑝 𝑑 = 𝑋 cosπœ”π‘‘

π‘Šπ‘’β€²π‘™π‘™ 𝑝𝑙𝑒𝑔 π‘‘β„Žπ‘–π‘  π‘π‘Žπ‘π‘˜ 𝑖𝑛 π‘‘π‘œ π‘‘β„Žπ‘’ 𝐸𝑂𝑀 π‘Žπ‘›π‘‘ π‘ π‘–π‘šπ‘π‘™π‘–π‘“π‘¦π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘–π‘›π‘” 𝑑𝑀𝑖𝑐𝑒:βˆ’πœ”2π‘šπ‘‹ + π‘˜π‘‹ = 𝐹

𝑿 =𝑭

π’Œ βˆ’π’ŽπŽπŸπ’™π’‘ 𝒕 =

𝑭

π’Œ βˆ’π’ŽπŽπŸπ’„π’π’”πŽπ’•

Page 3: Harmonically Excited Vibrations

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠π‘₯ 𝑑 = π‘₯β„Ž 𝑑 + π‘₯𝑝 𝑑 = A1 cosπœ”π‘›π‘‘ + 𝐴2 sinπœ”π‘›π‘‘ + X cosπœ”π‘‘

π‘ˆπ‘ π‘–π‘›π‘” 𝐼𝐢𝑠: π‘₯ 0 = π‘₯π‘œ; π‘₯ 0 = π‘£π‘œπ‘€π‘’ π‘π‘Žπ‘› 𝑓𝑖𝑛𝑑 𝐴1π‘Žπ‘›π‘‘ 𝐴2

𝐴1 = π‘₯π‘œ βˆ’ 𝑋

𝐴2 =π‘£π‘œπœ”π‘›

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠

π‘₯ 𝑑 = (π‘₯π‘œ βˆ’ 𝑋) cosπœ”π‘›π‘‘ +π‘£π‘œπœ”π‘›

sinπœ”π‘›π‘‘ + X cosπœ”π‘‘

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =𝐹

π‘˜ βˆ’ π‘šπœ”2

Page 4: Harmonically Excited Vibrations

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2

𝐷𝑒𝑓𝑖𝑛𝑒 π‘ π‘‘π‘Žπ‘‘π‘–π‘ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘›: 𝛿𝑠𝑑 =𝐹

π‘˜

π‘Žπ‘›π‘‘ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ π‘Ÿπ‘Žπ‘‘π‘–π‘œ: π‘Ÿ =πœ”

πœ”π‘›

This term is called the amplification factor, amplitude ratio, magnification factor or simply gain

Gain is a function of frequency ratio

Page 5: Harmonically Excited Vibrations

In Phase Response(Frequency ratio, r < 1)

Out of Phase Response(Frequency ratio, r > 1)

Page 6: Harmonically Excited Vibrations

Resonance(Frequency Ratio, r = 1)

π΄π‘ π‘ π‘’π‘šπ‘–π‘›π‘” π‘§π‘’π‘Ÿπ‘œ π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘›π‘ : π‘₯ 0 = 0 ; π‘₯ 0 = 0

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  𝑖𝑠π‘₯ 𝑑 = X (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘)

𝐷𝑒𝑓𝑖𝑛𝑒 𝛿𝑠𝑑 =𝐹

π‘˜π‘Žπ‘›π‘‘ π‘Ÿ =

πœ”

πœ”π‘›

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

Page 7: Harmonically Excited Vibrations

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

𝐴𝑑 π‘Ÿ = 1,πœ” = πœ”π‘›; π‘‡β„Žπ‘’ π‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘ π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘¦π‘ π‘‘π‘’π‘š π‘Žπ‘  𝑔𝑖𝑣𝑒𝑛 π‘π‘¦π‘‘β„Žπ‘’ π‘π‘’π‘™π‘œπ‘€ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›, π‘π‘’π‘π‘œπ‘šπ‘’π‘  𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

We can use L'HΓ΄pital's rule:

Page 8: Harmonically Excited Vibrations
Page 9: Harmonically Excited Vibrations

Beating Phenomenon(Frequency Ratio, r close to 1)

We found the response of the system with zero initial conditions to be:

Using trigonometric identities, we can rewrite:

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

Page 10: Harmonically Excited Vibrations

When the difference between the driving frequency and natural frequency is small. We define a small quantity epsilon, Ο΅ :

Rewriting the response of the system:

π‘₯(𝑑) =𝛿𝑠𝑑

1 βˆ’πœ”πœ”π‘›

2 (cosπœ”π‘‘ βˆ’ cosπœ”π‘›π‘‘ )

Page 11: Harmonically Excited Vibrations

π‘₯(𝑑) =πœ”π‘›2𝛿 𝑠𝑑

πœ”π‘›2 βˆ’ πœ”2

(2 sin(πœ”π‘› + πœ”

2𝑑) sin(

πœ”π‘› βˆ’ πœ”

2𝑑) )

π‘₯(𝑑) =

π‘˜π‘šΓ—πΉπ‘˜

4πœ–πœ”(2 sin(

πœ”π‘› + πœ”

2𝑑) sin(

πœ”π‘› βˆ’πœ”

2𝑑) )

π‘₯(𝑑) =𝐹

2π‘šπœ–πœ”(sinπœ”π‘‘ 𝑠𝑖𝑛 πœ–π‘‘ )

𝑆𝑖𝑛𝑐𝑒 πœ– 𝑖𝑠 π‘Ÿπ‘Žπ‘‘β„Žπ‘’π‘Ÿ π‘ π‘šπ‘Žπ‘™π‘™: sin πœ–π‘‘ 𝑀𝑖𝑙𝑙 β„Žπ‘Žπ‘£π‘’π‘Ž π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘‘π‘–π‘šπ‘’ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

𝐴𝑛𝑑 πœ” 𝑖𝑠 π‘šπ‘’π‘β„Ž π‘™π‘Žπ‘Ÿπ‘”π‘’π‘Ÿ, sinπœ”π‘‘ 𝑀𝑖𝑙𝑙 β„Žπ‘Žπ‘£π‘’π‘Ž π‘ π‘šπ‘Žπ‘™π‘™ π‘‘π‘–π‘šπ‘’ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

Page 12: Harmonically Excited Vibrations
Page 13: Harmonically Excited Vibrations

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝐹 cosπœ”π‘‘

Damped System with Harmonic Force

Many ways to get the particular solution.

1. Using undetermined coefficientsa. Assume a particular solution of the form:

b. Plug it back in to the EOM:

Page 14: Harmonically Excited Vibrations

c. Use trigonometric identities to expand cos and sin terms:

Page 15: Harmonically Excited Vibrations

d. Equate the coefficients of cos(Ο‰t) and sin(Ο‰t) in above equation

e. Solve for Ξ± and X

f. Solution may be expressed in terms of dimensionless numbers

𝜁 π‘Žπ‘›π‘‘ π‘Ÿ

Page 16: Harmonically Excited Vibrations

2. Using Complex Form

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = πΉπ‘’π‘–πœ”π‘‘

π‘Šπ‘’ π‘π‘Žπ‘› π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘ π‘Ž β„Žπ‘Žπ‘Ÿπ‘šπ‘œπ‘›π‘–π‘ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘’π‘ π‘–π‘›π‘” π‘π‘œπ‘šπ‘π‘™π‘’π‘₯ π‘›π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›:𝐼𝑓 𝑀𝑒 𝑒𝑠𝑒 π‘Ž π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š πΉπ‘’π‘–πœ”π‘‘ , π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ πΉπ‘’π‘–πœ”π‘‘ 𝑖𝑠 𝐹 cosπœ”π‘‘ . π‘†π‘œ π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘™π‘™π‘π‘œπ‘Ÿπ‘Ÿπ‘’π‘ π‘π‘œπ‘›π‘‘ π‘‘π‘œ π‘‘β„Žπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘€π‘–π‘‘β„Ž π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐹 cosπœ”π‘‘

π΄π‘ π‘ π‘’π‘šπ‘’ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š:

π‘₯ 𝑝 = π‘‹π‘’π‘–πœ”π‘‘

π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘‘π‘’ 𝑑𝑀𝑖𝑐𝑒 π‘Žπ‘›π‘‘ 𝑝𝑒𝑑 𝑖𝑑 π‘π‘Žπ‘π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝐸𝑂𝑀:

βˆ’π‘šπœ”2π‘‹π‘’π‘–πœ”π‘‘ + π‘–π‘πœ”π‘‹π‘’π‘–πœ”π‘‘ + π‘˜π‘‹π‘’π‘–πœ”π‘‘ = πΉπ‘’π‘–πœ”π‘‘

𝑋 π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ” = 𝐹

Page 17: Harmonically Excited Vibrations

𝑋 π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ” = 𝐹

This is called the β€œMechanical impedance” of the system: 𝑍 π‘–πœ” = π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”Γ—π‘˜ βˆ’π‘šπœ”2 βˆ’ π‘–π‘πœ”

π‘˜ βˆ’π‘šπœ”2 βˆ’ π‘–π‘πœ”

There is an imaginary term in the denominator. We can get rid of that and separate the real and imaginary parts by multiplying and dividing by the complex conjugate of the denominator.

𝑋 = πΉπ‘˜ βˆ’π‘šπœ”2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2βˆ’ 𝑖

π‘πœ”

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

𝑋 𝑖𝑠 π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š π‘Ž βˆ’ 𝑖𝑏

Page 18: Harmonically Excited Vibrations

𝑁𝑒𝑒𝑑 π‘‘π‘œ π‘Ÿπ‘’π‘€π‘Ÿπ‘–π‘‘π‘’ 𝑋 𝑖𝑛 π‘‘π‘’π‘Ÿπ‘šπ‘  π‘œπ‘“ π‘Ž π‘šπ‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’ π‘Žπ‘›π‘‘ π‘β„Žπ‘Žπ‘ π‘’ π‘Žπ‘›π‘”π‘™π‘’:

𝑋 = π΄π‘’βˆ’π‘–πœ™, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐴 = π‘Ž2 + 𝑏2 π‘Žπ‘›π‘‘ πœ™ = tanβˆ’1𝑏

π‘Ž

𝐴 = πΉπ‘˜ βˆ’π‘šπœ”2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

2

+π‘πœ”

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

2

𝐴 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2 πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’π‘šπœ”2

π‘₯ 𝑝 = π‘‹π‘’π‘–πœ”π‘‘ = 𝐴𝑒𝑖(πœ”π‘‘βˆ’πœ™) =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

Use these results to rewrite the particular solution of the system:

π‘₯ 𝑝 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2cos πœ”π‘‘ βˆ’ πœ™

The real part of the particular solution is the same as what we got before:

Page 19: Harmonically Excited Vibrations

The equation,

can rewritten in terms of dimensionless numbers:

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 + 𝑖2πœπ‘Ÿβ‰‘ 𝐻(π‘–πœ”)

This term is called the β€œFrequency Response Function”

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 + π‘–π‘πœ”

𝑋 =𝐹/π‘˜

1 βˆ’π‘šπœ”2

π‘˜+π‘–π‘πœ”π‘˜

𝑏𝑦 𝑒𝑠𝑖𝑛𝑔 π‘Ÿ =πœ”

πœ”π‘›; πœ”π‘› =

π‘˜

π‘š; 𝛿𝑠𝑑 =

𝐹

π‘˜π‘Žπ‘›π‘‘ 𝜁 =

𝑐

2 π‘˜π‘š

Page 20: Harmonically Excited Vibrations

Total Solution:

𝛼

Using ICs, we can find unknowns

Note that only the particular solution doesn’t decay exponentially, whereas the homogenous part will decay and die out eventually. So the particular part is often called the β€˜Steady State’ solution, and the homogenous part is called the β€˜transient’ solution

Page 21: Harmonically Excited Vibrations

f. Solution may be expressed in terms of dimensionless numbers

𝑋 =𝐹

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

𝑋 =𝐹/π‘˜

1 βˆ’π‘šπ‘˜πœ”2

2+ 2

𝑐

2 π‘˜π‘šπœ”

π‘šπ‘˜

2

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘†π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿπ‘™π‘¦ πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’π‘šπœ”2= tanβˆ’1

2πœπ‘Ÿ

1 βˆ’ π‘Ÿ2

This expression gives us the Gain of the system as a function of β€˜frequency ratio’ r and damping ratio ΞΆThis is plotted on the next slide, for different damping ratios

Page 22: Harmonically Excited Vibrations
Page 23: Harmonically Excited Vibrations
Page 24: Harmonically Excited Vibrations

Base Excitation

Lets look at the response of the system when the base of a mass-spring-damper system undergoes harmonic motion.

Page 25: Harmonically Excited Vibrations

The Equation of Motion of the system (using the free-body diagram) looks like:

π‘š π‘₯ = βˆ’π‘˜ π‘₯ βˆ’ 𝑦 βˆ’ 𝑐( π‘₯ βˆ’ 𝑦)

𝐹 =π‘š π‘₯

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝑐 𝑦 + π‘˜π‘¦

𝐼𝑓 𝑦 𝑑 = π‘Œ sinπœ”π‘‘

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›: π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘π‘π‘Žπ‘› 𝑏𝑒 rewritten in the fom A sin(πœ”π‘‘ βˆ’ 𝛼)

A sin(πœ”π‘‘ βˆ’ 𝛼) = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘π΄ sinπœ”π‘‘ cos 𝛼 βˆ’ 𝐴 sin 𝛼 cosπœ”π‘‘ = π‘πœ”π‘Œ cosπœ”π‘‘ + π‘˜π‘Œ sinπœ”π‘‘

Must find A and Ξ±, by comparing the terms on either side of the equation

Page 26: Harmonically Excited Vibrations

𝐴 sin 𝛼 = βˆ’π‘πœ”π‘Œπ΄ cos 𝛼 = π‘˜π‘Œ

𝐴 = π‘Œ π‘πœ” 2 + π‘˜2

𝛼 = tanβˆ’1 βˆ’π‘πœ”

π‘˜= tanβˆ’1(βˆ’2πœπ‘Ÿ)

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼)

And the equation of motion is:

This shows that giving excitation of the base is equivalent to applying a harmonic force of magnitude A.

We’ve already solved this for a slightly different forcing function, we don’t really need to solve this again. We can just borrow results we derived before with a few modifications.

Page 27: Harmonically Excited Vibrations

One way of doing this, is by comparing with the solution we got using complex notation

π’Ž 𝒙 + 𝒄 𝒙 + π’Œπ’™ = π‘­π’†π’ŠπŽπ’• π’Ž 𝒙 + 𝒄 𝒙 + π’Œπ’™ = π‘¨π’†π’Š(πŽπ’•βˆ’πœΆ)

𝒙 𝒑 = π‘Ώπ’†π’ŠπŽπ’•

𝒙 𝒑 =𝑭

π’Œ βˆ’π’ŽπŽπŸ 𝟐 + π’„πŽ πŸπ’†π’Š(πŽπ’•βˆ’π“)

Assume particular solution: Assume particular solution:

𝒙 𝒑 = π‘Ώπ’†π’Š(πŽπ’•βˆ’πœΆ)

𝒙 𝒑 =𝑨

π’Œ βˆ’π’ŽπŽπŸ 𝟐 + π’„πŽ πŸπ’†π’Š(πŽπ’•βˆ’πœΆβˆ’π“πŸ)

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐹 cosπœ”π‘‘ π‘–π‘ π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’π‘‘ 𝑏𝑦 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ 𝐹 π‘’π‘–πœ”π‘‘

π‘‡β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘–π‘›π‘” π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼) π‘–π‘ π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’π‘‘ 𝑏𝑦 π‘‘β„Žπ‘’ π‘–π‘šπ‘Žπ‘”π‘–π‘›π‘Žπ‘Ÿπ‘¦ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“π΄π‘’π‘–(πœ”π‘‘βˆ’π›Ό)

Solution in complex form: Solution in complex form:

π’˜π’‰π’†π’“π’† 𝝓 = π’•π’‚π’βˆ’πŸπ’„πŽ

π’Œ βˆ’π’ŽπŽπŸπ’˜π’‰π’†π’“π’† π“πŸ = π’•π’‚π’βˆ’πŸ

π’„πŽ

π’Œ βˆ’π’ŽπŽπŸ

The real part of this solution represents the solution for the forcing function F cos πœ”π‘‘

The imaginary part of this solutionrepresents the solution for the forcingfunction 𝐴 sin(πœ”π‘‘ βˆ’ 𝛼)

Base ExcitationHarmonic Excitation

Page 28: Harmonically Excited Vibrations

π‘₯ 𝑝 =𝐹

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™) π‘₯ 𝑝 =

𝐴

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’π›Όβˆ’πœ™1)

𝑋

𝛿𝑠𝑑=

1

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

Here, we were trying to compare the β€˜static displacement’ Ξ΄st with the magnitude of the particular solution, (or steady state solution), X

π‘₯ 𝑝 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

We’re trying to compare the magnitude of the input displacement, Y and the magnitude of the particular solution, X

𝑋

π‘Œ=

π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2

𝑋

π‘Œ=

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

We can rewrite this in terms of frequency ratio and damping ratio:

π‘€β„Žπ‘’π‘Ÿπ‘’ πœ™ = 𝛼 + πœ™1

This term is called displacement transmissibility:

Page 29: Harmonically Excited Vibrations
Page 30: Harmonically Excited Vibrations
Page 31: Harmonically Excited Vibrations

Base Excitation – Force Transmissibility

In base excitation, a force F is transmitted to the base or support due to the reactions from the spring and the dashpot. This force can be determined as:

𝐹 = π‘˜ π‘₯ βˆ’ 𝑦 + 𝑐 π‘₯ βˆ’ 𝑦 = βˆ’π‘š π‘₯

π‘₯ 𝑝 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

Consider the particular solution:

π‘₯ 𝑝 = 𝑋 sin(πœ”π‘‘ βˆ’ πœ™)

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑋 =π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2

Page 32: Harmonically Excited Vibrations

𝐹 = π‘šπœ”2X sin πœ”π‘‘ βˆ’ πœ™

𝐹 = π‘šπœ”2π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2sin πœ”π‘‘ βˆ’ πœ™

The maximum value of this force FT is given by:

𝐹𝑇 = π‘šπœ”2π‘Œ π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

πΉπ‘‡π‘Œ= π‘šπœ”2

π‘˜2 + π‘πœ” 2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

πΉπ‘‡π‘Œ= π‘šπœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

Lets try to rewrite this in terms of frequency ratio and damping ratio:

Page 33: Harmonically Excited Vibrations

πΉπ‘‡π‘˜π‘Œ

=π‘š

π‘˜πœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

πΉπ‘‡π‘˜π‘Œ

= π‘Ÿ21 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

This term is called the β€˜force transmissibility’

Page 34: Harmonically Excited Vibrations
Page 35: Harmonically Excited Vibrations

Rotating Unbalance

Page 36: Harmonically Excited Vibrations

Rotating Unbalance

Page 37: Harmonically Excited Vibrations
Page 38: Harmonically Excited Vibrations
Page 39: Harmonically Excited Vibrations

Rotating Unbalance

π‘š π‘₯ + 𝑐 π‘₯ + π‘˜π‘₯ = moeπœ”2 sinπœ”π‘‘

𝐹 =π‘š π‘₯

π‘₯ 𝑝 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’ π‘šπœ”2 2 + π‘πœ” 2𝑒𝑖(πœ”π‘‘βˆ’πœ™)

π‘€β„Žπ‘’π‘Ÿπ‘’ πœ™ = tanβˆ’1π‘πœ”

π‘˜ βˆ’ π‘šπœ”2

This is effectively the same problem as before, with F= moeω2

π‘₯ 𝑝 = 𝑋 sin(πœ”π‘‘ βˆ’ πœ™)

𝑋 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2

Time to make this non-dimensional. Rewrite in terms of zeta and r

Page 40: Harmonically Excited Vibrations

𝑋 =π‘šπ‘œπ‘’πœ”

2

π‘˜ βˆ’π‘šπœ”2 2 + π‘πœ” 2 𝑋 =

π‘šπ‘œπ‘’πœ”2

π‘˜

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

𝑋 =

π‘šπ‘œπ‘’πœ”2

π‘˜Γ—π‘šπ‘š

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘šπ‘‹

π‘šπ‘œπ‘’=

πœ”2 Γ—π‘šπ‘˜

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

π‘šπ‘‹

π‘šπ‘œπ‘’=

π‘Ÿ2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

This term is the β€˜dimensionless displacement magnitude’ of the system.

Page 41: Harmonically Excited Vibrations
Page 42: Harmonically Excited Vibrations

The force F is transmitted to the foundation due to the rotating unbalanced force is given by:

𝐹 𝑑 = π‘˜π‘₯ 𝑑 + 𝑐 π‘₯(𝑑)

𝐹𝑇 = π‘šπ‘œπ‘’πœ”2

1 + 2πœπ‘Ÿ 2

1 βˆ’ π‘Ÿ2 2 + 2πœπ‘Ÿ 2

The maximum value of this force FT is given by: