Download - Ann saada-Roma-2016

Transcript
Page 1: Ann saada-Roma-2016

"The use of patient's fibroblasts in the evaluation of different therapeutic approaches

including enzyme replacement therapy “

Ann Saada (Reisch) PhD

Metabolic and Enzyme LaboratoryDepartment of Genetics and Metabolic Diseases

Hadassah Medical Center & Hebrew University Medical School

Jerusalem

Page 2: Ann saada-Roma-2016

1956 1966 1976 1986 1996 2006 20160

500

1000

1500

2000

2500

3000

3500

4000

4500

Year

num

ber o

f pub

licati

ons (

PubM

ed)

Human genome project WES(WGS)

SNP arrays/automated sequencing

mtDNA sequence

mtDNA Mutation

1988Luft’sDisease

1962

nDNA Mutation

1995

Respiratory chain biochemistry

Prevalence ~1:5000 ~1:8000 ~1:10000 ~1:4300

Mitochondrial disease are increasingly common inborn disorders

Page 3: Ann saada-Roma-2016

mtDNA encodedMRC subunits

mtDNA encodedt-RNA r-RNA

mtDNA

deletion/duplication

SECONDARY DEFECTScofactor bio synthesis/transport

lipid biosynthesismitochondrial fission/fusion

detoxificationapoptotic factors

agingneurodegenerative disease

environment

mtDNA-nDNA communicationreplication fork/nucleotide metabolism

nDNA encodedtranslation factors/ribosomal proteins/

t-RNA modifying enzymes

nDNA encoded

assembly factors

nDNA encoded

MRC subunits

mtDNA Depletion

mtDNA multiple deletions

SINGLE DEFECTCI,CII,CIII,CIV,CV

COMBINED DEFECTCI+CIII+CIV+CV

Mitochondrial diseases are caused by many factors

MGM2012

Page 4: Ann saada-Roma-2016

mtDNA encodedMRC subunits

mtDNA encodedt-RNA r-RNA

mtDNA

deletion/duplication

SECONDARY DEFECTScofactor bio synthesis/transport

lipid biosynthesismitochondrial fission/fusion

detoxificationapoptotic factors

agingneurodegenerative disease

environment

mtDNA-nDNA communicationreplication fork/nucleotide metabolism

nDNA encodedtranslation factors/ribosomal proteins/

t-RNA modifying enzymes

nDNA encoded

assembly factors

nDNA encoded

MRC subunits

mtDNA Depletion

mtDNA multiple deletions

SINGLE DEFECTCI,CII,CIII,CIV,CV

COMBINED DEFECTCI+CIII+CIV+CV

Treatment and Clinical trials are limited

Kanabus M, Heales SJ, Rahman S.Br J Pharmacol. 2014 171:1798-817

Page 5: Ann saada-Roma-2016

patient derived cells

microorganisms

animal models

MOUSE

C.elegans

D.melongaster

+ manipulation- phenotype

- maintenance

+mammal+ manipulation+/-phenotype- maintenance

- cost

+ manipulation+ eukaryote

- phenotype - maintenance

E.coli

S.cerevisiae

+ manipulation- prokaryote

- phenotype

MODEL systems For testing treatments

iPSCs

+ tissue specificity- generation/growth

- normal controls- ethics- cost

cybrids

+ mtDNA+/- tissue specificity- generation/growth - nuclear background

LYMHOCYTES/ LYMHOBLASTS

+ Accessible- phenotype

- manipulation

FIBROBLASTS(SKIN)

+ accessible

-limited passages (- )phenotype

+ growth, maintenance

MYOBLASTS

+ phenotype/muscle- sampling /timing

- growth- normal controls

STEMCELLS

+ tissue specificity-sampling

- generation/growth - -genetic instability

- normal controls- ethics- cost

IJCBC 2014

MITOCHONDRIAL DISEASE models

Page 6: Ann saada-Roma-2016

ROS? oxidative stress

ΔΨ(disruption of mitochondrial

membrane potential)

ATP depletionenergy deficit

Many parameters/consequences=what to measure?

Ca2+

(disrupted calcium

homeostasis)

Oxidative damage(lipids, proteins, nucleic acids)

DEFECTIVE OXPHOS

SECONDARY DEFECT

Vicious?

Circle

CELLULAR DYSFUNCTION

AUTOPHAGY/MITOPHAGYCELL DEATH/APOPTOSIS

mtDNA nDNA mutations

Patient’s FIBROBLASTS

Page 7: Ann saada-Roma-2016

Many “therapeutic approaches “

IMPROVED OXPHOS

IMPROVED CELL FUNCTION

Protein replacement therapy?? Mitochondrial therapy???Small molecules?

Patient’s FIBROBLASTS

Heteroplasmic shifting ?

Gene therapy ?Detoxification ?

Page 8: Ann saada-Roma-2016

PGC1α

INCREASE MITOCHONDRIAL

BIOGENESIS

Many “molecules and pathways“

ANTIOXIDANTS

COFACTORS, VITAMINS

IMPROVED OXPHOS

IMPROVED CELL FUNCTIONCa2+

Channelblockers

AUTOPHAGY/MITOPHAGYmodulators

APOPTOSIS inhibitors

PPARγactivators

AMPKactivators

Chemical chaperonesNucleotides etc.

Small molecules?

Patient’s FIBROBLASTS

Page 9: Ann saada-Roma-2016

PGC1α

INCREASE MITOCHONDRIAL

BIOGENESIS ANTIOXIDANTS

COFACTORS, VITAMINS

IMPROVED OXPHOS

IMPROVED CELL FUNCTIONCa2+

Channelblockers

AUTOPHAGY/MITOPHAGYmodulators

APOPTOSIS inhibitors

PPARγactivators

AMPKactivators

Chemical chaperonesNucleotides etc.

ROS? oxidative stress

ΔΨ(disruption of mitochondrial

membrane potential)

ATP depletionenergy deficit

Ca2+

(disrupted calcium

homeostasis)

Oxidative damage(lipids, proteins, nucleic acids) CELLULAR DYSFUNCTION

AUTOPHAGY/MITOPHAGYCELL DEATH/APOPTOSIS

DEFECTIVE OXPHOS

RiboflavinNiacin

ThiaminLipoate

AscorbateCoenzymeQ

Vitamin-EAICAR

bezafibrateResveratrol

genistein

Sodium phenylbutyrateUridine

OltiprazECGCNAC

Devorah SoifermanLiza DouievAnna Golubitzky

Small molecules?

Many “molecules and pathways“& Limited amount of cells/passages

Page 10: Ann saada-Roma-2016

PGC1α

INCREASE MITOCHONDRIAL

BIOGENESIS ANTIOXIDANTS

COFACTORS, VITAMINS

IMPROVED OXPHOS

IMPROVED CELL FUNCTIONCa2+

Channelblockers

AUTOPHAGY/MITOPHAGYmodulators

APOPTOSIS inhibitors

PPARγactivators

AMPKactivators

Chemical chaperonesNucleotides etc.

ROS? oxidative stress

ΔΨ(disruption of mitochondrial

membrane potential)

ATP depletionenergy deficit

Ca2+

(disrupted calcium

homeostasis)

Oxidative damage(lipids, proteins, nucleic acids) CELLULAR DYSFUNCTION

AUTOPHAGY/MITOPHAGYCELL DEATH/APOPTOSIS

DEFECTIVE OXPHOS

RiboflavinNiacin

ThiaminLipoate

AscorbateCoenzymeQ

Vitamin-EAICAR

bezafibrateResveratrol

genistein

Sodium phenylbutyrateUridine

OltiprazECGCNAC

Devorah SoifermanLiza DouievAnna Golubitzky

Small molecules?

Many “molecules and pathways“& Limited amount of cells/passages

x

Page 11: Ann saada-Roma-2016

0 20 40 60 80 100 120 1400.1

0.2

0.3

0.4

0.5

0.6

0.7

MB A620 Cont-GLU

Cont-GAL

NDUFS2-GLU

NDUFS2-GAL

time (hrs)

E

Methylene blue

5000 cells 72 hours

Patient’s fibroblasts that grow normally in high glucose medium show defective growth in glucose free medium (GAL)

Page 12: Ann saada-Roma-2016

Controls (n=5)

CI (NDUFS2)

CI (FOXRED1)

CI (LHON)

CIV (COX 6B1)

Trans. (EFTs)

Trans. (GFM1) Trans. (MRPS22)

Sec. (DNM1L)

0

0.1

0.2

0.3

0.4

0.5

0.6

GLUGAL

E

GROWTH

Most Patient’s fibroblasts show defective growth in GAL medium

nDNACI subunits

mtDNACI subunit

nDNACIV subunits

nDNAtranslation

nDNAsecondary

MB A620

Page 13: Ann saada-Roma-2016

E

Controls (n=5)

CI (NDUFS2)

CI (FOXRED1)

CI (LHON)

CIV (COX 6B1)

Trans. (EFTs)

Trans. (GFM1) Trans. (MRPS22)

Sec. (DNM1L)

0

500

1000

1500

2000

2500

3000

3500

GLUGAL

ROS

GROWTH

Controls (n=5)

CI (NDUFS2)

CI (FOXRED1)

CI (LHON)

CIV (COX 6B1)

Trans. (EFTs)

Trans. (GFM1) Trans. (MRPS22)

Sec. (DNM1L)

0

0.1

0.2

0.3

0.4

0.5

0.6

GLUGAL

MB A620

DCF RFU:MB A620

Most Patient’s fibroblasts show defective growth in GAL mediumMany show increased ROS and decreased ATP production

Page 14: Ann saada-Roma-2016

E

Controls (n=5)

CI (NDUFS2)

CI (FOXRED1)

CI (LHON)

CIV (COX 6B1)

Trans. (EFTs)

Trans. (GFM1) Trans. (MRPS22)

Sec. (DNM1L)

0

500

1000

1500

2000

2500

3000

3500

GLUGAL

ROS

GROWTH

Controls (

n=5)

CI

(NDUFS2

)

CI (FO

XRED1)

CI

(LH

ON)

CIV

(COX 6B1)

Trans.

(E

FTs)

Trans. (

GFM1)

Trans. (

MRPS22)

Sec.

(D

NM1L)0

40000

80000

120000 ATP-content (GAL)

Controls (n=5)

CI (NDUFS2)

CI (FOXRED1)

CI (LHON)

CIV (COX 6B1)

Trans. (EFTs)

Trans. (GFM1) Trans. (MRPS22)

Sec. (DNM1L)

0

0.1

0.2

0.3

0.4

0.5

0.6

GLUGAL

MB A620

DCF RFU:MB A620

ATP RLU:MB A620

Most Patient’s fibroblasts show defective growth in GAL mediumMany show increased ROS and decreased ATP production

Page 15: Ann saada-Roma-2016

E

Screening 10 compounds on 6 complex I deficient cellsAICAR has a positive effect on some cells

control NDUFS20

0.1

0.2

0.3

0.4

0.5

MB A620GLU GAL GAL+AICAR

control NDUFS20

500

1000

1500

2000

2500

3000

DCF RFU:MB A620

GLU GAL GAL+AICAR

control NDUFS20

100000

200000

300000

400000

500000

600000

ATP RLU:MB A620

GLU GAL GAL+AICAR

ROS

PLOSone2011

GROWTH

ATP-content (GAL)

Small moleculesNuclear encoded

CI subunits

Page 16: Ann saada-Roma-2016

E

AICAR enhances mito-biogenesis via AMPK

control NDUFS20

500

1000

1500

2000

2500

3000

DCF RFU:MB A620

GLU GAL GAL+AICAR

control NDUFS20

100000

200000

300000

400000

500000

600000

ATP RLU:MB A620

GLU GAL GAL+AICAR

ROS

ATP-content (GAL)

Small moleculesNuclear encoded

CI subunits

Mitochondrial contentNDUFS2 NDUFS2+AICAR

PLOSone2011

Phospho-AMPK

Page 17: Ann saada-Roma-2016

GROWTH

ATP-content (GAL)

Average Cell Growth

0.000.200.400.600.801.001.201.401.601.80

Ave

fold

GAL

no

addi

tive

Ave ROS Production/Cell

0.000.200.400.600.801.001.201.401.601.80

Ave

fold

GAL

no

addi

tive

Ave ATP Content/Cell

0.000.200.400.600.801.001.201.40

Ave

fold

GAL

no

addi

tive

EJHG 2016

MB A620

DCF RFU:MB A620

ATP RLU:MB A620

ROS

Small moleculesNuclear encoded

COX subunit COX6B1

Ascorbate, AICAR and resveratrol are beneficial to complex IV (COX6B1) deficient cells

Page 18: Ann saada-Roma-2016

ATP-content (GAL)

Ave ROS Production/Cell

0.000.200.400.600.801.001.201.401.601.80

Ave

fold

GAL

no

addi

tive

Ave ATP Content/Cell

0.000.200.400.600.801.001.201.40

Ave

fold

GAL

no

addi

tive

EJHG 2016

DCF RFU:MB A620

ATP RLU:MB A620

ROS

Small moleculesNuclear encoded

COX subunit COX6B1

Ascorbate, decrease ROS, increases ATP, mito-content and oxygen consumption

Ave Mitochondrial Content

0.000.200.400.600.801.001.201.401.60

GAL

AICAR 0.5mM

Ascorb

ate 10u

M

Bezafib

rate

0.1mM

NAC 2mM

Oltipraz

20uM

RSV 25uM

Ave

fold

GAL

no

addi

tive

Mitochondrial content(mitotracker green)

No a

dditi

ve

No a

dditi

ve

+ AI

CAR

0.5m

M

+ As

corb

ate

10uM

+ Re

sver

a-tr

ol

0.02

5mM

Control COX6B1

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250 Maximal OCR

pMO

2/ce

ll/m

in

Oxygen consumption

Page 19: Ann saada-Roma-2016

ATP-content (GAL)

Ave ROS Production/Cell

0.000.200.400.600.801.001.201.401.601.80

Ave

fold

GAL

no

addi

tive

Ave ATP Content/Cell

0.000.200.400.600.801.001.201.40

Ave

fold

GAL

no

addi

tive

EJHG 2016

DCF RFU:MB A620

ATP RLU:MB A620

ROS

Small moleculesNuclear encoded

COX subunit COX6B1

BUT !! N-acetyl cysteine (NAC) reduces ROSNOT ONLYbut also ATP and mitochondrial content

Ave Mitochondrial Content

0.000.200.400.600.801.001.201.401.60

GAL

AICAR 0.5mM

Ascorb

ate 10u

M

Bezafib

rate

0.1mM

NAC 2mM

Oltipraz

20uM

RSV 25uM

Ave

fold

GAL

no

addi

tive

Mitochondrial content(mitotracker green)

Page 20: Ann saada-Roma-2016

Mito-translation disorders show individual results

Biochim2013

Small moleculesMitochondrial translation

Page 21: Ann saada-Roma-2016

Bezafibrate and idebenone are beneficial for Mitochondrial fission in DNM1L mutated cells

AJMG 2016 and in preparation

Small moleculesFission defect

Page 22: Ann saada-Roma-2016

DNM1L FOXRED1 C6ORF66 NDUFS4 NDUFS2 COX6B1 TRMU MRPS22 GFM1 EFTs

+/+/- ns + +/- +/+ +/-/+ ns +/+/ns +/ns +/ns BEZA

ns + +/+ - +/+/+ + +/ns +/ns +/ns ns AICAR

ns + ns +/+ ns +/ns ns ns ns OLTI

-/+/+ + + ns +/- +/-/- +/+ ns ns +/+ SBP

-/+ +/-/+ -/+ +/- +/+/- +/+ +/+ ns +/- +/+ RSV

-/-/+ +/- +/+ +/ns/- +/- +/- NAC

+/+/- +/+ +/ns +/ns ns +/+ Asc

+ -/+ +/+/- +/- GENI

+/- +/- GSE

The effect of ANTIOXIDANTS is variable Decreased ROS combined with decreased, unaffected, increased ATP

Small moleculesSummary

“beneficial” = green “mixed response”=gray“detrimental”= red ns=not significant

Page 23: Ann saada-Roma-2016

DNM1L FOXRED1 C6ORF66 NDUFS4 NDUFS2 COX6B1 TRMU MRPS22 GFM1 EFTs

+/+/ns ns + +/- +/+ +/-/+ ns +/+/ns +/ns +/ns BEZA

ns + +/+ - +/+/+ + +/ns +/ns +/ns ns AICAR

ns + ns +/+ ns +/ns ns ns ns OLTI

-/+/+ + + ns +/- +/-/- +/+ ns ns +/+ SBP

-/+ +/-/+ -/+ +/- +/+/- +/+ +/+ ns +/- +/+ RSV

-/-/+ +/+ +/+ +/ns/- +/- +/- NAC

+/+/- +/+ +/ns +/ns ns +/+ Asc

+ -/+ +/+/- +/- GENI

+/- +/- GSE

“beneficial” = green “mixed response”=gray“detrimental”= red ns=not significant

The effect of MITOBIOGENESIS inducers is variable Is increased biogenesis beneficial or does it “exacerbate stress” ?

Small moleculesSummary

Page 24: Ann saada-Roma-2016

DNM1L FOXRED1 C6ORF66 NDUFS4 NDUFS2 COX6B1 TRMU MRPS22 GFM1 EFTs

+/+/ns ns + +/- +/+ +/-/+ ns +/+/ns +/ns +/ns BEZA

ns + +/+ - +/+/+ +/+/+ +/ns +/ns +/ns ns AICAR

ns + ns +/+ ns +/ns ns ns ns OLTI

-/+/+ + + ns +/- +/+ ns ns +/+ SBP

-/+ +/-/+ -/+ +/- +/+/- +/+ +/+ ns +/- +/+ RSV

-/-/+ +/+ +/+ +/ns/- +/- +/- NAC

+/+/- +/+ +/ns +/ns ns +/+ Asc

+ -/+ +/+/- +/- GENI

+/- +/- GSE

“beneficial” = green “mixed response”=gray“detrimental”= red ns=not significant

The response is individual

Unpublished, EJHG 2015, Biochim2013, PLOSone2011

Small moleculesSummary

Page 25: Ann saada-Roma-2016

DNM1L FOXRED1 C6ORF66 NDUFS4 NDUFS2 COX6B1 TRMU MRPS22 GFM1 EFTs

+/+/ns ns + +/- +/+ +/-/+ ns +/+/ns +/ns +/ns BEZA

ns + +/+ - +/+/+ +/+/+ +/ns +/ns +/ns ns AICAR

ns + ns +/+ ns +/ns ns ns ns OLTI

-/+/+ + + ns +/- +/+ ns ns +/+ SBP

-/+ +/-/+ -/+ +/- +/+/- +/+ +/+ ns +/- +/+ RSV

-/-/+ +/+ +/+ +/ns/- +/- +/- NAC

+/+/- +/+ +/ns +/ns ns +/+ Asc

+ -/+ +/+/- +/- GENI

+/- +/- GSE

“beneficial” = green “mixed response”=gray“detrimental”= red ns=not significant

The response is individual Could results obtained in fibroblasts be relevant for personalized treatment?

Unpublished, EJHG 2015, Biochim2013, PLOSone2011

Small moleculesConclusion?

?

Page 26: Ann saada-Roma-2016

Some other “therapeutic approaches “

IMPROVED OXPHOS

IMPROVED CELL FUNCTION

Protein replacement therapy??

Patient’s FIBROBLASTS

Prof. Haya Lorberboum-GalskiMatan RapoportDana Marcus

Small molecules

Page 27: Ann saada-Roma-2016

Protein replacement therapies are currently used in some diseasesBut there are still obstacles

Protein replacement

COMMON OBSTACLES: delivery by IV infusion

mis-targeting of recombinant enzymeDifficulty reaching target tissue

Immune reactions

Enzyme replacement therapy (ERT)In lysosomal storage diseases (LSD’s):

Gaucher diseasePompe (GSDII) disease

Fabry diseaseMucopolysaccharidoses I,II, IV

Page 28: Ann saada-Roma-2016

Protein replacement

A recombinant mitochondrial protein should: Penetrate not only cellular membrane,

BUT also both the OUTER and INNER mitochondrial membranes AND integrate into a multi-subunit complex

COMMON OBSTACLES: delivery by IV infusion

mis-targeting of recombinant enzymeDifficulty reaching target tissue

Immune reactions

Protein replacement in mitochondrial diseasesis even more complex

Page 29: Ann saada-Roma-2016

Protein replacement

A recombinant mitochondrial protein should: Penetrate not only cellular membrane,

BUT also both the OUTER and INNER mitochondrial membranes AND integrate into a multi-subunit complex

Protein replacement in mitochondrial diseasesis even more complex

PROTEIN TRANSDUCTION DOMAINS PTD’s

Amino acid domains serving asDelivery vectors

Page 30: Ann saada-Roma-2016

Protein replacement

A recombinant mitochondrial protein should: Penetrate not only cellular membrane,

BUT also both the OUTER and INNER mitochondrial membranes AND integrate into a multi-subunit complex

Protein replacement in mitochondrial diseasesis even more complex

MITOCHONDRIAL protein+ mitochondrial target sequence

MTS

Trans Activator of Transcription TAT

11 amino acids from HIV-1(Arginine rich, positively charged)

TAT+MTS+MITOPROTEINFUSIONPROTEIN produced in vitro

Page 31: Ann saada-Roma-2016

Protein replacement

A recombinant mitochondrial protein should: Penetrate not only cellular membrane,

BUT also both the OUTER and INNER mitochondrial membranes AND integrate into a multi-subunit complex

Protein replacement in mitochondrial diseasesis even more complex

Trans Activator of Transcription TAT

11 amino acids from HIV-1(Arginine rich, positively charged)

MITOCHONDRIAL protein+ mitochondrial target sequence

MTS

TAT+MTS+MITOPROTEINFUSIONPROTEIN produced in vitro

Page 32: Ann saada-Roma-2016

Protein replacement-LAD

Lipoamide dehydrogenase (PHDc-E3 aKDH-E3 BCKA-E3)The pure TAT-MTS-LAD recombinant protein is active

TAT+MTS+LADFUSIONPROTEIN

Molec Ther 2008

PDHcE3

Page 33: Ann saada-Roma-2016

Protein replacement-LAD

TAT+MTS+LADFUSIONPROTEIN

(native protein)(control )

Molec Ther 2008

Lipoamide dehydrogenase (PHDc-E3 aKDH-E3 BCKA-E3)The pure TAT-MTS-LAD recombinant protein is active

Page 34: Ann saada-Roma-2016

The TAT-MTS-LAD recombinant protein enters mitochondria is processed and

improves activity in LAD deficient Patient’s fibroblasts

Patient (G229C/Y35X )Fibroblasts

TAT+MTS+LADFUSIONPROTEIN

-processed TAT-LAD and native mutant LAD-TAT-LAD

LAD activity

Protein replacement-LAD

Molec Ther 2008

Page 35: Ann saada-Roma-2016

The TAT-MTS-LAD recombinant protein enters mitochondria co-localized with PDHc

and improves PDHc activity in LAD deficient Patient’s fibroblasts

Molec Ther 2008

TAT+MTS+LADFUSIONPROTEIN

Patient (G229C/Y35X )Fibroblasts

anti-PDHc1α FITC- TAT-LAD Overlay

PDHc activity

Protein replacement-LAD

Page 36: Ann saada-Roma-2016

In theory, intermittent treatment couldSuffice in mild cases/during crisis

BBRC 2000

Muscle/LiverIntermittent“Normal life”

Liver dysfunctionInfantile, fatalLiver failureencephalopathy

ATP-production

Protein replacement-LAD

Page 37: Ann saada-Roma-2016

Protein replacement-CI

TAT+MTS+C6ORF66 (NDUFAF4)FUSIONPROTEIN

The TAT-MTS-NDUFAF4 recombinant protein enters mitochondria and improves CI activity

and mitochondrial functions in Patient’s fibroblasts

GROWTH

ATP-content (GAL)

ROS

FITC- TAT-NDUFAF4

1h 3h

Mol Med 2013

Enzymatic activity

Page 38: Ann saada-Roma-2016

TAT+MTS+LADFUSIONPROTEIN

Next step-proof of concept in animal models

Rapoport et al J Mol Med 2011,

Protein replacement-next step

Page 39: Ann saada-Roma-2016

Another “therapeutic approach “

IMPROVED OXPHOS

Mitochondrial therapy???

Patient’s FIBROBLASTS

Protein replacement-next step

Eyal Kesner

NATURE1982

Page 41: Ann saada-Roma-2016

Isolated mitochondria from HeLa cells quicklyenter recipient cells

HeLa-dsRed2

Recipient cells

Sci Rep 2016,

Mitochondrial therapy???

NATURE1982

Page 42: Ann saada-Roma-2016

Isolated mitochondria from HeLa cells quicklyenter fibroblasts, maintaining identity & improves growth

GROWTH(GAL)

Enzymatic activity

Mitochondrial therapy???

Sci Rep 2016,

Page 43: Ann saada-Roma-2016

Isolated mitochondria from HeLa cells quicklyenter fibroblasts, maintaining identity & improves growth

Mechanism of mitochondrial import: Intact mitochondrial membrane

MacropinocytosisProteoglycan involvement

Mitochondrial therapy???

Sci Rep 2016,

Page 44: Ann saada-Roma-2016

Biochemical Diagnostics

Corinne BelaicheRosi Shwartz

Sarah weissmanPolina Ilin

Elena fatale

Molecular diagnostics Prof.Orly Elpeleg

Dr.Avraham ShaagProf.Vardiella Meiner

Collaborators

Prof. Chaya Lorberboum-Galski

Dr. Matan RapaportEyal Kesner

Dana Markus

Experimental Devorah Soiferman

Lisa DouievDr Chaya Miller

Anna Golubitzky (alumni)Dr Phyllis Dan (alumni)

Dr. Maskit Bar-Meir (alumni)

Clinical collaboratorsProf.Orly Elpeleg

Dr.Simon EdvardsonDr. Ruth Sheffer

Prof.Ronen SpiegelDr Itai Beger

Protein replacement therapy?? Mitochondrial therapy???Small molecules?

Thank you …………….

Page 45: Ann saada-Roma-2016
Page 46: Ann saada-Roma-2016

COFACTORS, VITAMINS

RiboflavinNiacin

ThiaminLipoate

COFACTORS, VITAMINS

One fibroblast one parameter-riboflavin beneficial

AscorbateCoenzymeQ

Vitamin-E

ANTIOXIDANTS

Bar-Meir J Ped 2001

Small molecules

Page 47: Ann saada-Roma-2016

Mitochondrion 2009

the response is individual depending on the defect

+gentamicin +gentamicin +gentamicin

nDNAtranslation Individual mito translation disorders are sensitive to

translation targeted antibiotics

Page 48: Ann saada-Roma-2016

AICARAminoImidazole Carboxamide Ribonucleotide

Adapted from: Scarpulla RC. 2011 BBA :1813

Resveratrol

GenisteinBezafibrate

Same pathway DIFFERENT EFFECTS Mitochondrial BIOGENESIS

Nicotinamide(Ribo nucleoside)