Download - Study on the Aerodynamic Brake

Transcript
  • B No.2012-JBR-0385

    2013 The Japan Society of Mechanical Engineers

    *1

    *2

    *3

    *4

    Yoshiaki TANZAWA*1 , Sota SHIMIZU, Yoshitaka INOUE and Yukimaru SHIMIZU

    *1 Nippon Institute of Technology Dept. of Product Engineering & Environmental Management

    4-1 Gakuendai, Miyashiro-machi, Saitama, 345-8501 Japan

    The vertical axis wind turbine can correspond to the wind direction change in principle and is possible to increase the output by stack it up vertically. However, it is pointed out that the control is difficult, because the self-start is weak and the rotational speed rises rapidly. In this study, we report on the method by which the generating operation can be continued at ease when the wind of the mean speed from 12m/s to 15m/s blows to the small giro-mill type vertical axis wind turbine and under the situation with large wind speed fluctuation in the vicinity of ground. In this method, firstly, the slide shaft is installed squarely to the rotation axis of the vertical axis wind turbine. The flat plate wing in the tip of this slide shaft is parallel to the plane of rotation under a usual rotational speed, and the axial resistance torque is small. However, the flat plate wing begins to tilt when the rotational speed exceeds a certain value, and it becomes finally right-angled to the plane of rotation, and large axial resistance torque is generated. By this method, the runaway of the vertical axis wind turbine is prevented. In the paper, various problems on this are clarified and are verified through the wind tunnel experiment, and the practicable method has been clarified.

    Key Words : Wind Turbine, Wind Power Generation, Flow Drag, Aerodynamic Brake, Vertical Axis Wind Turbine

    1.

    2000

    1012[m/s] 15[m/s]

    90

    Study on the Aerodynamic Brake of Small Gyro-Mill Type Vertical Axis Wind Turbine (1st Report, Method of the Rotational Speed Continuous Control under the Strong Wind)

    * 2012 5 18 *1 345-8501 4-1 *2 *3 *4 E-mail: [email protected]

    12

    12

    79 797 2013-1

  • 1

    2013 The Japan Society of Mechanical Engineers

    1()

    2.

    C [m] CD [-] CP [-]

    H [m] N [-] R [m] [deg] [-]

    3.

    31 1

    1000[mm] 1200[mm] 0.3[m] 1 5[m/s] 600[mm] 485[mm]3% 0.7[m]2 0.5 30021 20W100W

    2 3 1000[mm] 150[mm] 1000[mm] NACA0015 2022

    Fig. 1 Outline of experimental system and measurement system

    Generator

    Wind tunnel Encoder

    Wind turbine

    Anemometer Air Resistance

    Brake

    Reduction gear

    Torque meter Load

    Dynamic strain amplifier

    Wind speed

    Torque

    Current Voltage

    Wind tunnel controller

    Interface

    PC

    1.0

    0.8 0.6

    0.4 Constant speed line

    1.2 m

    1.0

    m

    13

    13

  • 1

    2013 The Japan Society of Mechanical Engineers

    Fig. 2 Vertical axis wind turbine

    32 90 321 90 3 90

    A B C B A 50 B A A

    90

    Fig. 3 Slide mechanism and the principle of aerodynamic brake "Popping wing"

    45

    Fig. 4 Aerodynamic brake "Popping wing" Fig. 5 Parts of aerodynamic brake

    150 50

    1000

    C: Compression coil spring A: Slide shaft (15)

    Brake plate

    Pin Groove

    B: Case

    332 40

    30

    Chord line

    Tangent line

    Circular orbit of wing

    Close up

    150

    1000

    14

    14

  • 1

    2013 The Japan Society of Mechanical Engineers

    Table 1 Types and size of brake plate wings

    Name Size WDt mm

    Plate20 1002002

    Plate10 1001002

    Plate5 100502

    PlateT26 (100160+200100)2

    PlateT20 (100100+200100)2

    PlateT20t15 (100100+200100)1.5

    322 32

    3

    19 [mm] 1618[mm]

    Table 2 Specification of springs

    Type a b c d e f

    Model number AP160

    -051-1.4

    AP170

    -042-1.8

    AP180

    -060-1.8

    AP190

    -080-1.6

    AP190

    -080-1.8

    AP190

    -084-1.4

    Outside diameter mm 16 17 18 19 19 19

    Free length mm 51 42 60 80 80 84

    Wire diameter mm 1.4 1.8 1.8 1.6 1.8 1.4

    Maximum spring mm 28.3 19.6 30.9 49.9 44.7 51.5

    Load capacity N 38.1 71.68 67.92 46.77 64.53 32.31

    Spring constant N/mm 1.34 3.66 2.2 0.94 1.44 0.63

    Table 3 Combination of springs

    Type Fat Thin Spacer mm

    A f1 a2 20

    B e1 c2 4

    C d1 b3 4

    (a) Combination of springs A (b) Combination of springs B (c) Combination of springs C

    Fig. 6 Relationship between force and extension of slide shaft

    0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100

    Exte

    nsi

    on m

    m

    Force N

    Theoretical

    Experimental

    0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100

    Exte

    nsi

    on m

    m

    Force N

    Theoretical

    Experimental

    0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100

    Exte

    nsi

    on m

    m

    Force N

    Theoretical

    Experimental

    15

    15

  • 1

    2013 The Japan Society of Mechanical Engineers

    10[kgf]

    6()

    55

    0

    22%

    323 90 7

    (a)-1

    0 rpm

    (a)-2

    300 rpm

    (b)

    400 rpm

    (c)

    500 rpm

    Fig. 7 State of spring, barycentric position of slide shaft and pin position of

    each rotational speed and typical vortex flow pattern around flat plate

    (a)-1, (a)-2

    D0.0020.003

    ()

    0350[rpm]

    Spring Pin

    Vortex

    Brake plate Rotational axis

    r

    Center of gravity

    16

    16

  • 1

    2013 The Japan Society of Mechanical Engineers

    (b) 350[rpm]450[rpm]

    (C) 450[rpm]90

    D1.121.29

    D

    ()

    200

    7

    100[rpm]200[rpm]

    300[rpm]500[rpm]

    90

    25[m/s]

    4.

    41 826

    15[m/s]200600[rpm]100W300WP

    Tip Speed RatioTSRV. Kumar

    ()

    0.9, NACA0015P0.16

    2Kumar0.2, 0.25, 0.3, 0.35, 0.375, R/H

    1.0, 1.25, 1.5, 1.75, 2.0 5P0.150.2

    Fig. 8 Tip speed ratio vs power coefficient

    KumarP

    P0.5

    0.751[m]

    1[m]0.9PTSR

    ()

    Kumar9[m] 5.4[m]

    0.9

    0.2

    0.25

    0.3

    0.35

    0.375

    Kumars

    This experiment

    Pow

    er co

    effic

    ient

    C P

    Tip speed ratio

    0.3

    0.25

    0.15

    0.05

    0.2

    0.1

    0 1 2 3 4 5 6

    17

    17

  • 1

    2013 The Japan Society of Mechanical Engineers

    1/480.02

    PTSR

    42 9(a)

    Wind TurbineW.T. 9(a) 200[mm]100[mm]t2[mm](Plate20) Type A100W 300W 7[m/s] 12[m/s] 100[W] 300W 15[m/s] 300[W] 100W 9[m/s] 30[W]

    10[m/s] 300[rpm] 15[m/s] 100[W] 300W 20[m/s] 300[W] 9(b)

    7[m/s]200rpm 200[rpm]100W 500[rpm] 300W 300[rpm] 20[m/s]600[rpm]

    7[m/s] 200[rpm]

    250[rpm]

    (a) Wind speed vs wind turbine shaft output (b) Wind speed vs turbine rotational speed

    Fig. 9 Results of brake performance experiment (Type A and wind turbine without brake)

    10Type C

    500[rpm]

    220[rpm]

    0

    50

    100

    150

    200

    250

    300

    350

    0 5 10 15 20 25

    Win

    d t

    urb

    ine

    sha

    ft o

    utp

    ut

    W

    Wind speed m/s

    Type A 100WType A 300WW.T. 100WW.T. 300W

    0

    100

    200

    300

    400

    500

    600

    700

    0 5 10 15 20 25

    W.T

    . R

    ota

    tion

    al s

    pee

    d r

    pm

    Wind speed m/s

    Type A 100WType A 300WW.T. 100WW.T. 300W

    18

    18

  • 1

    2013 The Japan Society of Mechanical Engineers

    Fig. 10 Results of brake performance experiment with Type C (Wind speed vs turbine rotational speed)

    11Type C

    15[m/s]600[rpm]

    15[m/s]

    Type C 600[rpm]

    20[m/s]

    100W

    Fig. 11 Results of brake performance experiment with Type C (Wind speed vs wind turbine shaft output)

    0

    50

    100

    150

    200

    250

    300

    350

    0 5 10 15 20 25

    Wind speed m/s

    Power output W

    Type C 100W

    Type C 300W

    W. T.100W

    W. T. 300W

    600rpm 600rpm

    500rpm

    220rpm

    Brake plate is horizontal.

    Brake plate is vertical.

    When the wind

    speed rises

    When the wind

    speed turns down

    0

    100

    200

    300

    400

    500

    600

    700

    0 5 10 15 20 25

    Wind speedm/s

    Rotational speed

    Type C 100W

    Type C 300W

    W.T. 100W

    W.T. 300W

    Brake plate is horizontal.

    Brake plate is vertical.

    19

    19

  • 1

    2013 The Japan Society of Mechanical Engineers

    11[m/s]300W14[m/s]

    500[rpm]

    250[W]150[W]20[m/s]

    600[rpm]300[W]

    15[m/s]

    20[m/s]

    20[m/s]

    25[m/s]

    43 15[m/s]25[m/s]

    5[m/s]25[m/s]11

    12(a)2011 4 21 13 24112(b)(a)

    21114[m/s] A3021 00 21 301

    1

    114[m/s]21 015[m/s]

    21 1825[m/s]

    (a) Hour wind speed chart (April 21st 2011) (b) Minute wind speed chart for point A

    Fig. 12 Wind speed data for one hour average and one minute interval data for point A

    44 34

    13134

    1/21/3

    0

    5

    10

    15

    20

    25

    30

    13 14 15 16 17 18 19 20 21 22 23 24

    Hour

    Wind speed m/s

    0

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

    Minute

    Wind speed m/s

    A

    20

    20

  • 1

    2013 The Japan Society of Mechanical Engineers

    Fig. 13 Division wing of aerodynamic brake

    5.

    (1) 90100200

    (2)

    (3)

    (4) 905[m/s] 25[m/s]

    (5) 1 90

    (1) , Vol. 26(2004), pp. 413-416.

    (2) Vol. 27No. 4(2003)pp. 16-19.

    (3) 4355813 (2009). (4) (1964)p. 152 (5) (1983)p. 152 p.160, (6) Vimal Kumar, Marius Paraschivoiu, Ion Paraschivoiu, Low Reynolds Number Vertical Axis Wind Turbine for Mars,

    Wind Engineering, Vol. 34, No. 4 (2010), pp. 461-476. (7) (2002)pp. 64-66

    21

    21