UNIVERSIDAD AUTÓNOMA METROPOLITANA...

64
1 UNIVERSIDAD AUTÓNOMA METROPOLITANA PROYECTO TERMINAL I PROYECTO ESTRUCTURAL DEL TALLER CIVIL DE LA CENTRAL.TERMOELÉCTRICA GUADALUPE VICTORIA ALUMNA DENISE MONSERRAT GARRIDO VILLANUEVA ASESOR DR. ALONSO GÓMEZ BERNAL

Transcript of UNIVERSIDAD AUTÓNOMA METROPOLITANA...

Page 1: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

1

UNIVERSIDAD AUTÓNOMA

METROPOLITANA

PROYECTO TERMINAL I

PROYECTO ESTRUCTURAL DEL TALLER CIVIL DE LA

CENTRAL.TERMOELÉCTRICA GUADALUPE VICTORIA

ALUMNA

DENISE MONSERRAT GARRIDO VILLANUEVA

ASESOR

DR. ALONSO GÓMEZ BERNAL

Page 2: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

2

RELACION DE INFORMACIÓN REQUERIDA DEL PROYECTO “TALLER CIVIL” DE

LA CENTRAL.TERMOELÉCTRICA GUADALUPE VICTORIA.

ÍNDICE DE TEMAS

CONCEPTO PAJINAS

OBJECTIVO GENERAL DEL PROYECTO 3

1) DESCRIPCIÓN DEL PROYECTO. 4

2) NORMAS PARA LA CONSTRUCCIÓN DE LA OBRA CIVIL 8 A) Obra civil de concreto B) Obra civil de acero

3) BASES DE DISEÑO 14

4) CRITERIOS DE ANÁLISIS 16

5) ANÁLISIS TRIDIMENSIONAL 18 5.1 Estructura de Concreto 18 5.2 Estructura de Acero 25

6) DISEÑO DE LOS ELEMENTOS ESTRUCTURALES 25 6.1 ESTRUCTURA DE ACERO 25

6.1.1 Trabes 25

6.1.2 Columnas 29

6.1.3 Losas 33

6.1.4 Unión Viga-Columna 34

6.1.5 Diseño de Placa de Cortante 37

6.1.6 Diseño de soldadura de Placa por Cortante 37

6.1.7 Diseño de Unión de la Cumbrera 39

6.1.8 Cimentación 41

6.1.8.1 Diseño de contra-trabe 45

6.1.9 Diseño de Pernos 47

6.2 ESTRUCTURA DE CONCRETO 48

6.2.1 Trabes 48

6.2.2 Muros 49

6.2.3 Losas 51

6.2.4 Cimentación 54

CONCLUSIONES 56

BIBLIOGRAFIA 57

7) ANEXOS

A) ESTUDIO DE MECÁNICA DE SUELOS B) PLANOS ESTRUCTURALES

C) PRESUPUESTO BASE DEL TALLER CIVIL DE LA

TERMOELÉCTRICA GUADALUPE VICTORIA

Page 3: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

3

OBJETIVO GENERAL:

El Proyecto Estructural del Taller Civil de la Central Termoeléctrica Guadalupe Victoria

en donde se planea construir elementos estructurales de acero en la parte donde estarán

colocadas las herramientas y otra de mampostería en la cual estarán ubicadas las oficinas

se busca aplicar los conocimientos adquiridos en el transcurso de la carrera de Ingeniería

Civil, como su Diseño Estructural, la revisión del estudio de Mecánica de Suelos para

Diseñar la cimentación y el Presupuesto Base para obtener el costo más factible para el

cliente dando como resultado una construcción capaz de sostenerse a sí misma y dar

seguridad a quienes la habitan.

OBJETIVOS:

- Realizar el Diseño Estructural de los elementos del edificio aplicando los conocimientos

adquiridos de las materias de Estructuras de concreto, Estructuras de Acero,

Mampostería, Sísmica y Edificios.

- Aplicar los conocimientos adquiridos en la Universidad en el área de Construcción para

la elaboración del presupuesto de proyecto.

- Aplicar los conocimientos adquiridos en el área de Geotecnia para el diseño de la

cimentación capaz de soportar las cargas del edificio.

Page 4: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

4

1) DESCRIPCIÓN CONCEPTUAL DEL PROYECTO

Antecedentes del proyecto:

La subdirección de energéticos y seguridad de Durango pretende tener un proyecto que

sea un beneficio a la sociedad generando empleos. Por lo anterior la Subdirección

necesita nueva infraestructura que se encuentra ubicado en la central Termoeléctrica

Guadalupe Victoria, lerdo, Durango, México.

Procedimiento:

El edificio del taller civil de la Central. Termoeléctrica. Guadalupe Victoria, se trata de una

construcción de un nivel con dimensiones de 13.55 m x 28.60 m (Fig 1,2,3,..6), en la que

se definen dos tipos de estructura:

Una donde la parte de las oficinas está hecha a base de marcos rígidos de concreto

reforzado formados de castillos y cerramientos, cubierto con una losa maciza de concreto

reforzado con una altura total de 4.60 m, en la que la cimentación está proyectada con

zapatas corridas, y otra a base de elementos estructurales de acero, cubierta con cuya

altura es de 8.1 m, en la que la cimentación consiste en zapatas corridas en una dirección

y unidas por medio de trabes de liga.

Lo primero que se analizara en el proyecto es el Análisis estructural que incluye los

análisis de cargas, sismo y viento, para así continuar con el diseño estructural de

columnas, losa, zapatas, trabes y elaborar una memoria de cálculo integrado por las

bases del diseño, diseño de la cimentación, Especificaciones generales de diseño,

cálculos, resultados del Software y el modelo analítico.

Con la memoria de cálculo y los planos estructurales del Taller Civil se elabora el catalogo

de conceptos, especificaciones particulares y generales del proyecto para finalizar el

presupuesto Base.

Page 5: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

5

Fig. 1 Planta arquitectónica

Page 6: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

6

Fig.2 Fachada Lateral sobre el eje A

Fig. 3 Fachada Lateral sobre el eje M

Fig. 4 Corte A-A

Page 7: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

7

Fig. 5 Corte B-B

Fig. 6 Corte C-C

Page 8: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

8

2) NORMAS PARA CONSTRUCCIÓN DE LA OBRA CIVIL

Para garantizar la calidad de la mano de obra y por consiguiente de la construcción, es de

vital importancia que la construcción se apegue a las siguientes normas para la obra civil.

Los procedimientos deberán ser estudiados cuidadosamente por el constructor de la

estructura, los lineamientos indicados en ellos se seguirán con todo detalle, con el objeto

de tener una estructura cuyo funcionamiento corresponda a las consideraciones del

proyecto.

A) OBRA CIVIL DE CONCRETO.

I.- ACERO DE REFUERZO

I.1.- TRASLAPES Y ANCLAJES

Las varillas que queden fuera de un colado deberán ser limpiadas previamente al siguiente colado para liberarlas de concreto adherido. Esta limpieza deberá hacerse con yute o bien con cepillo de alambre blando, con el objeto de quitarles el concreto sin disminuir el corrugado de las varillas.

Las varillas de los dados y muros, se anclaran en elementos de cimentación en la forma indicada en los planos.

Los estribos de los dados deberán abrazar a las varillas de las mismas en toda su longitud, incluyendo el refuerzo de los tramos que queden dentro de la cimentación.

Los estribos de los dados, trabes y contratrabes se colocarán de acuerdo a lo indicado en los planos ejecutivos.

No se podrán traslapar en una sección más del 30% de las varillas de refuerzo indicadas en la misma. Esta precaución deberá tomarse en todos los elementos estructurales (dados, trabes, contratrabes, etc.).

Todas las varillas extremas de las contratrabes, trabes, etc., incluyendo las corridas o los bastones, deberán anclarse cuarenta diámetros. Los traslapes de las varillas longitudinales tendrán una longitud no menor que 40 veces el diámetro de la varilla traslapada.

Page 9: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

9

I.2.- RECUBRIMIENTOS LIBRES

EXCEPTO CUANDO SE INDIQUE OTRO VALOR

LOSAS DE CIMENTACIÓN 5,0 cm.

CONTRATRABES 5,0 cm.

ZAPATAS Y DADOS 5,0 cm.

TRABES 3,0 cm.

LOSAS SOBRE PLANTILLAS 3,0 cm.

LOSAS DE SUPERESTRUCTURA 3,0 cm.

DALAS Y CASTILLOS 2,5 cm.

I.3.- CONTROL DE CALIDAD

Debe efectuarse control de calidad del acero de refuerzo, para lo cual en cada lote de 20 Ton ó fracción (formada por las barras de una misma marca, un mismo grado y un mismo diámetro, y correspondiente a una misma remesa de cada proveedor) se toma un espécimen para ensaye de tensión y uno para ensaye de doblado, que no sean de los extremos de barras completas; las corrugaciones se podrán revisar en uno de estos especímenes.

II.- CONCRETO.

II.1.- ELABORACIÓN

El concreto de los elementos principales, debe ser premezclado y el que se fabrique en obra, se dosificara con lo indicado en la tabla 1 del plano E-08 y se mezclara mecánicamente.

II.2.- REVENIMIENTOS

Se recomienda utilizar concreto con los siguientes revenimientos:

ELEMENTO ESTRUCTURAL REVENIMIENTO EN CENTÍMETROS

MAXIMO MINIMO

Muros y losas de cimentación 15,0 10,0

Losas y trabes 12,5 8,0

Columnas 18,0 14,0

Page 10: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

10

II.3.- CONTROL DE CALIDAD

Se deberán tomar cuatro muestras de probeta cilíndrica por cada 30 metros cúbicos de concreto ó por día de colado en el sitio de descarga de éste. Estas muestras deberán ser curadas exactamente igual que el concreto colocado en el elemento estructural correspondiente. Para verificar la resistencia a compresión se probara una muestra cilíndrica a los tres días, otra a los siete y las dos restantes a los veintiocho días de edad.

Para verificar el modulo de elasticidad, se hará como mínimo una muestra de dos probetas cilíndricas por cada día de colado, pero al menos una por cuarenta metros cúbicos; se ensayarán la pareja de cilindros a los veintiocho días de edad.

II.4.- FORMAS PARA CONCRETO

Las formas deberán ser lo suficientemente fuertes para resistir la presión resultante del vaciado y vibrado del concreto, estar sujetas rígidamente en su posición correcta y lo suficientemente impermeables para evitar la pérdida de la lechada.

Las formas deberán tener un traslape menor de 5 cm, con el concreto endurecido previamente al colado y se sujetaran ajustadamente contra el, de manera que al hacer el siguiente colado las formas no se abran y no permitan deslizamientos de las superficies del concreto ó perdidas de lechada en las juntas.

II.5.- COLADOS

Las contratrabes deberán ser coladas en toda su altura, sin dejar juntas frías excepto que en los planos del proyecto se indique alguna junta para colado.

Antes de colar las columnas dados y muros, deberá tratarse la superficie de desplante de los mismos sobre los elementos de cimentación, en la forma indicada para las juntas de colado.

El enrase de las columnas deberá hacerse “EXACTAMENTE” al nivel inferior de losa o de trabe que vaya a apoyarse sobre ellos, en todo caso es preferible demoler una porción de columna para desplantar sobre ella la trabe o la losa que tener que añadir un segmento de columna durante el colado de las trabes y losas.

II.6.- JUNTAS DE COLADO

Todas las juntas de colado se deberán hacer en los sitios indicados en el

proyecto. Si entre un colado y el siguiente transcurre un tiempo mayor de 24

hrs., las juntas se trataran de la siguiente forma.

1. Se limpiara la superficie de la junta que vaya a estar en contacto con el nuevo colado utilizando un cepillo de alambre con el objeto de desprender todo el material que no se encuentre perfectamente adherido.

Page 11: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

11

2. Posteriormente al limpiado con cepillo de alambre, se llevara la junta con chorro de agua a presión.

3. Quince minutos antes del nuevo colado se aplicara sobre la superficie de la junta un producto para propiciar una mejor adherencia entre los concretos de la junta.

II.7.- VIBRADO

Cada capa de concreto se consolidara mediante vibrado hasta la densidad máxima practicable, de manera que no queden bolsas de agregado grueso y se acomode perfectamente contra todas las superficies de los moldes y materiales ahogados. Al compactar cada capa de concreto, el vibrador se pondrá en posición vertical y se dejara que la cabeza vibradora penetre en la parte superior de la capa adyacente para vibrarla de nuevo.

El concreto se compactara por medio de vibradores eléctricos o neumáticos del tipo de inmersión:

Los vibradores que tengan cabezas vibradoras de 10 cm., o más de

diámetro, se operaran a frecuencia por lo menos de 6000 vibraciones por

minuto, cuando sean metidos en el concreto.

Los vibradores que tengan cabezas vibradoras menores de 10 cm., de

diámetro serán operados cuando menos a 7000 vibraciones por minuto

cuando estén metidos en el concreto.

II.8.- CURADO

Después de 3 horas de haber realizado el colado e inmediatamente después del retiro de la cimbra. El concreto debe sellarse con pigmento blanco que forme una membrana para retener agua en las superficies exteriores. Aplíquese por medio de una compresora que pueda operarse para mantener las superficies recién coladas perfectamente húmedas durante un lapso no menor de 7 días.

B) OBRA CIVIL DE ACERO

I. MATERIALES

a. El fabricante de la estructura deberá recabar del proveedor de materiales un “Certificado de calidad”, en donde se indicara cuando menos los siguientes datos :

NOM.- Norma oficial mexicana

Norma ASTM

Esfuerzo de Fluencia Mínimo

b. El certificado de calidad deberá ser mostrado al inspector antes de fabricar la estructura, quien lo firmara de conformidad, si procede.

Page 12: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

12

II. SOLDADURAS

a. Los electrodos podrán usarse durante 2 horas, en ambiente seco inmediatamente después de romper sus bolsas contenedoras. Los electrodos restantes deberán permanecer en honor a una temperatura de 90° hasta su utilización.

b. Las soldaduras de taller o de campo se harán con las piezas sostenidas rígidamente.

c. Antes de soldar se verificara que las superficies en donde se aplicara la soldadura estén limpias de escorias, polvo, grasa o pintura.

d. Se aplicara la soldadura evitando la torcedura de las piezas por unir. Las piezas torcidas después de haberse aplicado la soldadura serán respuestas íntegramente.

e. Únicamente soldadores calificados podrán realizar las soldaduras.

III. FABRICACIÓN

a. Solo se utilizaran perfiles que estén dentro de las tolerancias de laminación en espesores, flechas, dimensiones, etc.

b. Cuando no se indique separación entre las piezas por soldar deben estar en contacto total.

c. Toda la estructura de acero se pintará sobre superficies libres de impurezas con, primario anticorrosivo, sobre el primario se aplicara barrera contra fuego para tres horas. Aplicándose los espesores de ambos recubrimientos de acuerdo a las recomendaciones y garantías del fabricante. El primario y la barrera también deben aplicarse por la parte inferior de la losacero.

d. Los cortes podrán hacerse con cizalla, sierra o soplete guiado mecánicamente.

e. Todos los agujeros deberán hacerse con taladro y serán mayores que el diámetro nominal de los tornillos. Para diámetros menores o igual a 1.27 cm., increméntense 1.5 milímetros; para diámetros que excedan 1.27 cm., increméntense 3 milímetros.

f. El fabricante dibujara los planos de taller (fabricación, montaje e iluminación). Estos documentos serán aprobados por el inspector de la estructura.

IV. MONTAJE

a. La estructura se montará con el equipo adecuado para que ofrezca la máxima seguridad.

b. El transporte y el montaje se harán con la debida precaución para no generar esfuerzos residuales en las piezas.

c. No deberá colocarse definitivamente una pieza hasta que no haya sido nivelada, alineada y plomeada.

Page 13: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

13

V. INSPECCIÓN

a. La estructura será inspeccionada desde su fabricación para verificar dimensiones y características de los materiales antes de su utilización.

b. Cualquier material que no cumpla con estas especificaciones será rechazado por el inspector.

c. Se verificara en obra el montaje de la estructura de acuerdo a los planos del taller.

d. Deberá corroborarse el momento de apriete de todos los tornillos y de las anclas.

e. Los recubrimientos sobre las piezas de acero se someterá a pruebas de adherencia y medición del espesor en igual numero que las inspecciones de soldadura de penetración completa(Ver cuadro para inspección de Soldaduras PLANO E-01)

f. Se verificara a través de una EMPRESA DE CONTROL DE CALIDAD EN EL AREA METAL MECANICA de acuerdo a especificaciones AWS y ASME, la calificación de habilidad de los soldadores, las soldaduras de penetración completa, el análisis químico y dureza de tornillos, tuerca y arandelas y a tensión 2 probetas de cada perfil y de cada placa que tenga función prioritaria.

g. Se ratificara en taller y en campo, de acuerdo a los planos estructurales las siguientes características en todas las soldaduras: calidad de su aplicación, longitudes, espesores, ejecución con los electrodos indicados, y las preparaciones de las piezas para soldar.

h. El control de calidad de las soldaduras de penetración completa estará regido conforme a lo indicado en el cuadro para inspección de soldaduras Plano E-01.

i. El inspector de la estructura deberá entregar una carta en donde constante que verifico todo lo indicado en estas especificaciones y se hace responsable de su cumplimiento.

Page 14: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

14

3) BASES DE DISEÑO

El análisis y diseño estructural de la cimentación y superestructura del edificio y

recubrimientos de fachadas se llevo a cabo con las bases que, para cargas permanentes,

accidentales y variables establece el Reglamento de Construcciones para el DF, y sus

Normas Técnicas Complementarias, así como el Manual de Diseño de Obras Civiles de la

Comisión Federal de Electricidad, Diseño por Sismo y Diseño por Viento, para las

acciones accidentales sísmicas se utilizo el programa PRODISIS.

ANÁLISIS DE CARGAS

I. PESOS VOLUMETRICOS DE MATERIALES

ESTRUCTURA METÁLICA 8.80 t /m3

CONCRETO ARMADO 2.40 t /m3

RELLENO DE TEZONTLE 1.40 t /m3

MORTERO DE CEMENTO 2.10 t /m3

LADRILLO 0.04 t /m2

IMPERMEABILIZANTE 0.03 t /m2

INSTALACIONES 0.04 t /m2

CARGA DE SOBRE PESO 0.04 t /m2

TABIQUE 0.29 t /m2

II. ACCIONES ACCIDENTALES SISMICAS (se utilizo el programa PRODISIS)

ZONA SÍSMICA A (CFE)

CATEGORIA DE EDIFICIO B (OFICINAS, RCDF)

COEFICIENTE SISMICO (C) 0.12 (CFE)

FACTOR DE COMPORTAMIENTO SISMICO (Q) 2

TIPO DE SUELO II

COEFICIENTE DE ACELERACIÓN DEL TERRENO (ao) 0.04

COEFICIENTE SISMICO REDUCIDO (Cs = C/Q) 0.06

PERIODO CARACTERISTICO QUE DELIMITA LA MESETA (Ta)s 0.2

PERIODO CARACTERISTICO QUE DELIMITA LA MESETA (Tb)s 0.7

EXPONENTE DE LA CURVA DEL ESPECTRO DE DISEÑO r=2/3

Page 15: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

15

III. ACCIONES ACCIDENTALES DE VIENTO

VELOCIDAD REGIONAL 161.00 km/h

PERIODO MEDIO DE RETORNO 50 años

ALTITUD 1013.0 msnmm

TEMPERATURA 20.5º C

FACTOR Ft (ADIMENSIONAL) 1.0

FACTOR Fc (ADIMENSIONAL) 0.95

III. CARGAS EN AZOTEA

LOSA DE CONCRETO DE 10 cm 240 Kg/m2

RELLENO PARA PENDIENTES 160 Kg/m2

ENTORTADO 100 Kg/m2

ENLADRILLADO 40 Kg/m2

PLAFONES E INSTALACIONES 40 Kg/m2

CARGA POR REGLAMENTO 40 Kg/m2

IMPERMEABILIZANTE 40 Kg/m2

CARGA VIVA 100 Kg/m2

TOTAL 740 Kg/m2

Page 16: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

16

ESFUERZOS DE LOS MATERIALES

Concreto en plantillas f´c = 10 MPa (100 kg/cm²)

Concreto en firmes f’c = 15 MPa (150 kg/cm2)

Concreto estructural Clase I f´c = 25 MPa (250 kg/cm²)

Peso Volumétrico del concreto Pv = 2,400kg/cm³

Modulo de Elasticidad del Concreto Ec =21702 MPa (221,359 kg/cm²)

Acero de refuerzo Fy =412 MPa (4,200 kg/cm²)

En varilla Φ ¼” (#2) Fy =248 MPa (2,530 kg/cm²)

ESTUDIO DE MECANICA DE SUELOS

La Gerencia de Ingeniería Civil determinó que para el diseño estructural se considerara

una resistencia de terreno igual a 20 ton / m2, misma que tiene lugar a una profundidad de

desplante de 1.40 m por abajo del nivel del edificio en proyecto.

4) CRITERIOS DE DISEÑO

A) CIMENTACIÓN

Se proyectaron cimentaciones congruentes con las cargas que, provenientes de la

superestructura, habrá de absorber el terreno. Se utilizaron; zapatas corridas en el área

de oficinas y zapatas corridas en una dirección con trabes de liga en el área del taller.

Para el análisis de esta estructuración se utilizaron modelos con la reacción del terreno

actuando de abajo hacia arriba.

B) SUPERESTRUCTURA

El sistema de la techumbre del área de oficinas y bodega está integrado por una losa de

concreto reforzado que funge como cubierta del edificio. Esta losa de concreto distribuye

las cargas en varias direcciones. Con la longitud tributaria se calcularon las acciones para

cada trabe secundaria y para cada trabe de marco.

El sistema de techumbre (constituido por una cubierta de multitecho), las columnas y

trabes en el área de taller, se diseñaron considerando las acciones de carga muerta, de

sismo y de viento que actúan sobre los mismos.

Los marcos y los elementos con alta hiperestasticidad, se analizaron con programa para

computadora, que a partir de la geometría de sus componentes y de las cargas del

proyecto obtuvieron los elementos mecánicos para diseño y los rangos de desplazamiento

para las acciones horizontales.

Page 17: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

17

Las estructuras se modelaron para su análisis, representando todos los elementos por sus

ejes, con empotramiento en el desplante. Para las trabes secundarias se tomo en cuenta

la sección compuesta por la trabe y el concreto colado en sitio. Con la relación de

módulos de elasticidad se determinaron las propiedades físicas para los modelos.

Para determinar las fuerzas cortantes sísmicas, se consideró una variación lineal de las

aceleraciones con valor nulo en la base y máximo en la parte superior de la estructura,

aplicando el coeficiente reducido por ductilidad, excepto para los conceptos del estado

limite de servicios que dicho coeficiente por sismo se aplico inalterable.

C) ESTRUCTURA DE ACERO

La geometría de los elementos de acero se propuso primero, para realizar el análisis, y se

reviso después para que cumpliera con el Estado Limite de Servicio y con los esfuerzos

resultantes más desfavorables. Se aplico el Método Elástico a trabes y a columnas de

acero en flexocomprensión y a los elementos de armaduras en tensión o comprensión.

Los esfuerzos calculados con la geometría propuesta no rebasaron los permisibles de

acero utilizado, y se cumplieron los estados límites de servicio.

D) ESTRUCTURA DE CONCRETO

Los armados longitudinal y transversal de los elementos de concreto de las

cimentaciones, trabes secundarias y para cada trabe de marcos se calcularon mediante

los preceptos contenidos en las Normas Técnicas Complementarias para construcción de

edificios de concreto del Reglamento para Construcción del DF.

Para obtener los factores para el diseño sísmico se utilizo el Manual de Diseño de Obras

Civiles de Comisión Federal de Electricidad y el programa Prodisis para obtener los

periodos que delimitan la meseta.

Page 18: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

18

5) ANALISIS TRIDIMENSIONAL (ACCIONES DE CARGA

MUERTA MAS CARGA VIVA Y POR SISMO EN DOS

DIRECCIONES)

En el análisis se utilizo el programa RAM Advance con los siguientes estados de carga:

Carga Muerta (CM)

Carga Sismo XX (CSXX)

Carga Sismo ZZ (CSZZ)

Carga viento XX (CVXX)

Carga Viento ZZ (CVZZ)

Con 8 combinaciones de carga

Comb1 = 1.4 CM

Comb2 = 1.1CM + 1.1CSXX

Comb3 = 1.1CM + 1.1CSZZ

Comb4 = 1.1 CM + 1.1 CVXX

Comb5 = 1.1 CM + 1.1 CVZZ

Comb6 = 1.1 CM + 1.1 CSXX + 0.3 CSZZ

Comb7 = 1.1 CM + 0.3 CSXX + 1.1 CSZZ

Comb8 = 1.1 CM + 1.1 CVXX + 0.3 CVZZ

Comb9 = 1.1 CM + 0.3 CVXX + 1.1 CVZZ

5.1 Estructura de acero

Se mostraran los cálculos con los mayores esfuerzos Fig.1

Page 19: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

19

Resultados del Análisis

Máximos esfuerzos en miembros

Estado : CM=Carga Muerta

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -1878.36 354.11 4.05 -0.12 14.65 4355.81

Min -2695.36 -4250.82 4.05 -0.12 -10.84 -7998.32

MIEMBRO 30

Max -2587.26 1082.90 1.23 -0.49 2.14 -714.27

Min -2587.26 1082.90 1.23 -0.49 -2.18 -4504.44

MIEMBRO 29

Max -2587.97 1083.51 0.27 0.44 0.31 3078.07

Min -2587.97 1083.51 0.27 0.44 -0.64 -714.22

MIEMBRO 19

Max -4657.42 1906.27 2.92 -0.25 5.73 -1326.29

Min -4657.42 1906.27 2.92 -0.25 -4.48 -7998.25

MIEMBRO 18

Max -4658.61 1906.05 0.80 0.31 1.75 5344.81

Min -4658.61 1906.05 0.80 0.31 -1.05 -1326.35

MIEMBRO 17

Max 2.99 3.64 -4.56 0.08 12.16 10.49

Min 2.99 3.64 -4.56 0.08 -13.28 -9.84

Estado : CSXX=Carga Sismo xx

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Fig. 10 Diseño de los elementos del Taller Civil en Ram Advance

Max -168.22 95.10 -0.31 0.00 1.29 494.12

Min -168.22 95.10 -0.31 0.00 -0.65 -104.68

MIEMBRO 30

Max 61.14 -231.31 0.08 -0.03 0.25 474.63

Min 61.14 -231.31 0.08 -0.03 -0.03 -334.95

MIEMBRO 29

Max 61.15 -231.33 -0.05 -0.02 0.10 -334.95

Min 61.15 -231.33 -0.05 -0.02 -0.07 -1144.60

MIEMBRO 19

Max 64.23 -229.91 -0.01 -0.03 0.03 494.12

Min 64.23 -229.91 -0.01 -0.03 0.00 -310.56

MIEMBRO 18

Max 64.23 -229.89 -0.02 -0.01 0.04 -310.55

Min 64.23 -229.89 -0.02 -0.01 -0.03 -1115.16

MIEMBRO 17

Max 0.22 0.01 -0.34 0.00 1.00 0.05

Min 0.22 0.01 -0.34 0.00 -0.88 -0.04

Estado : CSZZ=Carga sismo zz

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max 0.46 -0.10 0.80 -0.07 4.43 0.37

Min 0.46 -0.10 0.80 -0.07 -0.61 -0.28

MIEMBRO 30

Max -89.83 0.10 160.43 0.09 316.76 -0.01

Min -89.83 0.10 160.43 0.09 -244.74 -0.37

Page 20: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

20

MIEMBRO 29

Max -204.50 0.09 236.45 0.00 143.38 0.30

Min -204.50 0.09 236.45 0.00 -684.18 -0.01

MIEMBRO 19

Max 13.12 0.05 236.06 -0.04 435.52 -0.11

Min 13.12 0.05 236.06 -0.04 -390.70 -0.28

MIEMBRO 18

Max 5.98 0.07 173.96 0.00 243.18 0.14

Min 5.98 0.07 173.96 0.00 -365.67 -0.11

MIEMBRO 17

Max -641.62 -109.85 -0.24 0.00 0.17 351.79

Min -641.62 -109.85 -0.24 0.00 -1.16 -261.20

Estado : CVXX=Carga viento xx

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max 267.00 1569.07 -4.90 -0.16 21.01 2820.51

Min -130.85 -673.35 -4.90 -0.16 -9.81 -636.19

MIEMBRO 30

Max 1087.81 -20.39 959.50 0.45 830.17 1727.61

Min 1087.81 -826.09 -495.24 0.45 -277.10 246.27

MIEMBRO 29

Max 713.54 -827.63 2065.74 -0.96 1006.05 246.16

Min 713.54 -1633.33 611.00 -0.96 -3678.25 -4060.50

MIEMBRO 19

Max 1568.59 30.99 473.05 0.01 924.46 2821.55

Min 1568.59 -1597.77 473.05 0.01 -731.20 78.77

MIEMBRO 18

Max 1570.36 -1595.21 827.18 -0.37 1259.09 78.91

Min 1570.36 -3223.97 827.18 -0.37 -1636.03 -8354.66

MIEMBRO 17

Max -459.81 -189.19 -10.45 -0.02 27.50 569.01

Min -459.81 -189.19 -10.45 -0.02 -30.81 -486.68

Estado: CVZZ=Carga viento zz

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max 2232.89 1963.57 -3.56 -0.07 12.83 3707.47

Min 1835.04 -278.86 -3.56 -0.07 -9.59 -1705.85

MIEMBRO 30

Max 1727.58 -585.40 1178.43 0.09 1018.21 3156.48

Min 1727.58 -1240.00 -612.03 0.09 -338.90 -37.98

MIEMBRO 29

Max 1267.49 69.70 2541.82 0.14 1238.47 -37.98

Min 1267.49 -584.91 751.36 0.14 -4524.58 -952.54

MIEMBRO 19

Max 2296.59 -534.44 580.75 0.18 1134.76 3707.51

Min 2296.59 -1857.79 580.75 0.18 -897.86 -478.88

MIEMBRO 18

Max 2298.80 786.92 1017.34 -0.18 1548.65 -40.55

Min 2298.80 -536.43 1017.34 -0.18 -2012.05 -859.37

MIEMBRO 17

Max -577.94 -236.73 1.74 -0.03 3.92 710.83

Min -577.94 -236.73 1.74 -0.03 -5.76 -610.14

Estado : comb1=1.4CM

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Page 21: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

21

Max -2629.70 495.75 5.67 -0.16 20.51 6098.13

Min -3773.51 -5951.15 5.67 -0.16 -15.17 -11197.65

MIEMBRO 30

Max -3622.16 1516.07 1.72 -0.69 2.99 -999.98

Min -3622.16 1516.07 1.72 -0.69 -3.05 -6306.21

MIEMBRO 29

Max -3623.15 1516.92 0.38 0.62 0.43 4309.30

Min -3623.15 1516.92 0.38 0.62 -0.89 -999.91

MIEMBRO 19

Max -6520.38 2668.78 4.08 -0.35 8.02 -1856.81

Min -6520.38 2668.78 4.08 -0.35 -6.28 -11197.55

MIEMBRO 18

Max -6522.06 2668.46 1.12 0.44 2.45 7482.74

Min -6522.06 2668.46 1.12 0.44 -1.47 -1856.88

MIEMBRO 17

Max 4.18 5.10 -6.38 0.11 17.03 14.69

Min 4.18 5.10 -6.38 0.11 -18.59 -13.78

Estado : comb2=1.1CM+1.1CSXX

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -2251.24 494.12 4.11 -0.13 15.39 4733.65

Min -3149.94 -4571.29 4.11 -0.13 -10.50 -8254.62

MIEMBRO 30

Max -2778.73 936.75 1.44 -0.58 2.62 -1154.14

Min -2778.73 936.75 1.44 -0.58 -2.43 -4432.78

MIEMBRO 29

Max -2779.50 937.40 0.25 0.46 0.27 2126.82

Min -2779.50 937.40 0.25 0.46 -0.59 -1154.09

MIEMBRO 19

Max -5052.51 1844.00 3.20 -0.30 6.30 -1800.53

Min -5052.51 1844.00 3.20 -0.30 -4.90 -8254.54

MIEMBRO 18

Max -5053.82 1843.77 0.86 0.33 1.89 4652.61

Min -5053.82 1843.77 0.86 0.33 -1.11 -1800.59

MIEMBRO 17

Max 3.52 4.02 -5.39 0.09 14.48 11.59

Min 3.52 4.02 -5.39 0.09 -15.58 -10.87

Estado : comb3=1.1CM+1.1CSZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -2065.69 389.41 5.33 -0.21 20.98 4791.74

Min -2964.39 -4676.01 5.33 -0.21 -12.59 -8798.46

MIEMBRO 30

Max -2944.80 1191.31 177.83 -0.45 350.78 -785.71

Min -2944.80 1191.31 177.83 -0.45 -271.61 -4955.29

MIEMBRO 29

Max -3071.71 1191.96 260.39 0.49 158.05 3386.20

Min -3071.71 1191.96 260.39 0.49 -753.30 -785.66

MIEMBRO 19

Max -5108.73 2096.95 262.88 -0.31 485.37 -1459.04

Min -5108.73 2096.95 262.88 -0.31 -434.70 -8798.38

MIEMBRO 18

Max -5117.89 2096.73 192.23 0.34 269.42 5879.45

Min -5117.89 2096.73 192.23 0.34 -403.39 -1459.10

MIEMBRO 17

Max -702.50 -116.83 -5.28 0.09 13.57 376.14

Min -702.50 -116.83 -5.28 0.09 -15.88 -275.78

Page 22: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

22

Estado : comb4=1.1CM+1.1CVXX

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -2210.13 -351.17 -0.93 -0.31 11.19 4697.58

Min -2671.19 -2949.92 -0.93 -0.31 5.32 -5695.60

MIEMBRO 30

Max -1649.39 1168.77 1056.81 -0.04 913.87 -514.80

Min -1649.39 282.50 -543.41 -0.04 -307.20 -3054.51

MIEMBRO 29

Max -2061.87 281.47 2272.61 -0.57 1107.00 -358.51

Min -2061.87 -604.80 672.40 -0.57 -4046.77 -1080.68

MIEMBRO 19

Max -3397.71 2130.99 523.56 -0.26 1023.21 -1372.27

Min -3397.71 339.36 523.56 -0.26 -809.25 -5695.39

MIEMBRO 18

Max -3397.08 341.92 910.77 -0.06 1386.92 -1258.25

Min -3397.08 -1449.72 910.77 -0.06 -1800.79 -3310.84

MIEMBRO 17

Max -502.50 -204.10 -16.51 0.06 43.63 615.08

Min -502.50 -204.10 -16.51 0.06 -48.50 -523.81

Estado : comb5=1.1CM+1.1CVZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -47.65 82.77 0.54 -0.21 5.57 2948.71

Min -508.72 -2515.98 0.54 -0.21 2.19 -4719.94

MIEMBRO 30

Max -945.65 547.26 1297.63 -0.44 1120.72 -827.47

Min -945.65 -172.81 -671.88 -0.44 -375.18 -1555.21

MIEMBRO 29

Max -1452.53 1268.53 2796.29 0.64 1362.65 2352.31

Min -1452.53 548.46 826.79 0.64 -4977.74 -827.42

MIEMBRO 19

Max -2596.91 1509.02 642.03 -0.08 1254.54 -1985.69

Min -2596.91 53.34 642.03 -0.08 -992.57 -4719.82

MIEMBRO 18

Max -2595.80 2962.26 1119.96 0.14 1705.43 5834.69

Min -2595.80 1506.58 1119.96 0.14 -2214.42 -1985.78

MIEMBRO 17

Max -632.45 -256.40 -3.11 0.05 7.04 771.09

Min -632.45 -256.40 -3.11 0.05 -10.29 -659.61

Estado : comb6=1.1CM+1.1CSXX+0.3CSZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -2251.10 494.09 4.35 -0.15 16.72 4733.74

Min -3149.81 -4571.33 4.35 -0.15 -10.68 -8254.70

MIEMBRO 30

Max -2805.68 936.79 49.57 -0.55 97.65 -1154.15

Min -2805.68 936.79 49.57 -0.55 -75.85 -4432.89

MIEMBRO 29

Max -2840.85 937.43 71.18 0.46 43.28 2126.91

Min -2840.85 937.43 71.18 0.46 -205.85 -1154.10

MIEMBRO 19

Max -5048.57 1844.02 74.02 -0.31 136.95 -1800.56

Min -5048.57 1844.02 74.02 -0.31 -122.11 -8254.62

MIEMBRO 18

Page 23: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

23

Max -5052.03 1843.79 53.04 0.33 74.84 4652.65

Min -5052.03 1843.79 53.04 0.33 -110.81 -1800.62

MIEMBRO 17

Max -188.96 -28.93 -5.46 0.09 14.53 94.67

Min -188.96 -28.93 -5.46 0.09 -15.93 -66.77

Estado : comb7=1.1CM+0.3CSXX+1.1CSZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -2116.16 417.93 5.24 -0.21 20.79 4773.81

Min -3014.86 -4647.48 5.24 -0.21 -12.20 -8650.22

MIEMBRO 30

Max -2926.46 1121.92 177.85 -0.46 350.86 -886.20

Min -2926.46 1121.92 177.85 -0.46 -271.62 -4812.90

MIEMBRO 29

Max -3053.37 1122.56 260.37 0.48 158.03 3042.83

Min -3053.37 1122.56 260.37 0.48 -753.27 -886.14

MIEMBRO 19

Max -5089.46 2027.98 262.88 -0.32 485.37 -1552.20

Min -5089.46 2027.98 262.88 -0.32 -434.69 -8650.14

MIEMBRO 18

Max -5098.62 2027.76 192.23 0.34 269.41 5544.90

Min -5098.62 2027.76 192.23 0.34 -403.38 -1552.26

MIEMBRO 17

Max -702.43 -116.83 -5.38 0.09 13.87 376.13

Min -702.43 -116.83 -5.38 0.09 -16.15 -275.77

Estado : comb8=1.1CM+1.1CVXX+0.3CVZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -1659.61 -434.83 -2.00 -0.33 15.04 4218.58

Min -2001.33 -2360.85 -2.00 -0.33 2.44 -4583.36

MIEMBRO 30

Max -1131.12 796.76 1410.34 -0.02 1219.34 -526.19

Min -1131.12 106.88 -727.02 -0.02 -408.87 -2107.56

MIEMBRO 29

Max -1681.62 106.00 3035.16 -0.53 1478.54 -497.77

Min -1681.62 -583.89 897.81 -0.53 -5404.15 -1362.56

MIEMBRO 19

Max -2708.73 1573.66 697.78 -0.21 1363.64 -1515.94

Min -2708.73 179.03 697.78 -0.21 -1078.60 -4583.13

MIEMBRO 18

Max -2707.44 180.99 1215.98 -0.12 1851.51 -1474.80

Min -2707.44 -1213.64 1215.98 -0.12 -2404.41 -3323.00

MIEMBRO 17

Max -675.88 -275.12 -15.99 0.05 41.90 828.33

Min -675.88 -275.12 -15.99 0.05 -47.33 -706.85

Estado : comb9=1.1CM+0.3CVXX+1.1CVZZ

Axial Corte V2 Corte V3 Torsión M22 M33

[Kg] [Kg] [Kg] [Kg*m] [Kg*m] [Kg*m]

MIEMBRO 20

Max -86.90 -119.23 -0.93 -0.26 8.49 2940.92

Min -428.61 -2045.26 -0.93 -0.26 2.62 -3873.79

MIEMBRO 30

Max -619.30 299.43 1585.48 -0.31 1369.77 -753.59

Min -619.30 -178.93 -820.45 -0.31 -458.31 -1081.59

MIEMBRO 29

Max -1238.47 778.53 3416.02 0.35 1664.47 1134.16

Min -1238.47 300.17 1010.09 0.35 -6081.22 -753.57

MIEMBRO 19

Page 24: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

24

Max -2126.34 1029.69 783.94 -0.07 1531.87 -1962.06

Min -2126.34 62.63 783.94 -0.07 -1211.93 -3873.63

MIEMBRO 18

Max -2124.69 1995.07 1368.11 0.03 2083.16 3328.29

Min -2124.69 1028.01 1368.11 0.03 -2705.23 -1962.10

MIEMBRO 17

Max -770.39 -313.16 -6.24 0.04 15.29 941.79

Min -770.39 -313.16 -6.24 0.04 -19.54 -805.62

Deflexiones locales en miembros

Estado : CM=Carga Muerta

Estación Eje 1 Eje 2 Eje 3 Rotación11 Defl. (2) Defl. (3)

[cm] [cm] [cm] [Rad] [cm] [cm]

MIEMBRO 20

0% -0.230 0.029 0.001 0.00000 - -

50% -0.236 -0.822 0.010 -0.00022 -0.15901 (L/3960) -

100% -0.240 -1.355 0.010 -0.00044 - -

MIEMBRO 30

0% -0.003 0.101 0.000 0.00017 - -

50% -0.005 0.148 0.000 0.00007 - -

100% -0.006 0.126 0.001 -0.00002 - -

MIEMBRO 29

0% 0.000 0.000 0.000 0.00000 - -

50% -0.002 0.035 0.000 0.00008 - -

100% -0.003 0.101 0.000 0.00017 - -

MIEMBRO 19

0% -0.006 0.196 0.000 0.00009 - -

50% -0.009 0.284 0.001 0.00006 0.07049 (L/4965) -

100% -0.012 0.232 0.001 0.00002 - -

MIEMBRO 18

0% 0.000 0.000 0.000 0.00000 - -

50% -0.003 0.068 0.000 0.00005 - -

100% -0.006 0.196 0.000 0.00009 - -

MIEMBRO 17

0% -0.001 -0.016 0.214 -0.00089 - -

50% -0.001 -0.011 0.161 -0.00064 - -

100% -0.001 -0.006 0.113 -0.00039 - -

Máximas deformaciones relativas

Nota.- Los valores de las deformaciones estan en valor absoluto.

ESTADO CM=Carga Muerta

Miembro Defl. (2) [cm] @(%) Defl. (3) [cm] @(%)

20 0.21311 (L/2955) 67.50000 0.00733 (< L/10000) 72.50000

30 0.03542 (L/9882) 55.00000 0.00003 (< L/10000) 22.50000

29 0.01682 (< L/10000) 37.50000 0.00002 (< L/10000) 32.50000

19 0.07145 (L/4898) 55.00000 0.00033 (< L/10000) 72.50000

18 0.03242 (< L/10000) 37.50000 0.00013 (< L/10000) 70.00000

17 0.00092 (< L/10000) 22.50000 0.00940 (< L/10000) 77.50000

Page 25: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

25

5.2 Estructura de concreto

Como la parte del taller donde se utilizó concreto se diseño considerando muros de carga,

no fue necesario utilizar el programa de cómputo y por lo tanto no se tienen resultados de

corridas.

6) DIMENSIONAMIENTO DE LOS ELEMENTOS

ESTRUCTURALES

A partir de los resultados de las corridas del programa RAM Advanse, presentadas en el

capítulo anterior, se obtienen los datos asociados a los diagramas de momentos y

cortantes que serán útiles para realizar el diseño de los elementos, mismo que parte de

una comparación de las dimensiones obtenidas en el diseño con la geometría de los

elementos propuestos en forma preliminar. En esta memoria se presentará el desarrollo

del cálculo de sólo algunos de los elementos y se presentará el resultado de los restantes.

6.1 ESTRUCTURA DE ACERO

6.1.1Trabes.- Para su inclusión en esta memoria de cálculo se seleccionó dentro de las

trabes inclinadas que forman la cumbrera (denominada T-2), aquella que se ve sometida

a los mayores esfuerzos y que se ubica sobre el eje 11.

Las acciones obtenidas para las diferentes condiciones de diseño establecidas resultaron:

ACCIÓN CM + CV SISMO Z VIENTO Z

M (kg-m) 8000 490 3707.5

V (kg) 4250 100 1960

Se observa que el efecto de las acciones de viento reduce la acción de la carga asociadas

al peso. Por la anterior, el criterio de comparación a aplicar se redujo a la siguiente:

a) (CM + CV)(FC) FC = 1.4

b) [(CM + CV)+ SISMO Z] (FC) FC = 1.1

En virtud de lo anterior se llegó a la comparación siguiente:

M

(kg-m)

a) Mu = (8000)(1.4)

b) Mu=(8000+3707.5)(1.1)

= 11200

= 12878◄

Page 26: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

26

V

(kg)

a) Vu = (4250)(1.4)

b) Vu = (4250+1960)(1.1)

= 5 950

= 6 831◄

A partir de los valores últimos Mu y Vu marcados con una flecha se llevará a cabo el

diseño de esta trabe:

Se propone un elemento IR 406 x 53.7, cuyas características geométricas son las

mostradas a continuación.

Patín: bf = 177 mm (17.7 cm); tf = 10.9 mm (1.09 cm)

Alma: tw = 7.5 mm (0.75 cm); d = 403 mm (40.3 cm)

Sx = 926 cm3 Ix = 16 647.0 cm4 rx = 16.5 cm

A) Clasificación del elemento.- De acuerdo con el valor de la relación geométrica del patín o alma del perfil, y al compararlo con los valores obtenidos de la aplicación de las formulas de máximos admisibles se determina el tipo de sección.

Patín 239.1609.1

7.17

grueso

ancho E = 2 x 106 kg/cm2 ; Fy =2530 kg/cm2

Tipo 3 307.162530

10258.058.0

6

x

F

E

y

Al comparar estos valores se concluye que este perfil corresponde al tipo 3.

B) Determinación del módulo de sección requerido.- Cuando se tiene un perfil con sección tipo 3, el momento resistente del mismo se determina a partir de la expresión siguiente (misma que aplica para elementos sujetos a flexión):

yRR FSFM donde FR = Factor de resistencia = 0.9

S = Modulo de sección asociado a MR

Despejando se tiene → yR

R

FF

MS Si se hace MU = MR→

36.565

25309.0

1287800cmS <

926 cm3

El módulo de sección de este perfil tiene un valor mayor que el requerido para soportar

este esfuerzo, por lo que de acuerdo con el Manual IMCA, el perfil propuesto resulta

adecuado.

C) Revisión por cortante.- Para calcular el valor del cortante resistente aplica la expresión siguiente:

yoRR FAFV 55.0 225.3075.03.40 wo tdA FR=0.8

5.336462530225.308.055.0 RV kg > Vu = 6831.0 kg PASA

Page 27: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

27

D) Revisión por deformación o flecha.- De acuerdo con los criterios establecidos por el Reglamento de Construcciones de DF, la deflexión máxima (en cm) se calcula a partir de la siguiente expresión.

5.0240

max l

cmml 63030.6

Así cm125.35.0240

630max > 0.822 cm (obtenido en el análisis) PASA

Trabe T-1 aquella que se ve sometida a los mayores esfuerzos y que se ubica sobre el eje

A. Las acciones obtenidas para las diferentes condiciones de diseño establecidas

resultaron:

ACCIÓN CM + CV SISMO Z VIENTO Z

M (kg-m) 1049 26119.9 61013.93

V (kg) 3.64 110 237

Se observa que el efecto de las acciones de viento reduce la acción de la carga asociadas

al peso. Por la anterior, el criterio de comparación a aplicar se redujo a la siguiente:

c) (CM + CV)(FC) FC = 1.4

d) [(CM + CV)+ SISMO Z] (FC) FC = 1.1

En virtud de lo anterior se llegó a la comparación siguiente:

M

(kg-m)

a) Mu = (1049)(1.4)

b) Mu=(1049+61013.93)(1.1)

= 1468.6

= 68269.2◄

V

(kg)

a) Vu = (3.64)(1.4)

b) Vu = (3.64+237)(1.1)

= 5.10

= 264.71◄

A partir de los valores últimos Mu y Vu marcados con una flecha se llevará a cabo el

diseño de esta trabe:

Se propone un elemento IR 406 x 53.7, cuyas características geométricas son las

mostradas a continuación.

Patín: bf = 171 mm (17.1 cm); tf = 9.8 mm (0.98 cm)

Alma: tw = 6.9 mm (0.69 cm);

d = 352 mm (35.2 cm) Sx = 688 cm3 Ix = 12112 cm4 rx = 14.6 cm

Page 28: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

28

E) Clasificación del elemento.- De acuerdo con el valor de la relación geométrica del patín o alma del perfil, y al compararlo con los valores obtenidos de la aplicación de las formulas de máximos admisibles se determina el tipo de sección.

Patín 1698.0

1.17

grueso

ancho E = 2 x 106 kg/cm2 ; Fy =2530 kg/cm2

Tipo 3 307.162530

10258.058.0

6

x

F

E

y

Al comparar estos valores se concluye que este perfil corresponde al tipo 3.

F) Determinación del módulo de sección requerido.- Cuando se tiene un perfil con sección tipo 3, el momento resistente del mismo se determina a partir de la expresión siguiente (misma que aplica para elementos sujetos a flexión):

yRR FSFM donde FR = Factor de resistencia = 0.9

S = Modulo de sección asociado a MR

Despejando → yR

R

FF

MS Si se hace MU = MR→

330

25309.0

223.68269cmS < 688 cm3

El módulo de sección de este perfil tiene un valor mayor que el requerido para soportar

este esfuerzo, por lo que de acuerdo con el Manual IMCA, el perfil propuesto resulta

adecuado.

G) Revisión por cortante.- Para calcular el valor del cortante resistente aplica la expresión siguiente:

yoRR FAFV 55.0 28.2469.02.35 wo tdA

FR=0.8 27028253028.248.055.0 RV kg > Vu = 264.7 kg PASA

H) Revisión por deformación o flecha.- De acuerdo con los criterios establecidos por el Reglamento de Construcciones de DF, la deflexión máxima (en cm) se calcula a partir de la siguiente expresión.

5.0

240max

l cmml 58858.5

Así cm95.25.0240

588max > 0.011 cm (obtenido en el análisis) PASA

Page 29: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

29

6.1.2 Columnas.- Se consideró para su presentación en esta memoria el diseño de las

columnas de esquina (C-2), seleccionándose aquella que se ve sometida a los mayores

esfuerzos. Esta columna está compuesta por dos elementos y se ubica en el cruce de los

ejes L y 7. Se propuso un perfil IR 457 x 112.9, cuyas características geométricas son las

siguientes:

Patín: bf = 280 mm (28.0 cm); tf = 17.3 mm (1.73 cm)

Alma: tw = 10.8 mm (1.08 cm); d = 463 mm (46.3 cm) Sx = 2 393 cm3

Ix = 53 359.0 cm4 rx = 19.6 cm

Sz = 452 cm3 Iz = 6 327.0 cm4 rz = 6.6 cm

A) Revisión de los requisitos geométricos.- Deberán cumplirse en los planos asociados (z-y, x-y) las relaciones geométricas correspondientes.

Eje x-x

h > b h = d – (2)(tf) = 46.3 – (2)(1.73) = 42.84 cm > 28.0 CUMPLE

h/b < 1.5 42.84/28.0 = 1.53 CUMPLE

b > 20.0 cm CUMPLE

22r

kl

El cálculo del valor de k requiere del cálculo de las rigideces en las columnas (C-2) y las

trabes (T-2) que se encuentran dentro del plano analizado. En este caso se tiene una

columna y una trabe.

Rigidez columna (C-2) 077.18350

6327

c

cc

L

IR

Rigidez trabe (T-1) 70.21558

12112

t

tt

L

IR

ψA = 666.170.21

)2(07.18

t

c

R

R

ψB = 0 ya que es el empotre que se tiene en la base de la columna

A partir del nomograma de longitudes efectivas se tiene que para esta condición kx=1.32,

por lo que:

2270

6.6

35032.1

r

kl NO CUMPLE por lo tanto se aplica un Factor de

Amplificación

Factor de Amplificación

Área columna= 143.9 cm2 Fy = 2530 kg/cm2 Es = 2100000 kg/cm2 FR = 0.9

Py = Área columna*FR = 143.9 (0.9) = 339526 kg

Page 30: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

30

PEI = 2

2 **

K

EaAreacolumn s = 567643.25 kg

Pu = 2790 kg

Fa =

EIR

u

PF

P

*1

1

= 1.005

Eje z-z

Del cálculo anterior se desprende que esta columna cumple con lo siguiente:

h > b CUMPLE

h/b < 1.5 CUMPLE

b > 20.0 cm CUMPLE

22r

kl

El cálculo del valor de k requiere del cálculo de las rigideces en las columnas (C-2) y las

trabes (T-1).

Columna (C-2) 16.158350

55359

ci

cici

L

IR

Trabe (T-1) 0ti

titi

L

IR

ψA =

t

c

R

Rindeterminado

ψB = 0 empotre en la base de la columna del nomograma se tiene kz = 2.3

2207.41

6.19

0.3503.2

r

klNO CUMPLE aplicar Factor de Amplificación

Factor de Amplificación

Área columna= 143.9 cm2 Fy = 2530 kg/cm2 Es = 2100000 kg/cm2 FR = 0.9

Py = Área columna*FR = 143.9 (0.9) = 339526 kg

PEI = 2

2 **

K

EaAreacolumn s = 1768196.1 kg

Pu = 2790 kg

Page 31: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

31

Fa =

EIR

u

PF

P

*1

1

= 1.002

A) Revisión de secciones extremas.- Como en el diseño se aplicó un coeficiente Q=2, la sección corresponde al tipo 2. En función de lo anterior la expresión a aplicar es:

0.1

rz

uoz

rx

uox

yR

u

M

M

M

M

PF

P donde:

ysRyRc FAFPFR

RtyRt

nnn

y

c FAFFAF

R

1

22 15.01

2

E

F

r

kl y

Pu = Carga última axial (de diseño)

(FR)(Py) = Carga que resiste la sección = ysR FAF

Muoz = Momento actuante en el eje z (de diseño)

Muox = Momento actuante en el eje x (de diseño)

Mrx = Momento en x que resiste la sección = yxR FSF

Mrz = Momento en z que resiste la sección = yzR FSF

At = Área transversal total de la columna

De la afectación al valor de las acciones obtenidas en la corrida del programa se tienen

como acciones de diseño:

Muox = 5247 kg-m (5.247 ton-m)

Muox = 5243 kg-m (5.243 ton-m) Aplicando el Factor de Amplificación Fa = 1.005

Muoz = 1371.15 kg-m (1.371.15 ton-m)

Muoz = 1373 kg-m (1.37 ton-m) Aplicando el factor de Amplificación Fa = 1.002

Pu = 2790 kg (2.790 kg)

07.416.19

0.7633.2

r

kl

46.0101.2

0.253007.41

26

x (2)(n) = (2)(1.4) = 2.8

Page 32: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

32

08.30436790.09.143

15.046.01

00.2530

4.11

8.28.2

cR kg

3.3276600.25309.14390.0 cR kg

Se selecciona el menor de los dos Rc = 304.36 Ton = (FR)(Py)

Por otra parte los esfuerzos resistentes asociados a las características de la columna,

serán:

Mrz = (2393)(2530.0)(0.90) = 5448861 kg-cm = 54.488 Ton-m

Mrx = (692.0)(2530.0)(0.90) = 1029204 kg-cm = 10.29 Ton-m

Así se tiene: 54.048.54

37.1

29.10

247.5

3.304

790.2 < 1.00 SE CUMPLE

A) Revisión del miembro como columna completa.- Como esta columna tiene una sección del tipo 2, debe cumplirse la condición dada por la fórmula siguiente:

0.1

**

pzR

uoz

m

uox

c

u

MF

M

M

M

R

P

pxRpx

y

z

Rm MFME

F

rL

FM

55.18

07.1 donde

ypx FzM

610757.6675763025300.2671 xFzM yxpx kg-cm

608186710757.69.0 6 xMF pxR kg-cm = 60.82 Ton-m

66

10757.655.18

101.22530

6.6350

07.19.0 xx

M m

= 5903560.529 kg-cm

Mm = 59.03 Ton-m < (FR)(Mpx) = 60.82 Ton-m SE CUMPLE

Page 33: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

33

6.1.3 Losas.- Al tener en este caso una estructura metálica se propone como techo una

cubierta de multipanel. Para determinar el valor de la acción a la que va a ser sometida

esta lámina se requiere hacer al análisis de viento, mismo que aplica las expresiones

siguientes:

zpz QCP GVQ Dz 0048.0 273

392.0 G

RtD VFFV RZc FFF

1056.1RZF

Este análisis parte de los parámetros del sitio siguientes:

Ω = Presión barométrica = 675 mm Hg

α = 0.131 [Depende de la categoría del terreno (2) y de la clase de

estructura (B)]

= Temperatura ambiente = 20.5ºC

VR = Velocidad regional = 161 km/h

Cp = Coeficiente de presión que aplica a cubiertas de azotea = 0.65

Ft = Factor que depende de la topografía [para este suelo es1.0]

Fα = Factor que depende de Fc y FRZ

Fc = Factor que depende del tipo de estructura [para B es 0.95]

FRZ = Factor que depende de la altura del edificio y que al ser menor

de 10.0 m se calcula con la expresión siguiente:

99.0315

1056.1

131.0

RZF 94.099.095.0 F

1610.1610.10.1 DV km/h

902.05.20273

675392.0

G

11290.00048.01612

ZQ kg/m2

78.7211265.0 zP kg/m2

Pu = (72.78)(1.1) = 80.06 kg/m2

Page 34: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

34

6.1.4 Diseño de largueros de Soporte de Fachada Laterales y Frontales

Largueros Lateral

78.7211265.0 zP kg/m2

05.1825.278.72 w kg/ml

52.641)1.1(2.583max M kg-m

fb

MS

S

Mfb

2130fb kg-m

302130

64100S cm

Page 35: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

35

Por lo tanto se considera una CF-152X14

Largueros Frontal

13.31658

)58.12(160

8

22

wl

M kg-m

6.1482130

316513

fb

MS cm

Se propone una CF-305Xcal10

I = 2333.24 cm4

S = 153.10 cm3

A = 17.39 cm2

t= 0.34 cm

65.10)2333)(101.2(384

)1258)(6.1(5

384

56

22

XEI

wlcm

55.0240

12585.0

240

l

Page 36: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

36

Del análisis de cargas se tiene:

Peso del multitecho 11.69 kg/m2

Peso de largueros 40.00 kg/m2

Instalaciones 40.00 kg/m2

CM 91.69 kg/m2

CV 40.00 kg/m2

131.69 kg/m2

Pu = (131.69)(1.4) = 184.4 kg/m2. La mayor de las acciones corresponde a la condición de

CM + CV, por lo que servirá para determinar la característica de la losa multitecho. De

acuerdo con el catálogo la lámina que resiste esta carga (con una distancia máxima entre

apoyos = 2.50 m) será la de calibre 26 con un espesor de 1.0 pulgada.

6.1.4 Unión viga columna.- Para llevar a cabo el diseño de la unión viga columna,

consideramos las fuerzas que actúan en la viga y en la columna; se consideran los

cálculos siguientes para el diseño de placas:

Diseño de unión entre la columna C-1 del eje M y la T-2 del eje 12

Mu = 6855.3 kg-m

Vu = 3942.51 kg F=Mu/d= 6855.3/0.403=17010.67

Pu = 1914.28 kg

Se propone una b para la placa de la parte inferior

b=22 cm

donde FR=0.9 Fy=2530 kg/cm2

2277)2530(9.0 yRFFft kg/cm2

A

Fft

donde A=b*t

34.0)22(2277

67.17010inf

bf

Ft

t cm

Por lo tanto se propone el siguiente espesor t = 3/16 “

Diseño de la placa Superior donde b= 15 cm

498.0)15(2277

67.17010sup

bf

Ft

t

cm

Por lo tanto se propone un espesor t = ¼”

Page 37: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

37

Soldadura.- Para llevar a cabo el diseño de soldadura unión columna-placa, en la que se

unen la columna y la placa de acero; se consideran los cálculos siguientes:

(SOLDADURA PAÑO SUPERIOR DEL PATIN E INFERIOR)

3.6855Mu kg-m

7.170103.40

685530

d

MF kg

1665

287071.0

7.17010

tAs

Ff s

kg/cm2 70 Efs

482.02205287071.0

7.17010t cm

Material base: 1897253075.0 fyFR rs kg/cm2

Soldadura: 166537006.075.0)6.0( EXXRs FFf kg/cm2

6.1.5 Diseño de Placa por Cortante.-

Fv=V/A donde A= 1*t

3940Vu kg

yoRr FAFV 55.0 se sustituye en Fv y se anulan A

Se propone una longitud de L=10 cm

315.0)2530)(9.0)(55.0(10 u

placa

Vt cm

Se propone el siguiente espesor comercial t = 3/16”

6.1.6 Diseño de soldadura de Placa por Cortante.- Se propone una longitud

Longitud= 5+5+10 =20 cm

Soldadura: 166537006.075.0)6.0( EXXRs FFR kg/cm2

167.0)7071.0(

s

u

solflong

Vt cm Se propone el siguiente espesor de soldadura t=0.3 cm

Page 38: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

38

Diseño de unión entre la columna C-2 del eje A y la T-1 del eje 15

Mu = 720 kg-m

Vu = 264.57 kg F=Mu/d=720/0.352=2045.455 kg

Pu = 831.86 kg

Se propone una b para la placa de la parte inferior b=20 cm

donde FR=0.9 Fy=2530 kg/cm2

2277)2530(9.0 yRFFft kg/cm2

A

Fft

donde A=b*t

045.0)20(2277

45.2045inf

bf

Ft

t cm

Por lo tanto se propone el siguiente espesor t = 1/8 “

Diseño de la placa Superior donde b= 10 cm

1.0)10(2277

45.2045sup

bf

Ft

t

cm

Por lo tanto se propone un espesor t = 1/8”

Para llevar a cabo el diseño de soldadura unión columna-placa, en la que se unen la

columna y la placa de acero; se consideran los cálculos siguientes:

(SOLDADURA PAÑO SUPERIOR DEL PATIN E INFERIOR)

720Mu kg-m

45.20452.35

72000

d

MF kg

1665

287071.0

45.2045

tAs

Ff s

kg/cm2 70 Efs

Se propone longitud=15 cm

058.0)2(1665157071.0

7.17010t cm por lo tanto t=3 mm

Material base: 1897253075.0 fyFR rs kg/cm2

Soldadura: 166537006.075.0)6.0( EXXRs FFf kg/cm2

Page 39: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

39

Diseño de Placa por Cortante.-

Fv=V/A donde A= 1*t

57.264Vu kg

yoRr FAFV 55.0 se sustituye en Fv y se anulan A

Se propone una longitud de L=10 cm

021.0)2530)(9.0)(55.0(10 u

placa

Vt cm

Se propone el siguiente espesor comercial t = 1/8”

Diseño de soldadura de Placa por Cortante.- Se propone una longitud

Longitud= 5+5+10 =20 cm

Soldadura: 166537006.075.0)6.0( EXXRs FFR kg/cm2

011.0)7071.0(

s

u

solflong

Vt cm

Se propone el siguiente espesor de soldadura t=0.3 cm

6.1.7 Diseño de Unión de la Cumbrera

M = Fd se despeja F y de es el peralte de la sección columna mas la distancia al eje

central de los tornillos

1.6098Mu kg-m

1130V kg

563.0d m

492.10831d

MF kg

Se propone el número de perno

No. Perno=4

Fuerza que resista cada perno

Page 40: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

40

9.2707.

pernoNo

F kg

4

4D

F

A

Ff t

donde ft= 6330 kg/cm2

cmf

FD

t

5.14

Por lo tanto se busca el diámetro comercial "8

5D

Diseño de Soldadura 13.6098M kg-m

mdcolum 403.0

83.15131403.0

13.6098

dcolum

MF kg

s

sA

FF el Área = t(0.7071)(longitud) y se despeja el espesor t

Se propone electrodo E-70XX FXX=3700 FR=0.75 fs=0.6FXX

Fs=FRfs=1665 kg/cm2 . Se propone una longitud de soldadura Long= 17.7 cm

726.0)7.17)(7071.0(1665

83.15131

7071.0

lF

Ft

s

sol cm

Por lo tanto la soldadura será de t = 8 milimetros

Revisión a Cortante

Resistencia de diseño a Cortante (5.3.9 de las Normas Técnicas Complementarias)

FrAbFnR Resistencia de diseño a cortante

Fr=0.75

Ab=7.91 que es el área de los 4 tornillos

Fn=3380 kg Resistencia al cortante en conexiones por aplastamiento

Page 41: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

41

85.20051)3380)(91.7(75.0 FrAbFnR kg

Resistencia de diseño a tensión

Fr=0.75

Ab=3.96 que es el área de los 4 tornillos

Fn=6330 kg Resistencia al cortante en conexiones por aplastamiento

1.18800)6330)(96.3(75.0 FrAbFnR kg

1632.018800

9.15131

9.20051

1130

Rt

F

Rv

V

6.1.8 Cimentación.- Para llevar a cabo el diseño de la cimentación sobre la que se

apoyan las columnas metálicas se considera la figura siguiente:

La capacidad de carga del terreno (σ = 20.0 Ton/m2) debe ser tal que pueda soportar las

acciones provenientes de la estructura. Este cálculo comparativo implica la utilización de

las fórmulas siguientes:

z

z

x

x

I

XM

I

ZM

A

P

12

3baI x

12

3 baI z

2

aX

2

bZ baA

ba

M

ba

M

ba

P

ba

aM

ba

bM

ba

P zxu

zx

u

2233

66

12

2

12

2

Page 42: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

42

Al considerar lo establecido en la figura se tiene:

55.27.15.1 A m2

384.17.15.1

6622

ba

569.17.15.1

6622

ba

Así se tendrá:

zxu MM

P569.1384.1

55.20.20

De acuerdo con los resultados obtenidos de la corrida del programa se tiene:

Pu = (7401.87)(1.4) = 10.6 Ton

Mz = 2.72 Ton-m Mx = 14.24 Ton-m

27.470.19078.472.2569.124.14384.155.2

6.100.20

05.2827.470.19078.41 Ton/m2

50.1927.470.19078.42 Ton/m2

35.1127.470.19078.43 Ton/m2

89.1927.470.19078.44 Ton/m2

Con estos esfuerzos se define un diagrama como el mostrado a continuación, en el que

se observa una zona con valores negativos, que permite observar la existencia de una

excentricidad. Esto último resulta inadecuado ya que se busca que la totalidad del suelo

soporte a la zapata de la estructura.

Para eliminar la excentricidad que da lugar a este comportamiento inadecuado se propone

modificar dimensiones y/o reubicar el dado. La excentricidad presente se calcula a partir

de la expresión siguiente:

1346.10

24.14

P

Me cm

Page 43: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

43

a) Definición de geometría.- Modificando las dimensiones se llegó a una Zapata corrida en la dirección X. Se llegó a un arreglo como el siguiente:

Para determinar la excentricidad a la que está sometido este arreglo de zapata, se llevó a

cabo un análisis estático a partir de las condiciones siguientes:

De acuerdo con lo establecido en la figura anterior se tiene:

bbA 12.1312.13 m2

bb

I z 2.18812

12.13 3

tonP 46.16

Así se tendrá:

Page 44: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

44

I

ZM

A

P

bb 2.188

56.62.11

12.13

6.100.20

bb

4.081.00.20

06.020

21.1b

Por especificación se propone el siguiente dimensionamiento: Esto último resulta

adecuado ya que la totalidad del suelo soporta la zapata de la estructura. A partir de esta

geometría se determina si se tiene la capacidad de soportar el cortante que actúa sobre la

estructura. Los lineamientos del reglamento de construcciones del D. F. establecen un

rango para la cuantía del acero 0,010 < p < 0,06. Para este caso se propone p = 0,01.

2.50912001010001.0202.09.0202.0 * cRcr fdbpFV kg

Se propone h = 20.0 cm, y una modificación en la sección de la zapata tal que se ve como

se muestra en la figura siguiente:

Se usara varilla #3 Ф=0.91 cm

40X0.91=36 cm

b=138.8=140cm

)4.1(2.188

56.62.11

)4.1(12.13

46.16

16.1 ton/m2

60.0 ton/m2

Page 45: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

45

6.1.8.1 Diseño de contratrabe

W=ql=1.16 (6.56)=7.60 t/m

M = 20500000 kg-cm 20 cm

a) Determinación del acero de refuerzo.- Esto se determina a partir de las expresiones siguientes

1.3

203314

205000

3314

d

MA u

s cm2 Si se colocan 2 varillas del # 5 (A = 1.98 cm2) se

tendrán: # = 3.1/1.98 = 1.56 Por lo tanto se colocaran 2 varillas

5400uV kg

1810)20)(20)(200)(4.0(8.0 uV kg

cmS 2618105400

)20)(42.1)(4200(8.0

cmd

S 102

20

2

El armado del lado largo se propone con varillas de # 5, @ 10 cm, y

Siguiendo el mismo procedimiento se determina el armado del lado corto, mismo que será

a base de varillas de # 4, @ 20 cm

Diseño de contra-trabe W=ql=1.16 (1.4)=1.62 t/m

Page 46: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

46

61)25(4.33

3113640d d = 65 cm h = 70 cm b = 20 cm r = 5 cm

a) Determinación del acero de refuerzo.- Esto se determina a partir de las expresiones siguientes

15

653314

3113640

3314

d

MA u

s cm2 Si se colocan 2 varillas del # 8 (A = 5.07 cm2) se

tendrán: # = 15/5.07=2.95 Por lo tanto se colocaran 3 varillas

Diseño de estribos

tonwl

V 102

)4.12(62.1

2 10000uV kg

Por especificación se propone el siguiente dimensionamiento: Esto último resulta

adecuado ya que la totalidad del suelo soporta la zapata de la estructura. A partir de esta

geometría se determina si se tiene la capacidad de soportar el cortante que actúa sobre la

estructura. Los lineamientos del reglamento de construcciones del D. F. establecen un

rango para la cuantía del acero 0,010 < p < 0,06. Para este caso se propone p = 0,01.

5882200652001.0202.09.0202.0 * cRcr fdbpFV kg

cmS 75588210000

)20)(42.1)(4200(8.0

cmd

S 352

65

2 por lo tanto S=30 cm

Page 47: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

47

6.1.9 Pernos.- Para llevar a cabo el diseño de los pernos, en la que se une la placa base

con el dado de la zapata de la cimentación; se consideran los cálculos siguientes:

321085

7.272871

d

MF x

x kg 10703

3210

o

x

n

F kg

2212966

1460578

d

MF z

z kg 44255

22129

o

z

n

F kg

8.54958.44251070 xzT FFF

8.175.125309.0

8.549544

fyF

PD

R

cm. Por lo que consideramos los pernos de

¾” de diámetro.

Longitud de los pernos.- Para llevar a cabo el diseño de la longitud de los pernos, en la

que se une la placa base con el dado de la zapata de la cimentación; se consideran los

cálculos siguientes:

Dl

T

A

P

si 15 kg/cm2

6222.61

905.115

8.5495

D

Tl cm

Considerando lo que nos dice el RCDF

2.76905.14040 l cm este es el que más predomina

La Longitud será de 80 cm

Page 48: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

48

6.2 ESTRUCTURA DE CONCRETO

Como la estructura del área de oficinas se basó en la utilización de muros de carga, no se

requirió del diseño de columnas ni de trabes de unión entre estas. Con base en esto sólo

se implementaron castillos y dalas de cerramiento. Las únicas trabes que se diseñaron

son las que se encargan de soportar el volado en la zona frontal del área de oficinas.

6.2.1 Trabes.- Como se ha mencionado anteriormente, se presentará sólo el desarrollo

del diseño de una sola trabe, misma que se localiza en el eje D, entre los ejes 1 y 6, para

lo que es necesario tomar en consideración los resultados obtenidos de la corrida del

programa mencionado, en lo que se refiere al diagrama de momentos asociados a las

condiciones de cargas analizadas.

De acuerdo con el análisis realizado, se tiene un valor de momento máximo a lo largo de

su longitud, con valor de 16.9 Ton-m, y que se localiza en el tramo 1-3. A partir de este

dato se llevó a cabo el diseño de la trabe:

Mmax = 16.90 Ton-m Mu = (FR)(Mmax) = (1.4)(16.90) = 23.66 Ton-m

Dimensionamiento

Proponiendo un ancho de 20.0 cm se tendrá:

0.61

204.31

2366000

4.31

b

Md u

cm 60.0 cm

Acero de refuerzo

40.12

0.573345

2366000

3345

d

MA u

s cm2 Área de acero necesaria

Al proponer 3 varillas del # 8 se tendrá un área de acero propuesta:

21.1507.53 spA cm2, Es mayor que el área necesaria, se acepta.

Page 49: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

49

Estribos

Vmax = 10 468 Kg Vu = (FR)(Vmax) = (1.4)(10468) = 14 655.20 Kg

Vcr = (6.17)(20.0)(57.0) = 7 033.8 Kg

Si se proponen estribos del # 3 (As = 0.71 cm2), se tiene:

15.40

8.70332.14655

57.042.10.42009.0

cru

syr

VV

dAFFS cm

Por especificaciones del RCDF se propone Estribos del # 3 @ 20 cm

6.2.2 Muros. Se utilizara tabique de barro recocido unido a mortero tipo II

El peso del tabique de barro recocido es de 315 kg/cm2

El peso específico de la losa es de 2400 kg/cm2

Distancia total de muros en el sentido x-x 2.7 m

Distancia total de muros en sentido y-y 13.32 m

CARGAS EN AZOTEA

Peso de la losa 36.8631)2400)(1.0)(32.13(7.2 kg

Carga Viva 4.3596)100)(32.13(7.2 kg

Peso Muros 6.6309)315)(07.1)(32.137.27.2( kg

Peso Total = 18537.4 kg

Revisión por sismo sentido x-x

5.22241

)12.0(4.18537 C

Q

WF kg

V = F = 2224.5 kg

08.0)12(2264

5.2224

Lt

V

A

VFm kg/cm2

Se compara con Vm* obtenido del reglamento del Distrito Federal

Vm* = 3 kg/m2

Page 50: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

50

08.0/3* 2 cmkgVm ”ok”

Revisión por sismo sentido y-y

13.0)12)(5*280(

5.2224

Lt

V

A

VFm kg/cm2

Se compara con Vm* obtenido del reglamento del Distrito Federal

Vm* = 3 kg/m2

13.0/3* 2 cmkgVm ”ok”

Revisión por compresión

Peso de la Losa = 1.4 (340) = 476 kg/ml

Carga Muerta = 315 (4.07) = 1282 kg/ml

Peso total = 1758 kg/ml

46.1)12)(100(

1758

Lt

V

A

VFm kg/cm2

22 /46.1/20* cmkgFmcmkgfm “ok”

Los castillos y dalas se definieron de acuerdo a lo especificado en las Normas Técnicas

Complementarias para diseño y construcción de mampostería Cap.5

Page 51: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

51

6.2.3 Losas.- Se considera que la losa no será colada monolíticamente con sus apoyos,

de forma que se diseñe bajo una condición más conservadora. Por otra parte, como

tablero crítico se seleccionó uno ubicado en una de las esquinas, que se ubica entre las

líneas de los ejes A - D y 3 - 5, mismo que es un tablero rectangular de dos lados

adyacentes discontinuos como se observa en la figura a continuación:

Se tienen valores para:

Claro corto a1 =4.00m

Claro largo a2=4.50m

Peso de la losa ω = 800.00 kg/m2

La relación “m” que se obtiene a partir de los siguientes datos:

90.0889.00,450

0.400

2

1 a

am

Los coeficientes para obtener los momentos flexionantes de los tableros, se obtendrán

tomando como base la tabla 6.1 de Las Normas Técnicas Complementarias para Diseño y

Construcción de Estructuras de Concreto (hoja siguiente). A partir de lo anterior se tienen

los parámetros siguientes: m = 0.90, el tablero es de esquina (dos apoyos discontinuos), y

se considera el caso II (losa no colada monolíticamente).

Page 52: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

52

Page 53: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

53

En el lado largo se tiene: (-) II = 410 II = 154

En el lado corto se tiene: (-) II = 412 II = 199

El peralte mínimo se determina por medio de la expresión siguiente:

50.8

250

5.1450400450400

250

5.12121

aaaa

d cm

h = 8.5 +2.5 = 12.00 cm (Por especificaciones del RC del DF)

Para determinar el peralte de la losa considerando el momento último que actúa sobre el

lado largo de la losa, resulta ser:

b

Md u

4.35 donde Mu = (FR)(M) b= 1.00 m = 10.00 cm

8.48781.4870001.00.47404120001.022

1 aKM kg-m

Mu = (1.4)(487.8) = 683.0 kg-m =68293.12 kg-cm

5.4

1004.35

0.73840d cm

h = 4.5 + 2.5 = 7.0 cm (Por diseño considerando el momento último)

El criterio más conservador establece un peralte de la losa de 12.00 cm.

Para el cálculo del acero de refuerzo (As)

57.2

5.85.3118

73840

35.5.0142009.05.1

d

M

dqFF

MA u

yR

u

s cm2,

Por otra parte el área mínima de acero de refuerzo se determina a partir de la siguiente

expresión:

24.21005.8

4200

2507.07.0 '

dbF

fA

y

c

smín cm2,

Considerando el criterio más conservador, si se utilizan varillas del No. 3 (As = 0.71 cm2),

se tendrá:

Page 54: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

54

62.371,0

57,2.

3var#

A

AVarillasNo s

varillas

La separación entre estas será: 2762,3

100

var.

illasNo

AnchoS cm

Por especificación del Reglamento de Construcciones del D. F., que establece la

separación máxima entre varillas para losas se tiene:

25,2150,850,250,2 dSmáx cm

El criterio más conservador indica una separación de varillas de 21.25 cm, pero se cerrará

a 20.0 cm.

6.2.4 Cimentación.- El diseño de la cimentación tomó en consideración que se contaría

con muros de carga, por lo que un metro lineal de zapata para la sección más

desfavorable estaría ubicado también sobre el eje D entre los ejes 3 y 5. El peso

transmitido a la cimentación estaría dado por las cargas siguientes:

Peso de losa 1 536.00 Kg/m

Peso de losa 2 740.00 Kg/m

Peso de trabe T-1 240.00 Kg/m

Peso de muro 740.00 Kg/m

Wt = 2256.00 kg/m Wu = (1.4)(2 256.0) = 3 158.4 Kg

A partir de este peso se determinarán las dimensiones de la zapata de cimentación. Se

comparará la resistencia del terreno (Rt = 20.0 T/m2) con la presión producida por la carga

Wt que actuará sobre el suelo y así determinar el valor de las dimensiones

correspondientes, considerando una longitud de zapata unitaria (l = 1.00 m).

lbA

WR t

t

16.300.20

158.0

00.10.20

16.3b m 16.00 cm

Un valor de b = 16.00 cm, resulta muy corto, razón por la cual se propuso:

b = 30.00 cm

Así, el esfuerzo provocado por la carga será:

0.4210

00.175.0

00.3158 kg/m2

Page 55: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

55

El momento asociado a este esfuerzo será:

45.189

2

30.00.4210

2

22

l

M

Kg-m

El momento último será:

Mu = (FR)(M) = (1.4)(189.45) = 265.23 Kg-m

Dimensionamiento

El valor del peralte se calculará a partir de la expresión siguiente:

906.2

1004.31

26523

4.31

l

Md u

cm que es un valor muy

pequeño

Se propuso d = 10.00 cm, para h = 15.00 cm.

Acero de refuerzo

79.0

103345

26523

3345

d

MA u

s cm2 que es un valor muy

pequeño

63.210100

4200

0.2507.07.0 '

min dbF

fA

y

c

s cm2

Si se proponen varillas del # 3 se tiene:

71.371.0

63.2var#

var

min A

As var @ 27 cm

Se propone varilla del # 3 @ 20cm

Page 56: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

56

CONCLUSIONES:

El Diseño Estructural del Taller Civil de la Termoeléctrica fue diseñado con las cargas más

desfavorables y en base a los resultados obtenidos se fue iterando hasta que se encontrar

un elemento cuyas propiedades satisficiera a las cargas sometidas en la parte que fue de

acero y en la de mampostería se reviso con las Normas Técnicas Complementarias.

Es importante analizar la ubicación del proyecto y el análisis del modelo arquitectónico

debido a que en base a estos datos diseñamos elementos que puedan soportar cambios

climáticos como un empuje del viento, sismo, si es una zona lluviosa o no, nos ayuda en

el diseño de partes aguas, cunetas, drenajes, ventilación, etc.

En el diseño de la estructura también se debe considerar los materiales como ventanas,

puertas, lamina galvanizada que fue en el caso de este proyecto, ladrillos, etc., que se van

a utilizar debido a que estos deben de ser de calidad y checar los precios que te ofrecen

diferentes proveedores en el mercado para obtener un presupuesto más optimo.

Durante la realización del proyecto fueron aplicados los conocimientos adquiridos durante

la carrera de Ingeniería Civil, principalmente de materias como estructuras de Concreto,

Estructuras de Acero, mampostería, las materias de construcción y geotecnia, Ingeniería

Sísmica y Edificios.

Page 57: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

57

BIBLIOGRAFIA

Normas Técnicas Complementarias para la construcción de edificios de concreto, acero,

mampostería del Reglamento para Construcción del DF.

Manual de Diseño de Obras Civiles de Comisión Federal de Electricidad Viento y Sismo

Programa Prodisis para obtener los periodos que delimitan la meseta.

Programa RAM Advance para el diseño estructural.

Programa MatCad.

Programa AutoCad 2009.

Diseño Sísmico de Edificios, autor Bazán Meli.

Aspectos Fundamentales del Concreto Reforzado, autores González Cuevas, Robles

Fernández.

Page 58: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

58

UNIVERSIDAD AUTÓNOMA

METROPOLITANA

ANEXO A

ESTUDIO DE MECÁNICA DE SUELOS

ALUMNA

DENISE MONSERRAT GARRIDO VILLANUEVA

ASESOR

DR. ALONSO GÓMEZ BERNAL

Page 59: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

59

Antecedentes del proyecto:

La subdirección de energéticos y seguridad de Durango pretende tener un

proyecto que sea un beneficio a la sociedad generando empleos. Por lo anterior la

Subdirección necesita nueva infraestructura (“Taller Civil”), que se encontrara

ubicado en C.T Guadalupe Victoria, Lerdo, Durango, México.

El Proyecto Arquitectónico ya ha sido dibujado por la Arq. Ana María López Luna

el cual será utilizado para diseñar los elementos que van a resistir a la estructura

así como sus costos.

Se realizo un estudio de mecánica de suelos y solución de la cimentación para el

nuevo edificio del “Taller Civil” incluyendo recomendaciones para la cimentación.

Descripción del Proyecto:

El área donde se pretende construir el taller civil presenta las siguientes

dimensiones 28.6m de largo y 13.52 de ancho aproximadamente y a un nivel de

piso terminado de 20 cm esta se encuentra libre de construcciones no existen

arboles ni vegetación. El taller será construido de la siguiente manera: el área de

las oficinas serán estructuras de concreto como losa de techo, columnas vigas y

muros macizos con recubrimiento. El área de trabajo será con una estructura de

acero con un claro máximo de 8.30 cm, el techo será de lamina y muros

multipanel, en la segundo caso se propondrá que área de las oficinas se han

estructuras de acero, en la figura 1 se muestra una planta arquitectónica del

“Taller Civil”.

Se colocara un relleno de aproximadamente 20 cm del nivel cero, para dar el nivel

de piso terminado el relleno máximo que se realizara será de 40 cm.

Figura 1.

Page 60: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

60

Fig.1 Planta Arquitectónica del Taller Civil Guadalupe Victoria

Page 61: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

61

La Geología del Estado de Durango se caracteriza por la presencia de Rocas

Ígneas y sedimentarias mesozoicas plegadas, que descansan sobre un basalto

paleozoico. La comarca Lagunera se encuentra en la mesa central norte la cual

consiste en varias sierras alineadas en dirección NW-SE.

El área esta drenada por arroyos, que en la temporada de lluvias vierten sus

aguas al rio Nazas, el cual no tiene salida al mar.

La precipitación pluvial anual está comprendida entre 200 mm y 300 mm, y el 70%

de ella cae entre junio y octubre, generalmente en forma torrencial.

La unidad estratigráfica más antigua que aflora en la zona es la formación Nazas y

pertenece al sistema triásico, consiste principalmente en las vías

interestratificadas con lutita, limonita y areniscas rojas.

La unidad más joven del sistema cuaternario donde se presenta el aluvión. Los

abanicos aluviales constituyen una faja continua a lo largo de las sierras. El

espesor del aluvión es desconocido, aunque se cree que no pasa de un espesor

de 100-150 m.

El bolsón de mapimí, contiene capas lacustres antiguas que están cubiertas por

aluvión del periodo reciente, acarreado por los ríos Nazas y Aguanaval.

El conjunto de sistemas antes mencionados se encuentran intrusionados en

algunas zonas con granitos, dioritas y áreas superficiales.

Se encuentra en la zona sísmica “A”, caracterizada por sismos raros y

desconocidos.

Se realizo la inspección, muestreo alterado y se utilizo el penetrómetro en los

pozos a cielo abierto excavados. La ubicación de los pozos se muestran en las

siguientes fotografías y en la figura, la profundidad máxima explorada fue de 3.05

y se detecto el nivel de agua freática a 3.0 m.

Page 62: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

62

Estratigrafía del suelo

Se encontró el nivel freático a la profundidad de 3.05 m.

Page 63: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

63

Corte estratigráfico del sitio donde se construirá el “Taller Civil”.

Se colocara un relleno de 40 cm en la zona con mayor desnivel aproximadamente

para dar el nivel de piso terminado, este será de grava arena bien graduada,

compactando el 95% del peso volumétrico seco máximo y contenido de agua

optimo.

Se recomienda que la cimentación será con zapatas aisladas ligadas con una

trabe de liga, estarán desplantadas a una profundidad de 1.4 m a partir del nivel

de piso terminado, en el depósito de limo arcilloso con poca arena fina, color café

oscuro en estado natural, consistencia media, plasticidad baja. El ancho mínimo

de las zapatas es de 0.60 m. A continuación se muestran los resultados obtenidos

de estudio así como los asentamientos.

Capacidad de carga del suelo

Page 64: UNIVERSIDAD AUTÓNOMA METROPOLITANA …materiales.azc.uam.mx/area/Estructuras/2260518/Garrido_Villanueva... · 6.1.8.1 Diseño de contra-trabe ... en la que la cimentación está

64