Yeek01_2014_I.A-I.E (1)

download Yeek01_2014_I.A-I.E (1)

of 77

Transcript of Yeek01_2014_I.A-I.E (1)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    1/77

    I. MATHEMATICAL MODELS

    Desired

    Performance ControllerPlant /

    ProcessComparison

    Sensor

    Output

    Feedback Loop

    InputIII.

    II.

    I.Errorsignals

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    2/77

    I.A Model Building Revised September, 2004

    The process of model building

    Real LifeSystem

    PhysicalModel

    Set of DifferentialEquations relating

    Input/output of

    plant/process

    x

    Up/down

    movementRotational

    movement

    Comprised ofbasic elements

    relating relevantinputs and outputs

    I.A Model Building

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    3/77

    Governing Equations

    For BasicElements

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    4/77

    I.A.1 Mechanical SystemUse Newtons Law

    maF

    ..

    IExample: Spring-Mass-damper system

    )()()()( tFtkytydt

    dbty

    dt

    dM

    2

    2

    )()( ty

    dt

    dtv Define velocity:

    )()()()( tFdttvktbvtvdt

    dM

    t

    0

    Input: force F ; Output: positiony

    (As given in Table 2.2)

    Springconst.k

    M y

    F

    Dampingcoeff. b

    Equilibriumposition

    Equation forDamper elementEquation for

    Mass element

    Equation forSpring element

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    5/77

    I.A.2 Electric Circuit

    Use Kirchoffs Laws

    KCL:Sums of currents leaving and entering a node are equal

    KVL: Sum of voltage around a closed path is zero

    Example:LRCcircuit

    )()()(

    )(1

    0tItV

    dt

    dC

    R

    tVdttV

    L

    t

    I(t)RL C

    VoltageV(t)

    Using KCL (and Table 2.2):

    Input: CurrentI(t)Output: Voltage V(t)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    6/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    7/77

    )()()()( tVdttiC

    tRitidt

    dL

    t

    0

    1

    Velocity v(t)Force F(t)MassM

    Friction b

    Spring constantk

    Current i(t)Voltage V(t)L InductanceR Resistance

    1/C Inverse of capacitance

    Force-Voltage analogy

    V(t)

    RL

    C

    )()()()( tFdttvktbvtvdt

    dMt

    0

    Consider anotherLRCcircuit Voltage driven

    i(t)

    Compare mechanical system example:

    +

    -

    Using KVL:

    Input: Voltage V(t)Output: Current i(t)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    8/77

    One can build mechanical, electrical, fluid, or thermalanalog to simulate performance of a system One may thus use easier-to-build analog to test out

    performance of a system first before actual construction

    Early example: Moniac a hydraulic systemto study US money flow by Bill Philips atLondon School of Economics, 1949

    Summary of Model Building:Plant/process + Objective of study

    Differential equations of

    basic elements from Table 2.2

    Appropriate physicalmodel comprisingof ideal basic element

    Set of differentialequation relatingrelevant inputs andoutputs

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    9/77

    A Linearprocess:

    Given: input is u1, output is y1input is u2, output is y2

    Then, if input is u1+u2, output is y1+y2

    I.A.4 Linear, Time-Invariant (LTI) process

    A Time-invariantprocess:

    input-output relation is not

    dependent on time

    Note: most processes can reasonably

    be assumed as Time-invariant

    Linear differential equation

    with Time-invariantcoefficients

    Scope of MAE3050:

    Process describable by

    Linear differential equation

    Process describable by differentialequation of constant coefficients

    Linear differential equationwith Time-varying coefficients

    Nonlinear differential equationwith Time-invariant coefficients

    Note: most processes are actuallynot linear (i.e., nonlinear) by nature

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    10/77

    )()(cos)()(

    )()()(

    )()()(

    )()()()(

    2

    tutyCtydt

    dAt

    tutCytydt

    dA

    tutCytydt

    dA

    tutCytydt

    dAt

    Describing different equation for S:

    S is Linear, Time-varying system

    S is Linear, Time-invariant system

    S is Nonlinear, Time-invariant system

    S is Nonlinear, Time-varying system

    Sinput u outputy

    Given a system S:

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    11/77

    I.B Linearization

    Example 2.1: Pendulum oscillator model

    Idea: Taylor expansion of function

    Can have a linear approximation of (X) about a certain Describing differential equation (X) is nonlinear (is it?)

    PendulumTorque Input Output

    2ML

    T

    L

    g sin

    ..

    L

    Mg

    Inputtorque

    (X)

    Nonlinear system may be studied through linearization ofits nonlinear model

    ooperating point

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    12/77

    Recall: Taylor Series expansion of functionf(x) about point

    .....)(!

    )(.....)(')()()( )(

    o

    nn

    oooo xf

    n

    xxxfxxxfxf

    ox

    )(')()( ooo xfxxxf

    Range of validity of linear approximation depends on function

    f(x) and operating point ox

    )(xf

    )( oxf

    ox xOperating point

    Linear approximation of )(xf

    about operating point ox

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    13/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    14/77

    - From 1st order terms of (XX),

    2MLL

    go

    )cos(

    ..

    This yields relation between o and operating point

    - From 0

    th

    order terms of (XX),

    gML

    T

    ML

    T

    L

    goo

    02

    0 )sin()sin(

    This gives the linear approximation of the pendulumdifferential equation relating torque variation (t)and about operating point

    - Equation (X) becomes

    2

    0

    ML

    T

    L

    goo

    )cos()sin(

    ..

    (XX)

    )(t

    (XX1)

    (XX0)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    15/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    16/77

    )()( sFtf

    I.C Laplace Transform

    0dttfetfF(s)

    st )()]([L

    L

    Powerful method in analyzing/solving LTI differentialequations

    I.C.1 Definition

    F(s) complex variable function of complex variable s is such that

    0000)( tfortf)(tf

    Function of t

    Function ofcomplex variable s

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    17/77

    Example:

    s

    s

    e

    s

    e

    dtetutfF

    t

    st

    t

    st

    st

    1

    0

    0

    )()]([L(s)

    Q: Laplace transform F(s) exists only for real s>0?

    A: Analytic Extension theorem extends existence ofF(s) towhole s-plane except at some singular point(s), if any.

    0atfunctionStep ttuf(t) )(

    becomes)(sF

    Complex planelocations where

    u(t)

    1

    t

    (This term is 0 with real s > 0 )

    Same for all Laplace Tansforms:F(s) exists in part of s-plane existence in

    whole s-plane except of a few singular points!

    In this case, singular point at s=0

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    18/77

    I.C.2 Properties of Laplace Transform

    (a) Superposition of functions )(and)( 21 tftf

    )()()]()([ 2121 sFsFtftf L

    (b) Time Delay (Function shift to right by duration )0

    )()]([ sFetf s L

    L )( sF)(tf

    Lt

    )( tft

    )( sFe s

    Given

    Then

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    19/77

    (c) Time Scaling (Expansion/contraction of time axis)

    01 aFatfas

    a ,)()]([L

    Given

    Then

    L )( sF)(tf

    tot

    L

    t

    )(atf

    ato

    ato

    )(1as

    aF

    a >1Contraction

    of time axis

    a < 1Extension

    of time axis

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    20/77

    (d) Modulation by Exponential factor

    )( tfe at

    L)( sF

    )(tf

    Lt

    t

    Given

    Then

    e at

    )()]([ asFtfe at L

    )( asF

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    21/77

    (e) Differentiation of a function

    )()()]([ 0fssFtfdtdL

    (f) Integration of a function

    s

    sFt

    df)(

    0])([ L

    )()]([ sFstf ndt

    dn

    n

    L

    - For function and derivatives all starting at zero

    )0()0()0()()]([)1(

    21

    n

    ffsfssFstf nnn

    ndt

    ndL

    - Generalization Value ofat )( tfdt

    d

    0t

    )(11

    tfnn

    dt

    d

    Value ofat 0t

    )( tfValue ofat 0t

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    22/77

    dtff

    dftftftf

    t

    t

    )()(

    )()()()(

    20

    1

    20

    121

    Laplace Transform of selected function in Table 2.3

    Laplace Transform of complicated functions maybeobtained from Laplace Transforms of simpler functionsusing Transform properties

    (g) Convolution Theorem

    where convolution of functionf1(t) andf2(t) defined as:

    )()()]()([ 2121 sFsFtftf L

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    23/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    24/77

    Then z1

    , z2

    , ., zm

    are the m zeros of the F(s), and

    p1, p2, ., pn are the npoles of the F(s)

    ))...()()(())...(()(

    n

    m

    pspspspszszsCsF

    3211

    I.C.3 Laplace Transform Theorems

    Poles and zeros of F(s): factorize F(s) to obtain

    If some of the pi are the same Repeated pole case

    Repeated zero case not of concern

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    25/77

    Final Value Theorem: If all poles of sF(s) inside lefthalf plane (LHP) of s-plane, then exists and

    Example:

    Initial Value Theorem: Given any F(s),

    Example:

    )(lim)(lim ssFftfst 0

    )(lim)( ssFfs

    0

    )( f

    imply

    existenceof

    )(f

    (Later!)?)()(

    )()(

    f

    ss

    ssF

    102

    332

    )( f

    ?)()()( ys

    ssY 102

    ?)()(

    )(

    0102

    ys

    ssY

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    26/77

    I.C.4 Inverse Laplace Transform

    Partial Fraction Expansion and term-by-term Inversion

    )()( sFtf

    )4)(2(

    1)(

    ss

    G s

    4

    1

    2

    1

    2

    1

    2

    1

    ss

    ttt eeg

    42)(

    2

    1

    2

    1

    L-1 L-1

    L-1

    Partial FractionExpansion

    Term-by-termLaplace Inversion

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    27/77

    (All poles different)

    ))...()((

    ))...(()(

    21

    1

    n

    m

    pspsps

    zszsksF

    - Write

    -

    )(...

    )()()(

    2

    2

    1

    1

    n

    n

    ps

    C

    ps

    C

    ps

    CsF

    - Determine C1,,Cn as

    ipsii sFpsC )()( i = 1,,n

    Partial Fraction Expansion: Distinct Pole Case

    nppp 21

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    28/77

    Partial Fraction Expansion: Repeated Pole Case

    ))...(()(

    ))...(()(

    11

    1

    nr

    r

    m

    pspsps

    zszsksF

    -

    nr ppppp ...... 1111

    - Write

    )(...

    )()(...

    )()()(

    n

    n

    r

    r

    r

    r

    ps

    C

    ps

    C

    ps

    C

    ps

    C

    ps

    CsF

    1

    1

    121

    2

    1

    1

    (first rpoles equal)

    Cr+1,,Cn of non-repeatedpoles determined by formula

    of distinct pole case

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    29/77

    1)]()[(

    !

    11 ps

    r

    i

    i

    ir sFpsds

    d

    iC

    - Determine C1,,Cras

    , i=0,,r-1

    1

    1

    211

    212

    ps

    ps

    sFpsds

    dC

    sFpsC

    )]()[(

    )]()[(

    * Special case: r =2

    ))...(()(

    ))...(()(

    12

    1

    1

    nr

    m

    pspsps

    zszsksF

    )(...

    )()()()(

    1

    12

    1

    2

    1

    1

    n

    n

    r

    r

    ps

    C

    ps

    C

    ps

    C

    ps

    CsF

    1)]()[(

    !

    1 212 psi

    i

    i sFpsds

    d

    iC

    i=0,1

    r-1

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    30/77

    * Special case:

    1

    1

    1

    )]()[(!2

    1

    )]()[(

    )]()[(

    312

    2

    1

    312

    313

    ps

    ps

    ps

    sFpsds

    dC

    sFpsds

    dC

    sFpsC

    r =3

    ))...(()(

    ))...(()(

    13

    1

    1

    nr

    m

    pspsps

    zszsksF

    )(...

    )()()()()(

    1

    13

    1

    32

    1

    2

    1

    1

    n

    n

    r

    r

    ps

    C

    ps

    C

    ps

    C

    ps

    C

    ps

    CsF

    1)]()[(

    !

    1 313 psi

    i

    i sFpsds

    d

    iC

    i=0,1,2r-1

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    31/77

    - Distinct Real Pole:

    - Multiple Real Pole:

    - Distinct Complex Pole:

    ptCe

    ps

    C

    1

    L

    ptr

    r et

    rC

    ps

    C 1

    )!1(

    1

    )(

    1

    L

    )cos(||21

    *

    *

    CteCps

    C

    ps

    C t

    L

    where jpeCC Cj ,||

    Term-by-Term Laplace Transform Inversion

    - Multiple Complex Pole: Complicated!

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    32/77

    Example 2.2 Application of Laplace Transform to solvingLTI differential equation

    )()()()( trtytyty 34

    )0()0( ,yy Initial conditions :

    Apply Laplace transform :

    ))(())(()()(

    )())(())()()(( )(

    312

    314

    23400 02

    sssssssY

    ssYyssYysysYs

    Excitation on RHS:r(t)= 2 (meaning 2u(t) )

    Step function

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    33/77

    Taking Inverse Laplace Transform

    Response due to InitialCondition

    (zero if =0,=0)

    )())(()( tetetetety 331

    323

    223

    Response due toexcitation r(t)

    (zero if r(t)=0)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    34/77

    I.C.5 Pole Locations and Time Response

    Partial Fraction Expansion yields

    ......)(*

    *

    1

    1

    ps

    C

    ps

    C

    ps

    CsY

    is real for real pole; and complex for complex poleiC

    -- From pole locationpi of Y(s): more information on time behavior ofy(t)

    Information abouty(t) from Y(s)?

    -- From FVT and IVT:

    information on final and initial values ofy(t)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    35/77

    Inverse Laplace Transform Each pole contributing

    a term toy(t) Contribution from a single real pole:

    )(

    )()(1

    satpole

    tyinesYin

    s

    t

    Single real pole location and its contribution toy(t):

    te

    te

    t

    e

    te te

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    36/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    37/77

    -- Graphic illustration: Location (of complex polepair) and time contribution

    dj

    dj

    y(t)

    t

    y(t)

    t

    te

    y(t)

    te

    Faster

    decayenvelop

    Fastergrowthenvelop

    IncreasingFrequency

    Growth Envelop

    d

    Increasing

    Frequency

    FrequencyDecay Envelop

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    38/77

    -Representation forp in LHP(b) ),( n

    -- Conversion to/from CartesianRepresentation

    -- Correspondingly,y(t)becomes sinusoidal signal with

    tne

    22

    22

    2

    or1

    d

    dn

    nd

    n

    ,

    ,

    cos

    Frequency:

    Decay Envelop:

    21 n

    21 nn jp

    or

    Distance between pole and origin

    Cosine of pole angular positionrelative to ve real axis

    :

    :

    n

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    39/77

    Fixed n , varying 10:

    -- Pole location and time response in (n, ) representation

    0

    1

    7070 .

    090

    0

    Double real pole at

    ns

    nj

    nj

    y(t)

    t

    y(t)

    t

    Complex pole pair

    Complex pole pair on j-axis

    y(t)

    t

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    40/77

    Example: Spring-Mass-Damper system

    000 )(,)( yyy o

    )()()()( tFtkytydt

    dbty

    dt

    dM

    2

    2

    k

    M y

    F

    Wall friction, b

    - With F(t)=0,

    M

    k

    M

    bnn 22 ,

    oy

    MksMbs

    Mbs

    sY

    2)(

    - Two independent design parameters b/Mand k/M toyieldand n

    o

    nn

    n yss

    ssY

    22 2

    2

    )(

    No externalexcitation!

    kM

    b

    2

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    41/77

    where , and hence

    *)(

    *

    )(*))((

    )(

    ps

    C

    ps

    Cy

    psps

    ssY o

    n

    2

    - Underdamped case: , i.e.,10

    901212

    122

    2

    CyCyj

    jC oo ;

    21 nn jp

    cos

    )sin()(

    tey

    ty nto n 2

    21

    1

    kMb 20

    representation!),( n

    Y(s) has two complex poles:

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    42/77

    22

    2

    )()()()(

    nno

    n

    n

    s

    B

    s

    Ay

    s

    ssY

    - Critically damped case: or1 kMb 2

    on

    o

    yB

    yA

    tno

    netyty )()( 1

    Response reaches its final value at the shortest timewithout oscillation

    Y(s) has two overlapping real poles:

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    43/77

    )()())((

    )(

    2121

    2

    ps

    B

    ps

    A

    psps

    yssY on

    - Overdamped case: or1

    oo yByA12

    112

    12

    2

    2

    2

    ,

    1221 nnpp ,

    otptp yeety

    21

    121

    121 2

    2

    2

    2

    )(

    kMb 2

    Y(s) has two distinct (non-overlapping) real poles:

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    44/77

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    45/77

    - Example of responses:

    http://www.efunda.com/formulae/vibrations/sdof_free_damped.cfm

    - For the case F(t)=0, , see000 vyyy o )(,)(

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    46/77

    Design Concept #1:

    To properly place the poles of Y(s) so that the resultingy(t) yields satisfactory performance

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    47/77

    Example 2.15: Design of an accelerometer

    - Idea: constant Force Fo on massMs

    Wanty as measurement of acceleration:s

    o MFay

    x = case position

    Fo

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    48/77

    ydt

    dbkyxy

    dt

    dM )(

    2

    2

    os Fxdt

    dM

    2

    2

    s

    o

    MFy

    Mky

    Mby

    - Absolute movement of mass inside case:x+y

    - Force acting on mass:

    - Combining

    - Apply Laplace Transform:

    M

    ks

    M

    bss

    MF

    M

    ks

    M

    bs

    yMbysy

    sY so

    22

    000 )()()()(

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    49/77

    - Conduct PFE,

    )()()()(

    ))(())((

    )()()(

    )(

    2121

    2121

    000

    ss

    D

    ss

    C

    s

    E

    ss

    B

    ss

    A

    sssss

    MF

    ssss

    yMbysy

    sY so

    - Inverse Laplace transform,

    Particularly,,

    s

    o

    M

    F

    k

    ME

    tsts

    s

    otsts DeCeM

    F

    k

    MBeAety 2121

    )(

    Due to initial value

    M

    ks

    M

    bs

    221 and sswhere are roots of

    Due to excitation

    - ConstantsA,B, C,D andEcan be determined as in PFE

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    50/77

    - Acceleration measurement:

    * As t large,

    and

    * Hence, plot verse tyield a as steady state value!

    21 and ss

    021 tsts ee ,

    s

    oss

    MF

    kMyty

    )(

    021 tsts ee ,

    Fo/Ms=a is acceleration!

    ssy acceleration!

    )(tyM

    k

    * With b, k, M +ve, inside LHP21 and ss

    Can also obtain from FVT

    - The design issues

    * How fasty(t) becomesyss depends on how fast

    * Design b/Mand k/Msuch that are farther in theLHP so that and hence y(t)yss fast enough

    * However, faster decay expensive components trade-off

    021 tsts ee ,

    - Specific numerical design in Example 2 15

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    51/77

    - Specific numerical design in Example 2.15

    * What are ? How long to reach a reasonable acceleration measurement? Can we redesign to get as a faster measurement?

    21 and ss

    - Question: what if the applied force F, hence a, is time varying?

    2.46Fig.3,2,3,2)0(,1)0( aM

    F

    M

    k

    M

    b

    yy s

    o

    )(tyM

    k

    2.46

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    52/77

    I.D. Transfer Function

    I.D.1 Definition

    Given

    r(t) Plant y(t)

    Transfer Function = L.T. of outputL.T. of input )(

    )(sR

    sY

    (with zero initial conditions)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    53/77

    u(t)

    Laplace Transform converts differential equation description

    to transfer function description (zero initial conditions)

    Plant y(t)

    cbsasd

    2

    )()()()( tudtcytybtya

    U(s) Y(s)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    54/77

    I.D.2 Block Diagram and Transformation Rules

    Pictorical representation of system in termsof its components

    - Tedious to obtain Transfer Function)()(0

    sVsV

    i

    - Divide system into three components of BridgeCircuit

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    55/77

    )()()()()( sGsGsG

    sVsV

    i

    o321

    Complicated system?

    - Then

    Vi

    Use Block Diagram transformation rules

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    56/77

    T-1

    T-2

    T-3

    T-4

    T-5

    T-6

    Same relationsbetweenX1,X2

    andX3

    Example 2.7

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    57/77

    p

    T-4

    T-1

    T-6

    T-6

    T-6

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    58/77

    T 6

    )(sGY(s)

    U(s) )(sGY(s)

    U(s)

    Useful fact about pickoff point

    Summarizing example of all things taught (so far)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    59/77

    A water tank with input u and water levely

    The differential equation:

    (for simplicity, letA=1 m2

    )

    Laplace transform leads to transfer function representation

    If u is a step function (constant water flowing in)

    Summarizing example of all things taught (so far)

    udt

    dyu

    dt

    dyA

    AreaA

    y (m)

    u (m3/sec)

    s

    1)(sU )(sY

    ttys

    sYs

    sU )()()(2

    11

    t (sec)

    y (m)

    2

    2

    )0)0((assuming y

    D i d f l l 2 ?

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    60/77

    Desired performance: water levely to stay aty=2 m?

    Open loop control: knowing that water levely=2 at t=2,just stop water flow at t=2

    Closed loop control: measurey, compare with the desiredperformance to determine the input u(t)=r(t)-y(t)

    t (sec)

    y (m)

    2

    2

    t (sec)

    u (m3/sec)

    2

    1

    s

    1)(sU)(sY)(sR

    +_

    s

    sR2

    )(Desired performance:water level =2 Feedback actualy to compare

    with desired performance

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    61/77

    Closed loop transfer function using Transformation Rule #6:

    With desired performance r=2,

    Moreover, input u can be determine as

    tetu

    ssYsRsU

    2)(

    )1(

    2)()()(

    )1(2)(

    )1(

    2)(

    2)(

    tety

    sssY

    ssR

    )()(

    )()()( sRs

    sYsRGH

    GsY

    1

    1

    1

    t (sec)

    u (m3/sec)

    4

    2

    t (sec)

    y (m)

    4

    2

    Indeed,y(t)

    stayed at y=2

    I E Modeling of DC Motor

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    62/77

    I.E. Modeling of DC Motor

    Mathematical model: Newtons Law; Kirchoffs Laws; and

    laws describing the mechanical/electrical interactions:

    - Magnetic field induced by current if:

    if

    Electromechanical System interacting mechanical andelectrical components

    if

    if

    i i i i fi ld

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    63/77

    - Induced voltage on wire moving with velocity v in :

    e vPolarity of e induced current to yield

    force/torque against velocityv

    Induced force F

    ia

    Wire movingwith velocity v

    +

    _

    - Force on wire carrying currentia

    in magnetic field :

    F ia

    Induced voltage e

    E l 2 5 DC M t~

    Vf

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    64/77

    Field circuit:- current ifto generate magnetic field

    Armature circuit:- current ia flowing inside magnetic field

    - TorqueTm on rotor:

    - Induced back voltage e on armature circuit:

    Example 2.5: DC Motor

    fiKKve 32

    ffiK

    affam iiKKiKT 11

    Rf

    Lf

    if

    Magnetic field

    Field

    circuitArmature

    circuit

    +

    -e

    K1,Kf,K2,K3 someproportional

    constants

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    65/77

    - Rotor equation (with friction term):

    - With ia

    constant: Torque

    )()()( tTtbtJ L

    - Possible existence of disturbance torque total torque on rotor:

    dmL TTT

    - Field circuit equation:

    )()()( tVtiRtidt

    dL fffff

    afm iKKK 1

    fmaffm

    iKiiKKT 1

    Case #1: Field current if

    -controlled motor

    - Armature current ia kept constant (can use currentgenerator instead of armature circuit)

    Mechanical Component:i ( i h f i i )

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    66/77

    Rotor equation (with friction term)

    Or, inserting the variable (t) asangular speed

    Electrical component:

    Field circuit equation

    )()()( tTtbtJ L

    Possible presence of

    disturbance torquedmL TTT

    )()()( tVtiRtidt

    dL fffff

    Torque applied on rotordue to current if :

    Coupling electrical and

    mechanical components

    fmm iKT

    )()( )()()( tt

    tTtbtJL

    - Block diagram transform

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    67/77

    - With

    )()(

    1)())((

    )( sTbJss

    sVbJsRsLs

    Ks dfff

    m

    ,,and,0 ff

    fLd R

    L

    b

    JT

    )())((

    )( sVsss

    bRK

    s fLf

    f

    m

    11

    fL - Typically,

    )()(

    )( sVss

    bRKs f

    L

    f

    m

    1

    Electric response

    much faster thanmechanical response

    3rdorder differential equationrelating input and outputsimplified to 2ndorder

    - Block diagrams

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    68/77

    ** After neglecting the electrical response by omitting f

    )(sPosition

    1

    fR

    Electrical component Mechanical component

    Coupling Presence of disturbance torque

    - Block diagrams

    ** Full dynamics

    Figure 2.19

    Electrical component Mechanical component

    Coupling Presence of disturbance torque

    )(s

    Position

    Case #2: Armature current (ia ) controlled motor

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    69/77

    - Rotor equation (with friction term):

    - With if constant:

    - Armature circuit equation:

    Case #2: Armature current (ia ) controlled motor

    )()()( tTtbtJ L

    - Possible existence of disturbance torque total torque on rotor:

    dmL TTT

    )()()()( tKtVtiRti

    dt

    dL baaaaa

    Back emf term on armaturecircuit introduces another

    source of coupling between

    electrical and mechanical

    components

    ffm iKKK 1

    amaffm iKiiKKT 1

    - Field current if kept constant constant magnetic field (or use permanent magnet)

    fiKe 3

    fb iKK 3

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    70/77

    - Block diagram: full dynamics

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    71/77

    - After transformation rules

    )(

    ))((

    )()(

    ))(()( sT

    KKbJsRsLs

    RsLsV

    KKbJsRsLs

    Ks

    dbmaa

    aa

    abmaa

    m

    )(

    ))((

    )( sV

    bR

    KKsss

    bRKs a

    a

    bmLa

    a

    m

    11

    - Typically, ,,,a

    aaLd R

    Lb

    JT withand0

    Figure 2.20

    )(sVa)(s

    Position

    L - Typically,Again, 3rdorder differentialequation simplified to 2ndorder

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    72/77

    s1)(s

    Speed

    )(s

    Position

    aL Typically,

    )()(

    )()(

    )(

    )( sVss

    KKbRK

    sV

    bR

    KKss

    bRK

    s abma

    m

    a

    a

    bmL

    a

    m

    11 1

    )( bma

    a

    KKbR

    JR

    1where

    - Block diagram: neglecting electrical response (omitting )a

    equation simplified to 2 order

    Electrical

    Coupling: current-

    induced torque Mechanical

    Coupling: angular speed-induced back emf

    Presence of disturbance torque

    Design Example: Disk Drive Read System y(t)= t)

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    73/77

    - Output = from DC Motor (Flexture flexibility ignored)

    - Armature-current controlled motor with zero back emf:

    - Controller = gain amplification transfer function=Ka- Perfect measurement sensor transfer functionH(s)=1

    Kb=0

    Figure 2.76 (a)

    - Disturbance torque=0

    Head

    Flexture

    Rotor

    Magnets

    Arm

    2.75

    r(t)

    Armature-current controlledDC Motor/Read Arm:G(s)

    Figure 2.76 (b)

    with added details

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    74/77

    Va(s)

    - Parameters:

    )20)(1000(

    5000

    ))(()(

    sssbJsRsLs

    KsG

    aa

    m

    Kb=0

    Ka

    H(s)=1

    0R(s)

    - Armature-current controlled DC Motor Transfer Functionwith Kb=0:

    a

    Y(s)

    = s)

    -G(s) in terms of :L

    aL and

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    75/77

    Figure 2.742.78

    )105.0)(1001.0(

    25.0

    )1)(1(

    )(

    ssssss

    bRK

    sGLa

    a

    m

    msbJmsRL

    La

    aa 50,1

    aL - Reduced model with

    )().(

    .)(

    20

    5

    1050

    250

    ssss

    sG

    - Closed loop transfer function usingreduced model:

    a

    a

    Kss

    K

    sR

    sY

    520

    52 )(

    )(

    40aK

    - Closed loop with full model yield nearly the same response

    (Full model)

    % textbook design example (Reduced

    model)

    Ka=40;

    - Matlab program to generate plot:

    The case in Fig 2 78

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    76/77

    Ka=40;

    num=5*Ka;den=[1 20 5*Ka];

    t=[0:0.002:0.7];

    y=step(num,den,t);

    plot(t,y)

    grid

    xlabel('Time (s)')

    ylabel('y(t) (rad)')

    Title('Figure 2.74')

    hold

    % Do case for ka=20

    Ka=20;

    num=5*Ka;

    den=[1 20 5*Ka];

    t=[0:0.002:0.7];

    y=step(num,den,t);

    plot(t,y,'--')

    % Do case for ka=60

    Ka=60;

    num=5*Ka;

    den=[1 20 5*Ka];t=[0:0.002:0.7];

    y=step(num,den,t);

    plot(t,y,'-.')

    % Label the cases

    gtext('Ka=20')

    gtext('Ka=40')

    gtext('Ka=60')

    Exercise: generating plot for full model?

    The case in Fig. 2.78

  • 8/9/2019 Yeek01_2014_I.A-I.E (1)

    77/77

    Third Reading Assignment:

    PP. 256-276, PP. 295-301 of Textbook