Download - Overview: Rotational Kinetic Energy

Transcript

11/16/2021

1

Rotational Motion Overview (Chapter 8, 9, 10)Chapters

[Pure] Rotational

Motion (8.1-4, 8.6-7):

Rotation about a fixed

Axis

Angular Kinematic Variables ( ิฆ๐œƒ, ๐œ”, ิฆ๐›ผ) โ€“ Axis of Rotation (8.1-2)

Torque ๐‰ (8.3)

Moment of Inertia ๐ผ (8.4-5) and Rotational Kinetic Energy

Conservation of Energy including rotational motion (8.6)

Conservation of Angular Momentum ๐ฟ (8.7)

Rolling Motion (9.1-9.5)

= rotation + translation

Understanding Rolling Motions (9.1-9.3)

Conservation of Energy: rotation and translation (9.5)

Newtonโ€™s 2nd Law: rotation and translation: acceleration (9.4)

Equilibrium (10.1-10.3) ฮฃ ิฆ๐น = 0 and ฮฃิฆ๐œ = 0 (10.1, 10.2)

Equilibrium Lab, Applications (10.3)

Overview: Rotational Kinetic Energy

โ€ข Use conservation of energy to solve rotational motion problems.โ€ข This requires knowing the Kinetic Energy in rotational motion.โ€ข Moment of Inertia.โ€ข Moment of Inertia depends on the axis of rotation.

โ€ข Moment of Inertial for rigid bodies.โ€ข Moment of inertia for a rodโ€ข Moment of inertial for a rectangleโ€ข Moment of inertia for a cylinderโ€ข Moment of inertia for a sphere

โ€ข Example Problems along the way

1

4

11/16/2021

2

๐ฟ = 1.0 ๐‘š, ๐‘€ = 1 ๐‘˜๐‘”.

Rotational KE for rod of length ๐ฟ, mass ๐‘€.

From the Rotational KE, we can find the Moment of Inertia about the axis of rotation.

5

7

11/16/2021

3

๐ฟ

๐‘š1

๐‘š2

๐‘š2

๐‘ฃ = ?

โ€ข A rod with mass ๐‘š1 = 4 ๐‘˜๐‘” and length ๐ฟ = 1.0 ๐‘š is hung horizontally on the wall with the pivot at the centre of the rod.

โ€ข A second mass ๐‘š2 = 0.2 ๐‘˜๐‘” is attached to one end.

โ€ข Starting horizontally at rest, the rod rotates due to the added mass. What is the speed of the mass when it reaches the bottom?

๐‘š1

Overview: Rotational Kinetic Energy

โ€ข Use conservation of energy to solve rotational motion problems.โ€ข This requires knowing the Kinetic Energy in rotational motion.โ€ข Moment of Inertia.โ€ข Moment of Inertia depends on the axis of rotation.

โ€ข Moment of Inertial for rigid bodies.โ€ข Moment of inertia for a rodโ€ข Moment of inertial for a rectangleโ€ข Moment of inertia for a cylinderโ€ข Moment of inertia for a sphere

โ€ข Example Problems along the way

9

11

11/16/2021

4

Moment of inertia not in table.

โ€ข A rectangle has sides ๐‘Ž = 0.25 ๐‘š,๐‘ = 0.75 ๐‘š with mass ๐‘€ = 2.0 ๐‘˜๐‘”.

โ€ข Given that the moment of inertia of a

rectangle is 1

12๐‘€(๐‘Ž2 + ๐‘2) about the

centre of a rectangle, what are the moment of inertia at point A?

ร— ร— A

๐‘

๐‘Ž

12

13

11/16/2021

5

Overview: Rotational Kinetic Energy

โ€ข Use conservation of energy to solve rotational motion problems.โ€ข This requires knowing the Kinetic Energy in rotational motion.โ€ข Moment of Inertia.โ€ข Moment of Inertia depends on the axis of rotation.

โ€ข Moment of Inertial for rigid bodies.โ€ข Moment of inertia for a rodโ€ข Moment of inertial for a rectangleโ€ข Moment of inertia for a cylinderโ€ข Moment of inertia for a sphere

โ€ข Example Problems along the way

What is the moment of inertial of this thin walled hollow cylinder (mass ๐‘€, radius ๐‘…, length ๐ฟ)?

๐ผ๐‘Ž๐‘ฅ๐‘–๐‘  = ๐‘š1๐‘Ÿ12 +๐‘š2๐‘Ÿ2

2 +๐‘š3๐‘Ÿ32 + โ€ฆ

A. ๐‘€๐‘…2

B.1

2๐‘€๐‘…2

C.1

4๐‘€๐‘…2

D.1

8๐‘€๐‘…2

E. 1

12๐‘€๐‘…2

14

16

11/16/2021

6

๐‘š1

๐‘š2

Rotational KE example problem

โ€ข Two masses, ๐‘š1 = 2 ๐‘˜๐‘”,๐‘š2 = 1 ๐‘˜๐‘” are connected by a string with negligible weight.

โ€ข The string is then put around a pulley with mass ๐‘€ = 6 ๐‘˜๐‘” and radius ๐‘… = 0.5 ๐‘š.

โ€ข The pulley is made like a bicycle wheel where the mass is concentrated on the rim only.

โ€ข Initially, mass ๐‘š1is at rest at height โ„Ž = 2 ๐‘šwhile ๐‘š2 is resting on the ground.

โ€ข When released, what is the speed of ๐‘š1 just before it hits the ground?

๐‘€ = 6 ๐‘˜๐‘”๐‘… = 0.5 ๐‘š

๐‘š1 = 2 ๐‘˜๐‘”

๐‘š2

= 1 ๐‘˜๐‘”

๐‘š1

๐‘š2

Massless wheel for the moment (๐‘€ = 0)

โ€ข ฮ”๐พ๐ธ =1

2๐‘š1๐‘ฃ

2 +1

2๐‘š2๐‘ฃ

2

โ€ข What is โˆ’ฮ”๐‘ƒ๐ธ = ๐‘ƒ๐ธ๐‘– โˆ’ ๐‘ƒ๐ธ๐‘“?

A. ๐‘š1๐‘”โ„Ž

B. ๐‘š2๐‘”โ„Ž

C. ๐‘š1๐‘”โ„Ž +๐‘š2๐‘”โ„Ž

D. ๐‘š1๐‘”โ„Ž โˆ’๐‘š2๐‘”โ„Ž

Conservation of Energy ฮ”๐พ๐ธ = โˆ’ฮ”๐‘ƒ๐ธ๐‘€ = 0

๐‘š1 = 2 ๐‘˜๐‘”

๐‘š2

= 1 ๐‘˜๐‘”

18

19

11/16/2021

7

๐‘š1

๐‘š2

Massless wheel for the moment (๐‘€ = 0)

โ€ข ฮ”๐พ๐ธ =1

2๐‘š1๐‘ฃ

2 +1

2๐‘š2๐‘ฃ

2

โ€ข โˆ’ฮ”๐‘ƒ๐ธ = ๐‘ƒ๐ธ๐‘– โˆ’ ๐‘ƒ๐ธ๐‘“ = ๐‘š1๐‘”โ„Ž โˆ’๐‘š2๐‘”โ„Ž

Conservation of Energy ฮ”๐พ๐ธ = โˆ’ฮ”๐‘ƒ๐ธ

1

2๐‘š1๐‘ฃ

2 +1

2๐‘š2๐‘ฃ

2 =๐‘š1๐‘”โ„Ž โˆ’๐‘š2๐‘”โ„Ž

๐‘€ = 0

๐‘š1 = 2 ๐‘˜๐‘”

๐‘š2

= 1 ๐‘˜๐‘”

๐‘š1

๐‘š2

Massless wheel for the moment (๐‘€ = 6 ๐‘˜๐‘”)

โ€ข โˆ’ฮ”๐‘ƒ๐ธ = ๐‘ƒ๐ธ๐‘– โˆ’ ๐‘ƒ๐ธ๐‘“ = ๐‘š1๐‘”โ„Ž โˆ’๐‘š2๐‘”โ„Ž

โ€ข ฮ”๐พ๐ธ =1

2๐‘š1๐‘ฃ

2 +1

2๐‘š2๐‘ฃ

2 + ฮ”๐พ๐ธ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

Conservation of Energy ฮ”๐พ๐ธ = โˆ’ฮ”๐‘ƒ๐ธ๐‘€ = 6 ๐‘˜๐‘”๐‘… = 0.5 ๐‘š

๐‘š1 = 2 ๐‘˜๐‘”

๐‘š2

= 1 ๐‘˜๐‘”

20

21

11/16/2021

8

What is the moment of inertial of this solid cylinder (mass ๐‘€, radius ๐‘…, length ๐ฟ)?

๐ผ = ๐‘€๐‘…2

๐ผ = ?

Replace the pulley in the previous problem with a solid disk. What is the moment of inertial ๐ผ of a solid disk (mass ๐‘€, radius ๐‘…) ?

๐‘š1

๐‘š2

๐‘š1

๐‘š2

Previously ๐ผ =๐‘€๐‘…2

23

25

11/16/2021

9

Overview: Rotational Kinetic Energy

โ€ข Use conservation of energy to solve rotational motion problems.โ€ข This requires knowing the Kinetic Energy in rotational motion.โ€ข Moment of Inertia.โ€ข Moment of Inertia depends on the axis of rotation.

โ€ข Moment of Inertial for rigid bodies.โ€ข Moment of inertia for a rodโ€ข Moment of inertial for a rectangleโ€ข Moment of inertia for a cylinderโ€ข Moment of inertia for a sphere

โ€ข Example Problems along the way

28

29

11/16/2021

10

Torque: concepts (magnitudes only) and mathematics (vectors)

30

31

11/16/2021

11

1. Torque โ€“ Concepts (magnitudes only)

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

displacement ๐‘ฅ ๐œƒ

velocity ๐‘ฃ ๐œ”

acceleration ๐‘Ž ๐›ผ

Inertia ๐‘š ๐ผ

Force Torque

๐น ๐œ

32

33

11/16/2021

12

Definition of torque ๐œ

๐‘Ÿ๐‘

๐‘Ÿ๐‘Ž

Same force ิฆ๐น applied at two different locations yield different torques

Easier to rotate the nut when the force is applied at ๐‘Ÿ๐‘ than at ๐‘Ÿ๐‘Ž

Applied force here is perpendicular to ๐‘Ÿ๐‘ and ๐‘Ÿ๐‘.

Magnitudes only:

Definition of torque ๐œ

ิฆ๐‘Ÿ

๐œƒิฆ๐น

The radial component ๐น cos ๐œƒ does not rotate the wrench/nut. Only the tangential component of the force ๐น sin ๐œƒ does rotate it.

๐น sin ๐œƒ

๐น cos ๐œƒ

When ิฆ๐น is not perpendicular to ิฆ๐‘Ÿ

34

35

11/16/2021

13

Definition of torque ๐œ

ิฆ๐‘Ÿ

๐œƒิฆ๐น

๐œƒ

Keep the full magnitude of

vector ิฆ๐น, but take the perpendicular component (๐‘ŸโŠฅ) of the displacement vector ิฆ๐‘Ÿ.

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

๐‘ฅ ๐œƒ

๐‘ฃ ๐œ”

๐‘Ž ๐›ผ

๐‘š ๐ผ

Force Torque

๐น

Newtonโ€™s Law

๐น = ๐‘š๐‘Ž

ิฆ๐‘Ÿ

๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

36

37

11/16/2021

14

We need a torque to start rotating the object

1. Tangential acceleration ๐‘ŽโŠฅ

๐‘ŽโŠฅ = ๐‘Ÿ๐›ผ

๐›ผ is the angular accel.

2. ๐นโŠฅ = ๐‘š๐‘ŽโŠฅ

Starting with ๐œ = ๐‘Ÿ๐นโŠฅ which is correct?

A. ๐œ = ๐‘š๐›ผ

B. ๐œ = ๐‘š๐‘Ÿ๐›ผ

C. ๐œ = ๐‘š๐‘Ÿ2๐›ผ

ิฆ๐‘Ÿ

๐œƒิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

๐‘ŽโŠฅ

๐œถ

๐‘š

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

๐‘ฅ ๐œƒ

๐‘ฃ ๐œ”

๐‘Ž ๐›ผ

๐‘š ๐ผ

Force Torque

๐น

Newtonโ€™s Law

๐น = ๐‘š๐‘Ž

ิฆ๐‘Ÿ

๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

๐œถ

39

41

11/16/2021

15

2. Torque โ€“ Vector Math

From ๐œ = ๐ผ๐›ผ to ิฆ๐œ = ๐ผ ิฆ๐›ผ

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

๐‘ฅ ๐œƒ

๐‘ฃ ๐œ”

๐‘Ž ๐›ผ

๐‘š ๐ผ

Force Torque

๐น

Newtonโ€™s Law

๐น = ๐‘š๐‘Ž

ิฆ๐‘Ÿ

๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

๐œถ

42

44

11/16/2021

16

๐œƒ

๐‘ฅ

๐‘ฆ

๐‘ง

โ€ข Consider 1D rotation

โ€ข Displacement ๐œƒ

โ€ข Ang. Velocity ฯ‰ = ฮ”๐œƒ/ฮ”๐‘ก

โ€ข Ang. Accel. ๐›ผ = ฮ”๐œ”/ฮ”๐‘ก

โ€ข object rotates about

Rotational Motion

โ€ข Consider 1D rotation

โ€ข Displacement ๐œƒ

โ€ข Ang. Velocity ฯ‰ = ฮ”๐œƒ/ฮ”๐‘ก

โ€ข Ang. Accel. ๐›ผ =ฮ”๐œ”

ฮ”๐‘ก

โ€ข object rotates about +๐‘ง axis

โ€ข They are all in the direction of the axis of rotation: in this example,

โ€ข ิฆ๐œƒ = ๐œƒ๐‘˜

โ€ข ๐œ” = ๐œ”๐‘˜

โ€ข ิฆ๐›ผ = ๐›ผ๐‘˜

Rotational Motion

๐œƒ

๐‘ฅ

๐‘ฆ

๐‘ง

Vector ิฆ๐œ = ๐ผ ิฆ๐›ผMagnitude: ๐œ = ๐ผ๐›ผ

48

50

11/16/2021

17

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

๐‘ฅ ๐œƒ

๐‘ฃ ๐œ”

๐‘Ž ๐›ผ

๐‘š ๐ผ

Force Torque

๐น ๐œ = ๐‘Ÿ๐น sin๐œƒ

Newtonโ€™s Law

ิฆ๐น = ๐‘š ิฆ๐‘Ž

ิฆ๐‘Ÿ

๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

๐œถ

We need a torque to start rotating the object

ิฆ๐‘Ÿ๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

Recall

Axis of rotation:+๐’›

Torque, angular accel, velocity, displacement are all in the + ๐’› direction.

๐‰ = ๐’“๐‘ญ ๐ฌ๐ข๐ง๐œฝ can be rewritten as

๐‘ฅ

๐‘ฆ

๐‘ง๐‰ = ๐‘Ÿ๐นโŠฅ = ๐’“๐‘ญ๐ฌ๐ข๐ง๐œฝ

52

53

11/16/2021

18

We need a torque to start rotating the objectLinear Angular

KE 1

2๐‘š๐‘ฃ2

1

2๐ผ๐œ”2

๐‘ฅ ๐œƒ

๐‘ฃ ๐œ”

๐‘Ž ๐›ผ

๐‘š ๐ผ

Force Torque

ิฆ๐น

Newtonโ€™s Law

ิฆ๐น = ๐‘š ิฆ๐‘Ž

ิฆ๐‘Ÿ

๐œƒ ิฆ๐น

๐นโŠฅ = ๐น sin ๐œƒ

55