Download - Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Transcript
Page 1: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Ch. 1: Introduction, Measurement, Estimating

Page 2: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

1. The Nature of Science

2. Models, Theories, & Laws

3. Measurement & Uncertainty

Significant Figures

4. Units, Standards, & the SI System

5. Converting Units

6. Order of Magnitude: Rapid Estimating

7. Dimensions & Dimensional Analysis

Chapter 1 Outline

Page 3: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Physics: The most basic of all sciences!

• Physics: The “Parent” of all sciences!

• Physics = The study of the behavior of and the structure of matter and energy and of the interaction between matter and energy.

Page 4: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Sub Areas of Physics• This course (Phys. 1408, the Physics of the 16th & 17th Centuries):

– Motion (MECHANICS) (most of our time!)

– Fluids & Waves

• Next course (Phys. 2401, the Physics of 18th & the 19th Centuries):

– Electricity & magnetism

– Light & optics• Advanced courses (Phys. 2402 & others. The Physics of the 20th Century!):

– Relativity, atomic structure, condensed matter, nuclear physics, ….

These are the most interesting Physics topics

& the topics which are the most relevant to modern technology!

Page 5: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Mechanics: “Classical” Mechanics

Page 6: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Mechanics: “Classical” Mechanics

• “Classical” Physics: “Classical” Before the 20th Century

The foundation of pure & applied macroscopic physics & engineering!

– Newton’s Laws + Boltzmann’s Statistical Mechanics (&

Thermodynamics): Describe most of macroscopic world!

– However, at high speeds (v ~ c) we need

Special Relativity: (Early 20th Century: 1905) Ch. 14 of M&T

– Also, for small sizes (atomic & smaller) we need

Quantum Mechanics: (1900 through ~ 1930) Physics 4307!

“Classical” Mechanics: (17th & 18th Centuries) Still useful today!

Page 7: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

“Classical” MechanicsThe mechanics in this course is limited to macroscopic objects moving at speeds v much, much smaller than the speed of light c = 3 108 m/s. As long as v << c, our discussion will be valid.

So, we will workexclusively in the gray region in the figure.

Page 8: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Atomic Physics

MolecularPhysics

Solid StateQuantum Chromodynamics

Quantum Electrodynamics

Physics

Nuclear & Particle Physics

Heisenberg) (Dirac)

Strong Nuclear Force)

High Speed

Special Relativity (Einstein)

Relativistic Quantum

(Feynman, Schwinger)

(Gluons, Quarks, Leptons

(Photons, Weak Nuclear Force)

SUMMARY: THE STRUCTURE OF PHYSICS

Large size

Low Speed

< ~ atomic size (Schrodinger, Mechanics

Quantum Field Theory

v << c v < ~ c

Small size

Classical Mechanics(Newton, Hamilton,

Quantum Mechanics

>> atomic sizeLagrange)

FYI: The Structure of Physics

Page 9: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Mechanics

• The science of HOW objects move (behave) under given forces.

• (Usually) Does not deal with the sources of forces. Answers the question: “Given the forces, how do objects move”?

Page 10: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Physics: General Discussion• The Goal of Physics (& all of science): To quantitatively and

qualitatively describe the “world around us”.

• Physics IS NOT merely a collection of facts & formulas!

• Physics IS a creative activity!

• Physics Observation Explanation.

• Requires IMAGINATION!!

Page 11: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Physics & Its Relation to Other Fields• The “Parent” of all Sciences!• The foundation for and is connected to ALL

branches of science and engineering.• Also useful in everyday life and in MANY professions

– Chemistry– Life Sciences (Medicine also!!)– Architecture– Engineering– Various technological fields

Page 12: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Physics Principles are used in many practical applications, including construction.

Communication between Architects & Engineers is essential if disaster is to be avoided.

Page 13: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

• Physics is an EXPERIMENTAL science!

• Experiments & Observations: – Important first steps toward scientific theory.

– It requires imagination to tell what is important

• Theories: – Created to explain experiments & observations. Will also make

predictions

• Experiments & Observations: – Will tell if predictions are accurate.

• No theory can be absolutely verified– But a theory CAN be proven false!!!

The Nature of Science

Page 14: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Theory• Quantitative (mathematical) description of experimental observations.

• Not just WHAT is observed but WHY it is observed as it is and HOW it works the way it does.

• Tests of theories: – Experimental observations:

More experiments, more observation.– Predictions:

Made before observations & experiments.

Page 15: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Model, Theory, Law

• Model: An analogy of a physical phenomenon to something we are familiar with.

• Theory: More detailed than a model. Puts the model into mathematical language.

• Law: Concise & general statement about how nature behaves. Must be verified by many, many experiments! Only a few laws.– Not comparable to laws of government!

Page 16: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

• How does a new theory get accepted?

• Predictions agree better with data than old theory

• Explains a greater range of phenomena than old theory

• Example:

– Aristotle believed that objects would return to a state of rest once put in motion.

– Galileo realized that an object put in motion would stay in motion until some force stopped it.

Page 17: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

No measurement is exact; there is always some uncertainty due to limited instrument accuracy and difficulty reading results.

The photograph to the left illustrates this – it would be difficult to measure the width of this 2 4 to better than a millimeter.

Measurement & Uncertainty.Significant Figures

Page 18: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Measurement & Uncertainty

• Physics is an EXPERIMENTAL science!– Finds relations between physical quantities.

– Expresses those relations in the language of mathematics. (LAWS & THEORIES)

• Experiments are NEVER 100% accurate.– Always have uncertainty in final result.

• Experimental error.

– Common to state this precision (when known).

Page 19: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

• Consider a simple measurement of the width of a board. Find 23.2 cm.

• However, measurement is only accurate to 0.1 cm (estimated).

Write width as (23.2 0.1) cm

0.1 cm Experimental uncertainty• Percent Uncertainty:

(0.1/23.2) 100 0.4%

Page 20: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Significant Figures

Significant figures (“sig figs”):

The number of significant figures is the number of reliably known digits in a number. It is usually possible to tell the number of significant figures by the way the number is written:

23.21 cm has 4 significant figures

0.062 cm has 2 significant figures (initial zeroes don’t count)

80 km is ambiguous: it could have 1 or 2 significant figures. If it has 3, it should be written 80.0 km.

Page 21: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Calculations Involving Several NumbersWhen multiplying or dividing numbers: The number of sig figs in the result the same number of sig figs as the number used in the calculation with the fewest sig figs.

When adding or subtracting numbers:

The answer is no more accurate than the least

accurate number used in the calculation.

Page 22: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

• Example: (Not to scale!)

– Area of board, dimensions 11.3 cm 6.8 cm– Area = (11.3) (6.8) = 76.84 cm2

11.3 has 3 sig figs , 6.8 has 2 sig figs

76.84 has too many sig figs!– Proper number of sig figs in answer = 2

Round off 76.84 & keep only 2 sig figs

Reliable answer for area = 77 cm2

Page 23: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Sig Figs• General Rule: The final result of a

multiplication or division should have only as many sig figs as the number used in the calculation which has the with least number of sig figs.

• NOTE!!!! All digits on your calculator are NOT significant!!

Page 24: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Calculators will not give you the right number of significant figures; they usually give too many, but sometimes give too few (especially if there are trailing zeroes after a decimal point).

The top calculator shows the result of

2.0 / 3.0.

The bottom calculator shows the result of

2.5 x 3.2.

Page 25: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Conceptual Example 1-1: Significant figures

• Using a protractor, you measure an angle of 30°. (a) How many significant figures should you quote in this measurement?

(b) Use a calculator to find the cosine of the angle you measured.

• (a) Precision ~ 1° (not 0.1°). So 2 sig figs & angle is 30° (not 30.0°).

• (b) Calculator: cos(30°) = 0.866025403. But angle precision is 2 sig figs so answer should also be

2 sig figs. So cos(30°) = 0.87

Page 26: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Powers of 10(Scientific Notation)

• READ Appendices A-2 & A-3• Common to express very large or very small numbers

using power of 10 notation.• Examples:

39,600 = 3.96 104 (moved decimal 4 places to left)

0.0021 = 2.1 10-3 (moved decimal 3 places to right)

PLEASE USE SCIENTIFIC NOTATION!!

Page 27: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Powers of 10(Scientific Notation)

PLEASE USE SCIENTIFIC NOTATION!!• This is more than a request!! I’m making it a

requirement!! I want to see powers of 10 notation on exams!! For example:

• For large numbers, like 39,600, I want to see 3.96 104 & NOT 39,600!!

• For small numbers, like 0.0021, I want to see 2.1 10-3 & NOT 0.0021!!

• On the exams, you will lose points if you don’t do this!!

Page 28: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Accuracy vs. Precision• Accuracy is how close a measurement comes to

the accepted (true) value.• Precision is the repeatability of the measurement

using the same instrument & getting the same result!

It is possible to be accurate without being precise and to be precise without being

accurate!

Page 29: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Units, Standards, SI System• All measured physical quantities have units.

• Units are VITAL in physics!!

• In this course (and in most of the modern world, except the USA!) we will use (almost) exclusively the SI system of units.

SI = “Systéme International” (French)

More commonly called the “MKS system” (meter-kilogram-second) or more simply, “the metric system”

Page 30: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

SI or MKS System• Defined in terms of standards for length, mass, and time.• Length unit: Meter (m) (kilometer = km = 1000 m)

– Standard Meter.Newest definition in terms of speed of light Length of path traveled by light in vacuum in (1/299,792,458) of a second!

• Time unit: Second (s)– Standard Second.

Newest definition time required for 9,192,631,770 oscillations of radiation emitted by cesium atoms!

• Mass unit: Kilogram (kg)– Standard Kilogram

Mass of a specific platinum-iridium alloy cylinder kept at Intl Bureau of Weights & Measures in France

Page 31: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Larger & Smaller Units are Defined from SI standards by

Powers of 10 & Greek Prefixes

These are the standard SI prefixes for indicating powers of 10. Many (k, c, m, μ) are familiar; Others (Y, Z, E, h, da, a, z, y) are rarely used.

__

__ __

__

Page 32: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Typical Lengths (approx.)

Page 33: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Typical Times (approx.)

Page 34: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Typical Masses (approx.)

Page 35: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Units, Standards, and the SI System

We will work (almost) exclusively in the SI System, where the basic units are kilograms, meters, & seconds.

Page 36: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Other Systems of Units• CGS (centimeter-gram-second) system

– Centimeter = 0.01 meter– Gram = 0.001 kilogram

• British (Engineering) System (foot-pound-second; or

US Customary system)– “Everyday life” system of units– Only used by USA & some third

world countries. Rest of world

(including Britain!) uses SI system.

We will not use the British System!

– Conversions exist between the

British & SI systems. We will not use them in this course!

Page 37: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

In this class, we will NOT do unit conversions!

We will work exclusively in SI (MKS) units!

Page 38: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Basic & Derived Quantities

• Basic Quantity Must be defined in terms of a standard (meter, kilogram, second).

• Derived Quantity Defined in terms of combinations of basic quantities– Unit of speed (v = distance/time) = meter/second = m/s

– Unit of density (ρ = m/V) = kg/m3

Page 39: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Units and Equations• In dealing with equations, remember that the

units must be the same on both sides of an equation (otherwise, it is not an equation)!

• Example: You go 90 km/hr for 40 minutes. How far did you go?

Page 40: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Units and Equations• In dealing with equations, remember that the units

must be the same on both sides of an equation (otherwise, it is not an equation)!

• Example: You go 90 km/hr for 40 minutes. How far did you go? – Equation from Ch. 2: x = vt, v = 90 km/hr, t = 40 min.

To use this equation, first convert t to hours:

t = (⅔)hr so, x = (90 km/hr) [(⅔)hr] = 60 km

The hour unit (hr) has (literally) cancelled out in the

numerator & denominator!

Page 41: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Converting Units• As in the example, units in the numerator & the

denominator can cancel out (as in algebra)

• Illustration: Convert 80 km/hr to m/s

Conversions: 1 km = 1000 m; 1hr = 3600 s

Page 42: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Converting Units• As in the example, units in the numerator & the denominator

can cancel out (as in algebra)

• Illustration: Convert 80 km/hr to m/s

Conversions: 1 km = 1000 m; 1hr = 3600 s

80 km/hr =

(80 km/hr) (1000 m/km) (1hr/3600 s)

(Cancel units!)

80 km/hr 22 m/s (22.222…m/s)

• Useful conversions:

1 m/s 3.6 km/hr; 1 km/hr (1/3.6) m/s

Page 43: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Order of Magnitude; Rapid Estimating• Sometimes, we are interested in only an

approximate value for a quantity. We are interested in obtaining rough or order of magnitude estimates.

• Order of magnitude estimates: Made by rounding off all numbers in a calculation to 1 sig fig, along with power of 10.– Can be accurate to within a factor of 10 (often better)

Page 44: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Example: V = πr2d

• Example: Estimate!

Estimate how much water there is in a particular lake, which is roughly circular, about 1 km across, & you guess it has an average depth of about 10 m.

Page 45: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Example 1-6: Thickness of a page.

Estimate the thickness of a page of your textbook.

Hint: You don’t need one of these!

Page 46: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Example 1-7: Height by triangulation.

Estimate the height of the building shown by “triangulation,” with the help of a bus-stop pole and a friend. (See how useful the diagram is!)

Page 47: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Example 1-8: Estimate the Earth radius.

If you have ever been on the shore of a large lake, you may have noticed that you cannot see the beaches, piers, or rocks at water level across the lake on the opposite shore. The lake seems to bulge out between you and the opposite shore—a good clue that the Earth is round. Suppose you climb a stepladder and discover that when your eyes are 10 ft (3.0 m) above the water, you can just see the rocks at water level on the opposite shore. On a map, you estimate the distance to the opposite shore as d ≈ 6.1 km. Use h = 3.0 m to estimate the radius R of the Earth.

Page 48: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Dimensions & Dimensional Analysis

The dimensions of a quantity are the base units that make it up; generally written using square brackets.

Example: Speed = distance/time

Dimensions of speed: [L/T]

Quantities that are being added or subtracted must have the same dimensions. In addition, a quantity calculated as the solution to a problem should have the correct dimensions.

Page 49: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Dimensional Analysis• If the formula for a physical quantity is known

The correct units can easily be found! • Examples: Volume: V = L3 Volume unit = m3

Cube with L =1 mm V = 1 mm3 = 10-9 m3

Density: ρ = m/V Density unit = kg/m3 ρ = 5.3 kg/m3 = 5.3 10-6 g/mm3

• If the units of a physical quantity are known

The correct formula can be “guessed”!• Examples: Velocity: Car velocity is 60 km/h

Velocity unit = km/h Formula: v = d/t (d = distance, t = time)

Acceleration: Car acceleration is 5 m/s2 Acceleration unit = m/s2

Formula: a = v/t (v = velocity, t = time)

Page 50: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Dimensional analysis is the checking of dimensions of all quantities in an equation to ensure that those which are added, subtracted, or equated have the same dimensions.

Example: Is this the correct equation for velocity?

Check the dimensions:

Wrong!

Page 51: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Summary, Ch. 11. Physics = Measurements (Units) + Mathematics (Algebra, Trig,

Calculus) + Physical Principles (discussed as we go) + Common Sense!

2. SI (mks) system of units:

Basic Units: Length m, Time s, Mass kg

Unit conversions: 1000m = 1 km, 10-3 kg = 1g, ….

Derived units: ρ = m/V Density unit = kg/m3

3. Dimensional Analysis If the formula for a physical quantity is known

The correct units can be found!

If the units of a physical quantity are known

The correct formula can be “guessed”!

Page 52: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

4. Theories are created to explain observations, & then tested based on their predictions.

5. A model is like an analogy; it is not intended to be a true picture, but to provide a familiar way of envisioning a quantity.

6. A theory is much more well developed than a model, & can make testable predictions; a law is a theory that can be explained simply, & that is widely applicable.

7. Measurements can never be exact; there is always some uncertainty. It is important to write them, as well as other quantities, with the correct number of significant figures.

8. When converting units, check dimensions to see that the conversion has been done properly.

9. Order-of-magnitude estimates can be very helpful

Page 53: Ch. 1: Introduction, Measurement, Estimating. 1. The Nature of Science 2. Models, Theories, & Laws 3. Measurement & Uncertainty Significant Figures 4.

Comparison of 3 Fields of Study