Vibracion en Maquinarias Rotativas en General

14
Universidad Gran Mariscal de Ayacucho Facultad de Ingeniería Escuela de Mantenimiento Industrial Cátedra: Evaluación Técnica de Fallas Sede: Barcelona VIBRACIONES  Barcelona, 8 de Noviembre de 2002 INTRODUCCION Se pueden considerar vibraciones como los movimientos oscilatorios de una partícula o cuerpo alrededor de una posición de referencia. El estudio de las vibraciones se refiere a los movimientos oscilatorios de los cuerpos y, a las fuerzas asociadas con ellos. Todos los cuerpos que poseen masa y elasticidad son capaces de vibrar. La mayoría de las máquinas y las estructuras experimentan vibración hasta cierto grado y, su diseño, requiere generalmente consideración de su conducta oscilatoria. Los sistemas oscilatorios pueden clasificarse como lineales o no lineales. Para los sistemas lineales, rige el principio de la superposición y las técnicas matemáticas para su tratamiento están bien desarrolladas. Por el contrario, las técnicas para el análisis de sistemas no lineales son menos conocidas y difíciles de aplicar. Sin embargo, algún conocimiento de sistemas no lineales es deseable puesto que todos los sistemas tienden a volverse no lineales cuando crece la amplitud de la oscilación. Hay dos clases generales de vibraciones, libres y forzadas. La vibración libre es la que ocurre cuando un sistema oscila bajo la acción e fuerzas inherentes al sistema mismo y, cuando las fuerzas externamente aplicadas son inexistentes. El sistema bajo vibración libre vibrará a una o más de sus frecuencias naturales que, son propiedades del sistema dinámico que dependen de su distribución de masa y de rigidez. La vibración que tiene lugar bajo la excitación de fuerzas externas es una vibración forzada. Cuando le excitación es oscilatoria, el sistema es obligado a vibrar a la frecuencia de excitación. Si ésta coincide con una de las frecuencias naturales del sistema, se produce una situación de resonancia y ocurren oscilaciones peligrosamente grandes. La falla de estructuras mayores como puentes, edificios o alas de aviones es una horribles posibilidad, bajo resonancia. Así, el cálculo de las frecuencias naturales es de importancia capital en el estudio de las vibraciones. Todos los sistemas vibratorios están sometidos a cie rto grado de amortiguamiento puesto que la energía se disipa por fricción y otras resistencias. Si el amortiguamiento es pequeño, tiene escasa influencia sobre las frecuencias naturales del sistema y, por consiguiente, los cálculos de las frecuencias naturales se hacen 1

Transcript of Vibracion en Maquinarias Rotativas en General

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 1/14

Universidad Gran Mariscal de Ayacucho

Facultad de Ingeniería

Escuela de Mantenimiento Industrial

Cátedra: Evaluación Técnica de Fallas

Sede: Barcelona

VIBRACIONES

 Barcelona, 8 de Noviembre de 2002

INTRODUCCION

Se pueden considerar vibraciones como los movimientos oscilatorios de una partícula o cuerpo alrededor de

una posición de referencia. El estudio de las vibraciones se refiere a los movimientos oscilatorios de los

cuerpos y, a las fuerzas asociadas con ellos. Todos los cuerpos que poseen masa y elasticidad son capaces de

vibrar. La mayoría de las máquinas y las estructuras experimentan vibración hasta cierto grado y, su diseño,

requiere generalmente consideración de su conducta oscilatoria.

Los sistemas oscilatorios pueden clasificarse como lineales o no lineales. Para los sistemas lineales, rige el

principio de la superposición y las técnicas matemáticas para su tratamiento están bien desarrolladas. Por el

contrario, las técnicas para el análisis de sistemas no lineales son menos conocidas y difíciles de aplicar. Sin

embargo, algún conocimiento de sistemas no lineales es deseable puesto que todos los sistemas tienden a

volverse no lineales cuando crece la amplitud de la oscilación.

Hay dos clases generales de vibraciones, libres y forzadas. La vibración libre es la que ocurre cuando un

sistema oscila bajo la acción e fuerzas inherentes al sistema mismo y, cuando las fuerzas externamente

aplicadas son inexistentes. El sistema bajo vibración libre vibrará a una o más de sus frecuencias naturales

que, son propiedades del sistema dinámico que dependen de su distribución de masa y de rigidez.

La vibración que tiene lugar bajo la excitación de fuerzas externas es una vibración forzada. Cuando le

excitación es oscilatoria, el sistema es obligado a vibrar a la frecuencia de excitación. Si ésta coincide con unade las frecuencias naturales del sistema, se produce una situación de resonancia y ocurren oscilaciones

peligrosamente grandes.

La falla de estructuras mayores como puentes, edificios o alas de aviones es una horribles posibilidad, bajo

resonancia. Así, el cálculo de las frecuencias naturales es de importancia capital en el estudio de las

vibraciones.

Todos los sistemas vibratorios están sometidos a cierto grado de amortiguamiento puesto que la energía se

disipa por fricción y otras resistencias. Si el amortiguamiento es pequeño, tiene escasa influencia sobre las

frecuencias naturales del sistema y, por consiguiente, los cálculos de las frecuencias naturales se hacen

1

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 2/14

generalmente ignorando el amortiguamiento. Por otra parte, el amortiguamiento es de gran importancia como

limitador de la amplitud de oscilación en resonancia.

El número de coordenadas independientes que se requieren para describir el movimiento de un sistema, es el

grado de libertad del sistema. Así, una partícula libre que experimenta un movimiento general en el espacio

tiene tres grados de libertad mientras que, un cuerpo rígido tendrá seis grados de libertad, tres componentes de

posición y tres ángulos que definen su orientación. Además un cuerpo elástico continuo requerirá un número

infinito de coordenadas (tres por cada punto) para describir su movimiento y, por lo tanto tiene infinitos

grados de libertad. Sin embargo, en muchos casos puede suponerse que partes de dichos cuerpos son rígidas yel sistema puede considerarse como dinámicamente equivalente a uno con un número finito de grados de

libertad. En efecto, un número sorprendente de problemas de vibración pueden ser tratados, con aproximación

suficiente, reduciéndolos a un sistema con un grado de libertad.

Del movimiento vibratorio armónico existen las relaciones básicas entre los valores de la aceleración,

velocidad y desplazamiento.

ANÁLISIS ESPECTRAL DE VIBRACIONES EN MÁQUINAS ROTATORIAS

El análisis de las vibraciones es análogo al de medidas sonoras. La diferencia más importante estriba en que

para la medida del sonido no se requiere, en general, la transformación de la señal eléctrica del transductor. Esdecir, el elemento captor, en acústica, suministra una señal eléctrica que es proporcional a la presión sonora.

En vibraciones puede ser necesario integrar una o dos veces la señal de aceleración para obtener señales

proporcionales a la velocidad o al desplazamiento de la vibración proveniente del captador. Dependiendo de la

naturaleza de la medida (aislamiento, fatiga, vigilancia del estado de máquinas, búsqueda de resonancias en

sistemas, etc..), y, sobre todo de la zona de frecuencias que se tratan de medir o controlar, se medirán

desplazamientos, velocidades o aceleraciones del movimiento en cuestión.

Si se requieren medidas de impulsos se puede disponer de detectores de valor eficaz de impulsos. Estos

detectores deben integrar la señal en tiempos muy cortos. El medidor empleado en la instrumentación debe ser

capaz de alcanzar el valor final del pulso antes de realizar una nueva integración.

En vibraciones, el estudio de contenido espectral es muy importante en el caso de las vibraciones mecánicas y

proporciona mucha información no explícita en el estudio de la función temporal de la vibración. La

utilización de filtros de 1 / 3 de octava (bandas de 23% de la frecuencia central), que en acústica son muy

prácticas y normales, no es suficientemente selectiva para la mayor parte de problemas vibratorios, de modo

que lo más normal es servirse de filtros de bandas más estrechas. Los filtros de anchura de banda constante,

son muy típicos en los análisis de vibraciones.

Para el estudio de impulsos y choques el contenido espectral es especialmente rico en información,

permitiendo comparar señales temporales de formas muy diversas, así como su acción sobre maquinaria,

vehículos, instrumentación, el cuerpo humano, etc.

La razón principal para analizar y diagnosticar el estado de una maquina es determinar las medidas necesarias

para corregir la condición de vibración y reducir el nivel de las fuerzas vibratorias no deseadas y no

necesarias. De manera que, al estudiar los datos, el interés principal deberá ser la identificación de las

amplitudes predominantes de la vibración, la determinación de las causas, y la corrección del problema que

ellas representan.

El siguiente material muestra los diferentes causas de vibración y sus consecuencias, lo cual nos ayudara

enormemente para interpretar los datos que podamos obtener , determinado así el tipo de vibración que se

presenta y buscar así la debida corrección de las mismas.

2

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 3/14

*Vibración debida a Desbalance

El desbalance de la maquinaria es una de las causas más comunes de la vibración. En muchos casos, los datos

arrojados por un estado de desbalance indican:

La frecuencia de vibración se manifiesta a 1x las rpm de la pieza desbalanceada.•

La amplitud es proporcional a la cantidad de desbalance.•

La amplitud de la vibración es normalmente mayor en el sentido de medición radial, horizontal o vertical

(en las maquinas con ejes horizontales).

El análisis de fase indica lecturas de fase estables.•

La fase se desplazará 90º si se desplaza el captador 90º.•

 Nota: el desbalance de un rotor saliente a menudo tiene como resultado una gran amplitud de la vibración en

sentido axial, al mismo tiempo que en sentido radial.

*Vibración debida a falta de alineamiento

En la mayoría de los casos los datos derivados de una condición de falta de alineamiento indican lo siguiente:

La frecuencia de vibración es de 1x rpm; también 2x y 3x rpm en los casos de una grave falta de

alineamiento.

La amplitud de la vibración es proporcional a la falta de alineamiento.•

La amplitud de la vibración puede ser alta también en sentido axial, además de radial.•

El análisis de fase muestra lecturas de fase inestables.•

La falta de alineamiento, aun con acoplamientos flexibles, produce fuerzas tanto radiales como axiales que, a

su vez, producen vibraciones radiales y axiales.

 Nota: Uno de los indicios más importantes de problemas debidos a falta de alineamiento y a ejes torcidos es la

presencia de una elevada vibración en ambos sentidos, radial y axial. En general, cada vez que la amplitud de

la vibración axial sea mayor que la mitad de la lectura radial más alta, hay un buen motivo de sospechar la

existencia de un problema de alineamiento o eje torcido.

 Los tres tipos básicos de falta de alineamiento en el acoplamiento son: angular, en paralelo y una

combinación de ambos.

Una falta de alineamiento angular sujeta principalmente los ejes de las maquinas accionadora y accionada a

vibración axial igual a la velocidad de rotación (rpm) del eje.

 La falta de alineamiento en paralelo produce principalmente vibración radial con una frecuencia igual al

doble de la velocidad de rotación del eje.

*Vibración debida a Excentricidad

La excentricidad es otra de las causas comunes de vibración en la maquinaria rotativa. Excentricidad en este

caso no significa "ovalización", sino que la línea central del eje no es la misma que la línea central del rotor −

3

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 4/14

el centro de rotación verdadero difiere de la línea central geométrica.

La excentricidad es en realidad una fuente común de desbalances, y se debe a un mayor peso de un lado del

centro de rotación que del otro.

Una manera de diferenciar entre desbalance y excentricidad en este tipo de motor es medir la vibración con

filtro afuera mientras el motor está funcionando bajo corriente. Luego, se desconecta el motor, observando el

cambio de la amplitud de vibración. Si la amplitud se reduce gradualmente mientras el motor sigue girando

por inercia, es muy probable que el problema sea debido a desbalance; Si, en cambio, la amplitud de vibracióndesaparece en el momento mismo en que el motor es desconectado, el problema es seguramente de naturaleza

eléctrica, y es muy posible que se deba a excentricidad del inducido.

La excentricidad en rodetes o rotores de ventiladores, sopladores, bombas y compresores puede también crear

fuerzas vibratorias. En esos casos las fuerzas son el resultado de fuerzas aerodinámicas e hidráulicas

desiguales que actúan contra el rotor.

*De Elementos Rodantes Defectuosos

Defectos en las pistas, en las bolas o en los rodillos de rodamientos de elementos rodantes ocasionan vibración

de alta frecuencia; y, lo que es mas, la frecuencia no es necesariamente un múltiplo integral de la velocidad de

rotación del eje. La amplitud de la vibración dependerá de la gravedad de la falla del rodamiento.

 Nota: la vibración generada por el rodamiento normalmente no es transmitida a otros puntos de la máquina.

Por lo tanto, el rodamiento defectuoso es generalmente el que se encuentra más cerca del punto donde ocurre

el mayor nivel de vibración de este tipo.

*Falla de Rodamientos − Otras causas

Los rodamientos no fallan prematuramente a menos que alguna otra fuerza actúe sobre ellos; y tales fuerzas

son generalmente las mismas que ocasionan vibración.

Causas comunes de fallas en los rodamientos de elementos rodantes:

Carga excesiva•

Falta de alineamiento•

Defectos de asientos del eje y/o de las perforaciones en el alojamiento•

Montaje defectuoso•

Ajuste incorrecto•

Lubricación inadecuada o incorrecta•

Sellado deficiente•

Falsa brinelación (Deformación bajo carga)•

Corriente eléctrica•

*Vibración debida a rodamientos de Chumacera defectuosos

Elevados niveles de vibración, ocasionados por rodamientos de chumacera defectuosos, son generalmente el

resultado de una holgura excesiva (causada por desgaste debido a una acción de barrido o por erosión

química), aflojamientos mecánicos (metal blanco suelto en el alojamiento), o problemas de lubricación.

4

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 5/14

Holgura excesiva de los rodamientos•

Un rodamiento de chumacera con holgura excesiva hace que un defecto de relativamente menor importancia,

tal como un leve desbalance o una pequeña falta de alineamiento, u otra fuente de fuerzas vibratorias, se

transformen como resultado de aflojamientos mecánicos o en golpes repetidos (machacado).

 En tales casos el rodamiento en si no es lo que crea la vibración; pero la amplitud de la misma seria mucho

menor si la holgura de los rodamientos fuera correcta.

A menudo se puede detectar un rodamiento de chumacera desgastado por "barrido" efectuando una

comparación de las amplitudes de vibración horizontal y vertical. Las maquinas que están montadas

 firmemente sobre una estructura o cimentación rígidas revelaran, en condiciones normales, una amplitud de

vibración ligeramente más alta en sentido horizontal.

Torbellino de aceite•

Este tipo de vibración ocurre solamente en maquinas equipadas con rodamientos de chumacera lubricados a

presión, y que funcionan a velocidades relativamente altas − normalmente por encima de la segunda velocidad

critica del motor.

La vibración debida a torbellinos de aceite a menudo es muy pronunciada, pero se reconoce fácilmente por su

 frecuencia fuera de lo común. Dicha frecuencia es apenas menor de la mitad de la velocidad de rotación (en

rpm) del eje − generalmente en el orden del 46 al 48% de las rpm del eje.

El problema de los torbellinos de aceite normalmente se atribuye a diseño incorrecto del rodamiento, desgaste

excesivo del rodamiento, un aumento de la presión del lubricante o un cambio de la viscosidad del aceite.

Se pueden hacer correcciones temporales modificando la temperatura del aceite (viscosidad), introduciendo

un leve desbalance o una falta de alineamiento de manera de aumentar la carga sobre el eje, o rascando y/o

ranurando los costados del rodamiento, para desbaratar la "cuña" de lubricante. Desde luego, una solución

más duradera es reemplazar el rodamiento con uno que haya sido diseñado correctamente de acuerdo a las

condiciones operativas de la maquina, o con uno que esté diseñado para reducir la posibilidad de formación de

torbellinos de aceite.

 Los rodamientos con ranuras axiales usan las ranuras para aumentar la resistencia a la formación de

torbellinos de aceite en tres puntos espaciados uniformemente. Este tipo de configuración está limitado a las

aplicaciones más pequeñas, tales como turbinas de gas livianas y turbo cargadores.

 Los rodamientos de chumacera de lóbulos brindan estabilidad contra los torbellinos de aceite al proporcionar

tres puntos ce concentración de la película de aceite bajo presión, que sirven para centrar al eje.

Los rodamientos de riñón basculante son comúnmente utilizados para las maquinas industriales más grandes,

que funcionan a velocidades más altas.

Hay dos causas comunes de vibración que pueden inducir un torbellino de aceite en un rodamiento de

chumacera:

Vibración proveniente de maquinaria ubicada en las cercanías: Puede ser transmitida al rodamiento de

chumacera a través de estructuras rígidas, tales como tuberías y cimentaciones. A este fenómeno se le

conoce como Torbellino Inducido por el Exterior.

Vibración ocasionada por otros elementos de las maquina misma: Toda vez que se detecta la vibración

característica del torbellino de aceite se deberá realizar una completa investigación de las vibraciones en

5

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 6/14

toda la instalación, incluyendo las fuentes de vibración circunvecina, la estructuras de cimentación y las

tuberías relacionadas. Se podrá así quizás descubrir una causa externa de los problemas de torbellino de

aceite.

Torbellinos de Histéresis•

Este tipo de vibración es similar a la vibración ocasionada por el torbellino de aceite, pero ocurre a

frecuencias diferentes, cuando el rotor gira entre la primera y la segunda velocidad critica.

Un rotor que funcione por encima de la velocidad critica tiende a flexionarse, o asquearse, en sentido opuestodel punto pesado de desbalance. La amortiguación interna debida a histéresis, o sea la amortiguación de

fricción, normalmente limita la deflexión a niveles aceptables. Sin embargo, cuando acontece un torbellino

por histéresis, las fuerzas amortiguadoras se encuentran en realidad en fase con la deflexión, y por lo tanto,

acrecentan la deflexión del motor.

Cuando dicho rotor está funcionando por encima de la primera velocidad critica pero por debajo de la

segunda, el torbellino por histéresis ocurre a una frecuencia exactamente igual a la primera velocidad critica

del rotor.

 Nota: La frecuencia de formación del torbellino de aceite es levemente menor de la mitad de la velocidad de

rotación del rotor. La vibración ocasionada por un torbellino por histéresis tendrá la misma características quelas ocasionadas por un torbellino de aceite cuando la maquina funcione a velocidades superiores a la segunda

velocidad critica del eje. Es decir, que una severa vibración se producirá a una frecuencia levemente menor

que 0.5x las rpm del rotor.

El torbellino por histéresis es controlado normalmente por la acción de amortiguación provista por los

rodamientos de chumacera en si. Sin embargo, cuando la amortiguación estacionaria es baja en comparación

con la amortiguación interna del rotor, es probable que se presenten problemas. La solución usual para este

problema es aumentar la amortiguación estacionaria de los rodamientos y de la estructura de soporte de los

mismos, lo que puede lograrse instalando un rodamiento de riñón basculante o de algún rodamiento de diseño

especial. En algunos casos el problema puede ser solucionado reduciendo la amortiguación dada por el rotor −

sencillamente, cambiando un acoplamiento de engranajes con una versión sin fricción; por ejemplo, con un

acoplamiento de disco flexible.

*Lubricación Inadecuada

Una inadecuada lubricación, incluyendo la falta de lubricación y el uso de lubricantes incorrectos, puede

ocasionar problemas de vibración en un rodamiento de chumacera. En semejantes casos la lubricación

inadecuada causa excesiva fricción entre el rodamiento estacionario y el eje rotante, y dicha fricción induce

vibración en el rodamiento y en las demás piezas relacionadas. Este tipo de vibración se llama "dry whip", o

sea látigo seco, y es muy parecido al pasar de un dedo mojado sobre un cristal seco.

La frecuencia de la vibración debida al látigo seco generalmente es muy alta y produce el sonido chillón

característicos de los rodamientos que están funcionando en seco. No es muy probable que dicha frecuencia

sea algún múltiplo integral de las rpm del eje, de manera que no es de esperarse ningún patrón significativo

bajo la luz estroboscópica. En este respecto, la vibración ocasionada por el látigo seco es similar a la vibración

creada por un rodamiento antifricción en mal estado.

Toda vez que se sospeche que un látigo seco sea la causa de la vibración se deberá inspeccionar el lubricante,

el sistema de lubricación y la holgura del rodamiento.

6

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 7/14

*Vibración debida a Aflojamiento Mecánico

El aflojamiento mecánico y la acción de golpeo (machacado) resultante producen vibración a una frecuencia

que a menudo es 2x, y también múltiplos más elevados, de las rpm. La vibración puede ser resultado de

pernos de montaje sueltos, de holgura excesiva en los rodamientos, o de fisuras en la estructura o en elpedestal de soporte.

La vibración característica de un aflojamiento mecánico es generada por alguna otra fuerza de excitación,

como un desbalance o una falta de alineamiento. Sin embargo, el aflojamiento mecánico empeora la situación,

transformando cantidades relativamente pequeñas de desbalance o falta de alineamiento en amplitudes de

vibración excesivamente altas. Corresponde por lo tanto decir que el aflojamiento mecánico permite que se

den mayores vibraciones de las que ocurrirían de por sí, derivadas de otros problemas.

 Nota: Un aflojamiento mecánico excesivo es muy probable que sea la causa primaria de los problemas cuando

la amplitud de la vibración 2x las rpm es más de la mitad de la amplitud a la velocidad de rotación, 1x las

rpm.

*Vibración debida a las Bandas de Accionamiento

Las bandas de accionamiento del tipo en "V" gozan de mucha popularidad para la transmisión del movimiento

puesto que tienen una alta capacidad de absorción de golpes, choques y vibraciones.

Los problemas de vibración asociados con las bandas en "V" son clasificados generalmente por:

Reacción de la banda a otras fuerzas, originadas por el equipo presente, que causan alteraciones.•

Vibraciones creadas por problemas de la banda en sí.•

Las bandas en "V" son consideradas a menudo como fuente de vibración porque es tan fácil ver las bandas

que saltan y se sacuden entre poleas. Por lo general, el reemplazo de las bandas es a menudo una de las

primeras tentativas de corrección de los problemas de vibración.

Sin embrago es muy posible que la banda esté sencillamente reaccionando a otras fuerzas presentes en la

maquina. En tales casos las banda es solamente un indicador de que hay problemas de vibración y no

representan la causa misma.

La frecuencia de vibración de las bandas es el factor clave en la determinación de la naturaleza del problema.

Si la banda está sencillamente reaccionando a otras fuerza de alteración, tales como desbalance o

excentricidad en las poleas, la frecuencia de vibración de la banda será muy probablemente igual a la

frecuencia alterante. Esto significa que la pieza de la maquina que realmente está causando el problema

aparecerá estacionaria bajo la luz estroboscópica del analizador.

 Nota: Si es defecto de la banda la frecuencia de vibración será un múltipla integral −1,2,3 ó 4 − de las rpm de

la banda. El múltiplo verificado dependerá de la naturaleza del problema y de la cantidad de poleas, sea de

accionamiento como locas, presentes en el sistema. Es fácil determinar las rpm de una banda de la siguiente

manera: Rpm de la banda = (3.14 x diám. de la polea x rpm de la polea)/ longitud de la banda.

7

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 8/14

*Vibración debida a Problemas de Engranaje

La vibración que resulta de problemas de engranaje es de fácil identificación porque normalmente ocurre a

una frecuencia igual a la frecuencia de engrane de los engranajes − es decir, la cantidad de dientes del

engranaje multiplicada por las rpm del engranaje que falla.

Problemas comunes de los engranajes, que tienen como resultado vibración a la frecuencia de engrane,comprenden el desgaste excesivo de los dientes, inexactitud de los dientes, fallas de lubricación y materias

extrañas atrapadas entre los dientes.

No todos los problemas de engranajes generan frecuencias de vibración iguales a las frecuencias de engrane.

Si un engranaje tiene un solo diente roto o deformado, por ejemplo, el resultado puede ser una frecuencia de

vibración de 1x las rpm. Mirando la forma de onda de esa vibración en un osciloscopio conectado con un

analizador, la presencia de señales de impulso permitirá distinguir entre este problema y las demás averías que

también generan frecuencias de vibración de 1x las rpm. Desde luego, si hay más de un diente deformado, la

frecuencia de vibración es multiplicada por una cantidad correspondiente.

La amplitud y frecuencia de vibración debida a los engranajes pueden también parecer erráticas a veces.Dicho tipo de vibración errática ocurre normalmente cuando un conjunto de engranajes está funcionando en

condiciones de carga muy liviana. En tales condiciones la carga puede desplazarse repetidamente de un

engranaje a otro de modo irregular.

 Nota: Los problemas de rodamientos son predominantes en el punto de falla de los mismos, mientras que los

problemas de engranajes pueden ser detectados en dos o más puntos de la maquina.

*Vibración debida a Fallas Eléctricas

Esté tipo de vibración es normalmente el resultado de fuerzas magnéticas desiguales que actúan sobre el rotor

o sobre el estator. Dichas fuerzas desiguales pueden ser debidas a:

Rotor que no es redondo•

Chumaceras del inducido que son excéntricas•

Falta de alineamiento entre el rotor y el estator; entrehierro no uniforme•

Perforación elíptica del estator•

Devanados abiertos o en corto circuito•

Hierro del rotor en corto circuito•

En líneas generales, la frecuencia de vibración resultante de los problemas de índole eléctrica será 1x las rpm,

y por tanto se parecerá a desbalance. Una manera sencilla de hacer la prueba para verificar la presencia

eventual de vibración eléctrica es observar el cambio de la amplitud de la vibración total (filtro fuera) en el

instante en el cual se desconecta la corriente de esa unidad. Si la vibración desaparece en el mismo instante en

que se desconecta la corriente, el problema con toda posibilidad será eléctrico. Si solo decrece gradualmente,

el problema será de naturaleza mecánica.

Las vibraciones ocasionadas por los problemas eléctricos responden generalmente a la cantidad de carga

colocada en el motor. A medida que se modifica la carga, la amplitud y/o las lecturas de fase pueden indicar

cambios significativos. Esto explica por qué los motores eléctricos que han sido probados y balanceados en

condiciones sin carga muestran cambios drásticos de los niveles de vibración cuando vuelven a ser puestos en

8

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 9/14

servicio.

MAQUINAS O EQUIPOS COMO FUENTES DE VIBRACIONES

Las medidas para atenuar el nivel de vibraciones en la fuente están orientadas a reducir la aceleración de las

oscilaciones, mediante la disminución de las fuerzas excitatorias. De este modo, es fundamental que en la

etapa de adquisición de máquinas y herramientas se elijan equipos cuya potencia no esté sobredimensionada

para las labores que se requieren efectuar.

El empresario forestal o los trabajadores deben solicitar antecedentes a los fabricantes y proveedores, respecto

de la intensidad de las vibraciones generada por los equipos. En el mercado nacional esta información se

especifica en algunos catálogos de motosierras. En forma complementaria, es fundamental realizar una

manutención preventiva, que evite el sobre uso de piezas y elimine el juego y el desbalance entre los

componentes mecánicos.

Las alternativas de control de vibraciones dependen del tipo de fuente. En el sector agropecuario, éstas son

básicamente máquinas y herramientas manuales con motor (motosierras, motocultivadores o desmalezadoras

manuales, por ejemplo). Las alternativas tecnológicas han estado dirigidas a incorporar y mantener sistemas

de suspensión entre el mango y el cuerpo de las herramientas. Respecto de las motosierras, las marcas y

modelos que se ofrecen en el mercado disponen de sistemas antivibratorios.

Sin embargo, los estudios que se vienen realizando indican que muchos modelos de motosierras presentaron

niveles de vibración sobre lo permitido, para una jornada de 4 a 8 horas. De este modo es necesario reducir los

tiempos de exposición incorporando cambios en la organización del trabajo o seleccionar motosierras de

menor potencia.

Para los trabajadores, consisten básicamente en la reducción de los tiempos de exposición. Se pueden

incorporar pausas a través de la jornada o rotar tareas con y sin exposición a vibraciones. Otro tema relevante

en la prevención es la capacitación de los operarios, orientarse a identificar los riesgos asociados a la

exposición de vibraciones y que en el proceso de toma de decisiones, incorporen criterios preventivos.

Por ejemplo, deben ser capaces de emplear la motosierra en posturas de trabajo que generen menor sobrecarga

al sistema músculo−esquelético. Este aspecto es importante, porque las vibraciones generan fatiga muscular

localizada. Si se consideran tareas de volteo y trozado, los motosierristas deben emplear técnicas de trabajo en

las que se utilicen los muslos como puntos de apoyo para el antebrazo. De este modo, se reduce el esfuerzo de

sujeción que realizan los brazos y se mitiga la generación de fatiga localizada.

DEFINA ANÁLISIS ESPECTRAL Y GRAFIQUE UN EJEMPLO DEL MISMO, RELACIONADOCON UN CONJUNTO BOMBA CENTRÍFUGA−MOTOR

El análisis espectral de las vibraciones es la técnica más usada hoy en día por los analizadores de vibración

comerciales. En esta técnica cada componente espectral se asocia a una fuerza dinámica que la genera, sea

inherente al funcionamiento de ella o proveniente de una falla. Este análisis es adecuado por lo tanto a

vibraciones estacionarias. Cuando es aplicado a vibraciones provenientes de máquinas que trabajan a

velocidad y carga variable, las componentes espectrales se dispersan en el espectro haciendo imposible su

análisis. Se requiere usar entonces otras técnicas de análisis, tales como las transformadas tiempo−frecuencia

o el análisis de órdenes.

El diagnóstico correcto de los fallos mecánicos en maquinaria rotativa depende de tener una información

completa acerca de los datos espectrales de vibración. Como las máquinas en general tienen tres grados de

libertad en el movimiento lateral, la lógica sugiere que los datos de vibración en tres ejes darán más

información, si se pueden analizar adecuadamente. El propósito de este artículo es demostrar la capacidad de

9

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 10/14

diagnóstico mejorada proporcionada por la toma de datos triaxiales, comparada con los datos radiales en un

eje junto con algún dato axial. Este artículo también sugiere que no hay un coste o esfuerzo añadido

importante en tomar, procesar y evaluar datos triaxiales.

Los tres ejes ortogonales se designan axial, radial y tangencial. Tal y como indica el término, axial es la

dirección en línea o paralela al eje de rotación. Radial y tangencial son dos ejes perpendiculares en el plano de

rotación. Generalmente, la dirección radial es la vertical para una máquina horizontal, mientras que tangencial

es la horizontal perpendicular al eje. Para una máquina vertical, radial y tangencial son dos ejes horizontales

tales que el radial es perpendicular al centro del eje y el tangencial, como su nombre indica, perpendicular alradial. Para la toma de datos se utiliza un sensor triaxial, que incorpora tres acelerómetros en un montaje de

aluminio. Este montaje cuenta con un tornillo pasante para facilitar su colocación, y con una muesca para

asegurar la orientación. En las localizaciones de medida seleccionadas en la máquina, se colocan mediante

adhesivos unos tacos de bronce, a los cuales se atornillará el acelerómetro. Las localizaciones seleccionadas

son los alojamientos de los rodamientos, o partes rígidas de la estructura que estén cerca de los rodamientos, y

que tengan una ruta directa de transmisión de vibración. La decisión de tomar una localización o dos depende

normalmente del tamaño de la máquina. La calidad de los datos y el rango de frecuencias de las medidas así 

tomadas son comparables a los de los transductores instalados permanentemente. A veces la colocación del

sensor sobre un taco de bronce en uno de los extremos de la máquina hace que este pueda ser más sensible a

vibraciones torsionales producidas en la máquina. Este efecto se puede apreciar en motores eléctricos, debido

a que siempre se va a producir vibración torsional a la frecuencia de paso de barras del rotor y a la frecuenciade ranuras del estator. Sin embargo, este efecto en la mayor parte de los casos no es importante, y de hecho

puede ser una ayuda al analista a la hora de detectar problemas en el motor. Hay que tener en cuenta que un

programa de mantenimiento predictivo por análisis de vibraciones se basa en la posibilidad de establecer

tendencias. Por tanto, la característica más importante de las medidas es que sean repetible, mucho más que

una exactitud absoluta en los valores absolutos.

La herramienta para diagnosticar problemas en maquinaria son los cambios en las firmas vibratorias de las

máquinas. La toma de datos se realiza usando un colector de datos portátil digital multicanal, con un lector

infrarrojo de códigos de barras y un cable al final del cual está el acelerómetro triaxial. La toma de datos

comienza al leer el código de barras (usado para eliminar el error del operario) con el lector de infrarrojos en

la primera localización del transductor. El instrumento entonces toma los datos de vibración simultáneamente

en los tres ejes. En aproximadamente 20 segundos, se toman dos rangos de frecuencia, y se transforman en

espectros de 800 líneas para los tres ejes. Suponiendo que se tarden 26 segundos en destornillar el sensor de

un taco, atornillarlo en el siguiente y volver a pasar el código de barras, una máquina con cuatro

localizaciones accesibles puede ser medida en unos tres minutos. Después de tomar los datos, los espectros se

descargan en un PC.

El procesado de datos incluye la normalización del espectro en órdenes (cambiando la escala de frecuencias

para mostrar múltiplos de la velocidad de giro de la máquina), el filtrado del espectro para obtener los picos

significativos, y la realización de un diagnóstico automático para determinar los fallos específicos de la

máquina y su gravedad. Usando los tres ejes de datos por localización, todos los datos de una máquina típica

pueden ser procesados en menos de 30 segundos, dependiendo del número de puntos de medida. Sin embargo,

la filosofía de usar datos triaxiales es independiente del software, y puede ser usada con cualquier método de

diagnostico de fallos.

*Vibración a la velocidad de giro

Aunque el software puede utilizar desplazamiento, velocidad o aceleración de vibración en cualquier unidad

de medida, generalmente se mide la velocidad de vibración de la máquina en Vdb (decibelios de velocidad),

que es una escala logarítmica con una referencia de 0 Vdb = 10−8 metros por segundo RMS. Para tener

perspectiva, una diferencia de 6 VdB es linealmente un factor de 2, y 20 Vdb es linealmente un factor de 10.

Un valor de 125 VdB son 17,8 mm/seg RMS, mientras que uno de 105 Vdb son 1,78 mm/seg RMS. Las

10

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 11/14

amplitudes espectrales de vibración se comparan con datos promedios de referencia almacenados para un tipo

de máquina específico. Los niveles usados son la media más una desviación típica estadísticamente calculados

para cada pico espectral de datos de medidas anteriores en ese tipo de máquina. Cuando se hace referencia a la

relación de una amplitud con el promedio, se entiende que es al promedio más sigma. Las gravedades de los

fallos se designan como "ligera", "moderada", "seria" y "extrema". El software de análisis computa la

severidad basándose en el margen por el que las amplitudes de la medida y las excesos sobre la media se

comparan con los valores umbrales para cada fallo específico. Esta información se facilita como una

explicación breve de los números presentados en la Tabla 1, que son amplitudes de vibración, en VdB, y

excesos del promedio más sigma (también en VdB), a la velocidad de giro del eje. La vibración a la velocidadde giro del eje (1X) es a menudo simple de comprender y detectar en una firma espectral. Sin embargo, la

variedad de diagnósticos de fallos mecánicos que pueden ser indicados por un nivel anormalmente alto de la

vibración a 1X pueden hacer que sea difícil determinar cual es el problema real. Por ejemplo, considérese un

motor acoplado a una bomba centrífuga.

Una vibración excesiva a 1X puede indicar desequilibrio del motor, desequilibrio de la bomba, desalineación

angular, flexibilidad horizontal de la cimentación, problemas de juego radial o axial en el cojinete o un daño

en los alabes del ventilador de refrigeración del motor. Por tanto, la experiencia indica que tomar datos

triaxiales tanto en el motor como en la bomba es esencial para diagnosticar y diferenciar estos fallos.

Los ejemplos del 1 al 7 son máquinas acopladas directamente con una localización de medida en el motor yotra en la bomba. Los ejemplos del 1 al 3 son verticales, y los ejemplos del 4 al 7 son horizontales. Los

ejemplos 8 y 9 son bombas con acoplamiento compacto (rodamiento, motor, rodamiento, impulsor de la

bomba en voladizo) con una sola localización de medida.

1er Ejemplo

Esta configuración es una bomba vertical conducida por un motor, con una posición de medida en el

rodamiento superior del motor y otra en el rodamiento superior de la bomba. Se puede generalizar que, siendo

todo lo demás igual, los niveles de vibración horizontales a 1X suelen ser aproximadamente dos veces

mayores (6 VdB) en el motor que en la bomba, debido al efecto del voladizo. Esta relación debería verse en

los datos promediados. Otra consideración física para una máquina vertical es que el desequilibrio de

cualquier rotor hará que toda la unidad se mueva. Este movimiento puede causar que la vibración a 1X axial

sea anormalmente alta siempre que las amplitudes axiales y que el exceso sobre el promedio sean menores

que las radiales y tangenciales. Una tercera consideración es que las bombas verticales normalmente están

estructuradas con una cara del acoplamiento y del rodamiento superior de la bomba expuestos, por lo que el

eje de flexibilidad del apoyo estructural permite que la unidad vibre en esa dirección, mientras que el eje

perpendicular es mucho más rígido, y solo permite vibración más localizada. Teniendo en cuenta esos factores

físicos, se pueden examinar los datos del ejemplo 1 en la tabla 1. Asumiendo que solo tenemos datos axiales y

radiales en ambos extremos, el diagnóstico podría ser desalineación angular, ya que el 1X axial es

anormalmente alto tanto en el motor como en la bomba. También podría ser desequilibrio del motor o

desequilibrio de la bomba, ya que el 1X radial es anormalmente alto en los dos extremos, y el radial es mayor

que el axial. La vibración axial podría entonces estar causada por un efecto de balanceo. Si solo se tienen

datos axiales y tangenciales en ambos lados, la evidencia apunta a un desequilibrio del motor, ya que el 1X

radial en la bomba es bastante bajo. Con los tres ejes, se ve claro que los niveles a 1X en radial y tangencial

son dominantes sobre los axiales tanto en amplitud absoluta como en relativa al promedio...por lo que se

indica desequilibrio del motor. Los niveles a 1X en la bomba pueden explicarse por la rigidez estructural

horizontal mencionada anteriormente. El eje radial en este caso es la dirección de flexibilidad estructura, por

lo que la bomba esta siendo "sacudida" por el desequilibrio del motor. Por otra parte, el eje tangencial es el de

alta rigidez estructural, y por tanto la vibración debido al desequilibrio del motor no se transmite a la bomba.

 2do Ejemplo

11

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 12/14

Usando la lógica como en el ejemplo 1, y considerando los mismos factores físicos para una bomba vertical

conducida por un motor, es evidente que los datos indican bien un desequilibrio del motor, o un desequilibrio

de la bomba. Los niveles radial y tangencial a 1X son mucho mayores que los axiales en amplitud absoluta, y

relativa al promedio en el motor y en la bomba. ¿Qué componente es más probablemente el averiado? Las

amplitudes a 1X radial y tangencial son mayores en el motor, pero hay que recordar que es una máquina

vertical. Las amplitudes en el motor son solo 2 y 4 VdB mayores que las de la bomba, mucho menos que un

factor de dos. Además los excesos del promedio en los ejes tangencial y axial son 7 y 1 VdB mayores en la

bomba. El software de diagnóstico concluye que es desequilibrio debido a los niveles axiales relativamente

bajos, y concluye que es en la bomba debido a los excesos radiales y tangenciales a 1X que, tomados juntos,son significativamente mayores en la bomba que en el motor.

 3er Ejemplo

Supongamos que solo tenemos medidas axiales y radiales en ambos extremos. Se puede concluir entonces que

hay una desalineación angular, un desequilibrio del motor o un desequilibrio de la bomba. Lo último podría

deducirse porque ésta es una máquina vertical, y el movimiento de balanceo de toda la unidad puede causar

que la vibración a 1X en axial sea anormalmente alta, siempre que las amplitudes axiales y los excesos sobre

el promedio sean menores que las radiales. Supongamos que solo se tienen medidas axiales y tangenciales en

ambos lados. Se ve vibración anormalmente alta a 1X en ambos lados, sugiriendo desalineación, aunque se

pierde que la amplitud radial es 17 Vdb (un factor de 7) mayor que la axial. Si se tienen los tres ejes el cuadroestá claro. El software de diagnóstico nota, como lo haría el analista humano, que los niveles de vibración

axial a 1X son anormalmente altos a ambos lados de la máquina, y que la amplitud axial es mayor que la

amplitud radial o tangencial en ambos lados. Esta información por si sola es suficiente para diagnosticar

desalineación angular. Los diagnósticos de desequilibrio del motor o de la bomba requerirían que ambas

amplitudes a 1X, radial y tangencial, fueran mayores que la axial en alguno de los lado de la máquina. Como

esta es una bomba vertical, es estructuralmente mucho menos rígida en una dirección horizontal que en la

otra, y la desalineación angular causará a menudo que la estructura de la máquina responda "oscilando"

fuertemente en la dirección menos rígida. Así ese ve que los niveles de vibración radial a 1X (siendo en este

caso radial la dirección flexible estructuralmente) no son solo anormalmente altos, sino que dominan el

espectro. El software de análisis requiere que la vibración a 1X cumpla las reglas apropiadas para validar el

diagnóstico de desalineación angular. Usa los niveles a 1X radial y tangencial para apoyar la evidencia, por lo

que esos picos se incluyen en el informe de diagnóstico, y más importante, se añaden al cálculo de la gravedad

del fallo. En este caso, el incluir los niveles radiales aumenta la gravedad de moderada a seria.

 4to Ejemplo

Supongamos que solo se tienen medidas axiales y radiales en ambos lados. No hay ningún fallo mecánico

indicado, ya que todos los niveles a 1X están por debajo del promedio. Supongamos que solo tenemos

medidas axiales y tangenciales en ambos lados. Uno puede asumir fácilmente que hay un grado moderado,

bien de desequilibrio del motor, o bien de la bomba. De hecho, los datos mostrados en la Tabla 1 indican

flexibilidad transversal de la cimentación. El software de diagnóstico examina las diferencias en amplitud y

desviación de la media entre radial y tangencial. Aunque es a menudo normal que una máquina horizontal

tenga la vibración tangencial bastante mayor en amplitud que la radial, este hecho sería evidente también en

los datos promediados. Así, el hecho de que los niveles tangenciales en ambos lados de la unidad sean 21 y 28

VdB mayores en amplitud, y 16 y 18 VdB mayores en relación a la media que los valores radiales, es una

evidencia directa de la flexibilidad de la cimentación. La cimentación está probablemente corroída, tiene una

soldadura agrietada, o alguno de los pernos flojos.

 5to Ejemplo

Para esta máquina horizontal, parece que la desalineación y el desequilibrio del motor están indicados

simultáneamente. Lo primero se indica porque el 1X axial es anormalmente alto en ambos extremos de la

12

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 13/14

unidad, la amplitud es mayor que la radial y la tangencial en la bomba, e igual a la radial en el motor. Lo

segundo se indica porque el 1X radial y tangencial en el motor son 26 y 22 VdB (un factor de 20) mayor que

la media más sigma, y la amplitud tangencial es mucho mayor que la axial, mientras que la amplitud radial es

al menos igual que la axial. Son las amplitudes iguales del axial y el tangencial en el motor las que forman la

frontera en la base de reglas del software de diagnóstico. En este caso, ambos diagnósticos se producirían

automáticamente. De hecho, o estos fallos existen independientemente, o el eje del motor está doblado. Un eje

doblado produciría indicaciones de desequilibrio del motor y de desalineación angular. Obviamente, se

podrían continuar las pruebas midiendo los ángulos de fase de la vibración a 1A en cada eje, midiendo la

excentricidad del eje, y comprobando la alineación en el acoplamiento.

6to Ejemplo

Los niveles altos a 1X en radial y tangencial, ambos de 120 Vdb, son claramente excesivos y predominan

sobre el axial, indicando desequilibrio del motor. El nivel tangencial a 1X en la bomba es también muy alto,

tanto en amplitud como en exceso sobre el promedio, pero el nivel radial es bastante bajo. Del mismo modo

que la máquina horizontal en el ejemplo 4, el lado de la bomba muestra evidencias de flexibilidad del montaje

transversal de la bomba. En este caso la vibración causada por el desequilibrio del motor está excitando la

flexibilidad en el lado de la bomba, indicando este fallo independiente. Sin datos triaxiales, estos dos

diagnósticos independientes no podrían haberse evaluado.

7mo Ejemplo

Este caso es similar al ejemplo 4, solo que más serio, ya que la vibración a 1X en tangencial es predominante.

Teniendo ambos datos, en radial y tangencial, permite comparar los datos radiales a 1X en ambos lados de la

unidad. Esto indica que mientras que la flexibilidad transversal de la cimentación es claramente el problema,

hay un desequilibrio subyacente de la bomba que está forzando la debilidad estructural inherente para que

responda más fuertemente. Esta conclusión no podría sacarse sin datos de los tres ejes.

8vo Ejemplo

Para bombas con acoplamientos compactos, se puede decir generalmente que niveles altos a 1X en tangencial

y radial, y la medida axial relativamente baja indican desequilibrio del motor, ya que el rotor del motor esta

sujeto en los dos lados por rodamientos. El desequilibrio del rotor de la bomba en voladizo, por otra parte, esta

indicado por un componente axial significativo a 1X, además de medidas en radial y tangencial anormalmente

altas a 1X. En este caso, los niveles radial y tangencial a 1X son mucho mayores que el axial en términos

absolutos y relativos a la media. Por tanto, el diagnóstico es desequilibrio del motor.

 9no Ejemplo

Compárese con el ejemplo 8. En este caso los niveles axial y tangencial a 1X son mucho mayores que el radial

en términos absolutos y relativos al promedio. Así, esto indica desequilibrio de la bomba, ya que el rotor de la

bomba estaba físicamente balanceándose en el eje. También hay que considerar que no se puede generalizar

para todas las máquinas con esta configuración que los ejes radial y axial sean de la máxima importancia, y

que el tangencial se puede ignorar. Hay documentados muchos otros casos en los cuales el desequilibrio del

ventilador o de la bomba se indica por vibración fuerte axial y tangencial a 1X (o a veces en los tres ejes).

Otros diagnósticos

Ya que los diagnósticos usando la vibración a 1X incluyen una porción importante del universo de fallos

mecánicos indicados por los datos de vibración espectrales, hay suficiente justificación para tomar datos

triaxiales. Sin embargo, otros diagnósticos como holguras, desgaste de rodamientos de bolas, problemas de

engranajes, desgastes internos de bombas, etc,... necesitan ser tenidos en cuenta. La experiencia demuestra

13

8/6/2019 Vibracion en Maquinarias Rotativas en General

http://slidepdf.com/reader/full/vibracion-en-maquinarias-rotativas-en-general 14/14