Unit 2 study guide (part 1) - Cracking GenChem -...

12
General Chemistry II | Unit II | Part 1 | 1 General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reaction Equilibrium in the Gas Phase Introduction o Some chemical reactions have a significant amount of reactant left over when equilibrium is reached. Observation 1: Reaction equilibrium o N ! g + 3H ! g 2NH ! g If we start with 1 mole of N2 and 3 moles of H2, the balanced equation predicts 2 moles of NH3 will be produced. Experimentally, only 1.91 moles of NH3 are produced. Remember: there is no limiting reactant involved (since neither reactant is present in less than the stoichiometric ratio established by the equation). Conclusion: this reaction achieves reaction equilibrium in which all three gases are present in the gas mixture. The amount of NH3 produced can be varied by changing: The temperature of the reaction; The volume of the reaction container; or The relative starting amounts of the reactants. o Some reactions achieve an equilibrium very close to the complete reaction. This means that, at equilibrium, there are virtually no reactants remaining. o A qualitative model of equilibrium From phase transitions studies: equilibrium occurs when the rate of the forward process is matched by the rate of the reverse process Therefore, in gas reactions, at equilibrium the forward reaction rate is equal to the reverse reaction rate. How do we show that the forward and reverse reactions continue to occur at equilibrium? Vary the volume. N 2 O 4 (g) → 2 NO 2 (g) o When the volume is increased, the amount of NO 2 at equilibrium is larger and the amount of N 2 O 4 is smaller. If the forward and reverse reactions simply stopped when equilibrium was reached, the molecules would have no way of “knowing” of the change in volume, so the amounts of gas would not have changed. Change in volume affects both the forward and reverse reaction rates. If the rate of the forward reaction is faster than the rate of the reverse reaction, there will be more product than reactant at equilibrium. Observation 2: Equilibrium constants o N 2 O 4 (g) → 2 NO 2 (g) In this experiment, we vary the number of moles of N2O4 and measure the equilibrium pressures of both the reactant and product gases.

Transcript of Unit 2 study guide (part 1) - Cracking GenChem -...

Page 1: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  1  

General  Chemistry  II,  Unit  II:  Study  Guide  (part  1)  CDS  Chapter  21:  Reaction  Equilibrium  in  the  Gas  Phase  

• Introduction  o Some  chemical  reactions  have  a  significant  amount  of  reactant  left  over  when  equilibrium  is  reached.  

• Observation  1:  Reaction  equilibrium  o N! g + 3H! g → 2NH! g  

§ If  we  start  with  1  mole  of  N2  and  3  moles  of  H2,  the  balanced  equation  predicts  2  moles  of  NH3  will  be  produced.  

§ Experimentally,  only  1.91  moles  of  NH3  are  produced.  Remember:  there  is  no  limiting  reactant  involved  (since  neither  reactant  is  present  in  less  than  the  stoichiometric  ratio  established  by  the  equation).  

§ Conclusion:  this  reaction  achieves  reaction  equilibrium  in  which  all  three  gases  are  present  in  the  gas  mixture.  

§ The  amount  of  NH3  produced  can  be  varied  by  changing:  • The  temperature  of  the  reaction;  • The  volume  of  the  reaction  container;  or  • The  relative  starting  amounts  of  the  reactants.  

o Some  reactions  achieve  an  equilibrium  very  close  to  the  complete  reaction.  This  means  that,  at  equilibrium,  there  are  virtually  no  reactants  remaining.  

o A  qualitative  model  of  equilibrium  § From  phase  transitions  studies:  equilibrium  occurs  when  the  rate  of  the  forward  process  is  

matched  by  the  rate  of  the  reverse  process  § Therefore,  in  gas  reactions,  at  equilibrium  the  forward  reaction  rate  is  equal  to  the  reverse  

reaction  rate.  § How  do  we  show  that  the  forward  and  reverse  reactions  continue  to  occur  at  equilibrium?  

• Vary  the  volume.  • N2O4  (g)  →  2  NO2  (g)  

o When  the  volume  is  increased,  the  amount  of  NO2  at  equilibrium  is  larger  and  the  amount  of  N2O4  is  smaller.  

• If  the  forward  and  reverse  reactions  simply  stopped  when  equilibrium  was  reached,  the  molecules  would  have  no  way  of  “knowing”  of  the  change  in  volume,  so  the  amounts  of  gas  would  not  have  changed.  

• Change  in  volume  affects  both  the  forward  and  reverse  reaction  rates.  § If  the  rate  of  the  forward  reaction  is  faster  than  the  rate  of  the  reverse  reaction,  there  will  be  

more  product  than  reactant  at  equilibrium.  • Observation  2:  Equilibrium  constants  

o N2O4  (g)  →  2  NO2  (g)  § In  this  experiment,  we  vary  the  number  of  moles  of  N2O4  and  measure  the  equilibrium  

pressures  of  both  the  reactant  and  product  gases.  

Page 2: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  2  § The  amount  of  NO2  at  equilibrium  seems  to  be  directly  proportional  to  the  starting  amount  of  

N2O4.  However,  this  graph  suggests  otherwise:  

 § The  equilibrium  pressure  of  NO2  does  not  increase  proportionally  with  the  initial  amount  of  

N2O4.  The  slow  increase  suggests  a  square  root  relationship.  However,  this  graph  suggests  otherwise:  

 § The  near-­‐proportional  relationship  between  the  initial  amount  of  N2O4  and  the  pressure  of  

N2O4  (from  figure  21.1)  suggests  that  we  should  instead  plot  the  pressure  of  NO2  against  the  square  root  of  the  pressure  of  N2O4  (P NO! = 𝑐 P N!O! ).  

§ The  above  equation  can  be  rewritten  by  solving  for  c  and  setting  c  equal  to  Kp:  K! =! !!! !

! !!!! !.  

• The  constant  Kp  (the  reaction  equilibrium  constant)  is  independent  of  the  initial  conditions  and  the  equilibrium  partial  pressures  of  both  the  reactant  and  product:  

 

Page 3: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  3  • Something  to  note:  the  product  (NO2)  appears  in  the  numerator  and  its  exponent  is  its  

stoichiometric  coefficient  in  the  chemical  equation.  Similarly,  the  reactant  (N2O4)  appears  in  the  denominator  and  its  exponent  is  its  stoichiometric  coefficient.  

o N! g + 3H! g → 2NH! g  

§ Predicted  reaction  equilibrium  constant:  K! =!(!!!)!

! !! ∙! !! !  

§ Continuing  from  Observation  1,  we  will  now  vary  the  starting  amounts  and  container  volume  for  this  reaction:  

 § Kp  clearly  remains  constant  for  each  set  of  initial  conditions.  Therefore,  the  reaction  equilibrium  

constant  can  be  found  using  an  equation  in  which  the  partial  pressures  of  the  products  (each  raised  to  their  corresponding  stoichiometric  coefficient)  are  multiplied  together  in  the  numerator,  and  the  partial  pressure  of  the  reactants  (each  raised  to  their  corresponding  stoichiometric  coefficient)  are  multiplied  in  the  denominator.  

• Dynamic  Equilibrium  and  Reaction  Rates  o The  rate  law  can  be  predicted  from  the  coefficients  in  the  reaction  equation.  

#   Step   Explanation  

1   Rate!"#$%#& = k!"#$%#& N!O!  Rate!"#"!$" = k!"#"!$" NO! !  

Since  the  forward  and  reverse  reactions  are  elementary  processes,  these  are  their  rate  laws.  

2   k! N!O! = k! NO! !   In  dynamic  equilibrium,  the  rates  are  equal  to  each  other.  

3   k!k!=

NO! !

N!O!  

A  simple  rearrangement  of  the  previous  expression.  This  looks  similar  to  the  Kp  expression,  except  it  uses  gas  concentrations  instead  of  partial  pressures.  

4   NO! =n!!!V

=P!!!RT

 

N!O! =n!!!!V

=P!!!!RT

 

 

Apply  the  Ideal  Gas  Law  to  make  the  connection  between  gas  concentrations  and  pressures.  

5   k!k!=

NO! !

N!O!=P!!!!

P!!!!=

1RT

 Substitution  of  the  Ideal  Gas  Law  relationships  above  into  equation  3.  

6  K! = RT

k!k!=P!!!!

P!!!!  

Multiplying  by  RT  yields  the  same  expression  as  Kp.  

• Observation  3:  Temperature  Dependence  of  the  Reaction  Equilibrium  o H2  (g)  +  I2  (g)  -­‐>  2  HI  (g)  

§ Here,  we  measure  the  equilibrium  partial  pressures  at  a  variety  of  temperatures.  

Page 4: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  4  § Since  the  equilibrium  constant  increases  with  temperature,  the  pressure  must  also  increase  

dramatically  with  temperature.  § The  temperature  and  pressure  measurements  show  no  simple  relationship  between  

temperature  and  the  equilibrium  constant  Kp.  From  thermodynamics,  the  equilibrium  constant  

varies  with  temperature  according  to  lnK! =!∆!°!"

= ∆!°!.  

§ Since  ΔH°  and  ΔS°  don’t  strongly  depend  on  temperature,  a  linear  relationship  appears  between  lnKp  and  1/T:  

 • The  negative  slope  means  that  Kp  increases  with  temperature.  This  is  because  -­‐  ΔH°/R,  

the  slope,  must  be  negative.  § For  exothermic  reactions,  the  slope  should  be  positive  and  the  equilibrium  constant  should  

decrease  with  increasing  T.  • Observation  4:  Changes  in  Equilibrium  and  Le  Chatelier’s  Principle  

o Ideally,  our  goal  is  to  be  able  to  control  the  equilibrium  of  a  gas  reaction  –  that  would  allow  us  to  force  a  reaction  to  produce  as  much  or  as  little  reaction  as  we  want.  

o Discoveries  so  far:  § The  equilibrium  pressure  of  the  product  of  a  reaction  increases  with  increasing  quantity  of  

reactant.  § The  equilibrium  pressure  of  the  product  of  a  reaction  varies  with  the  volume  of  the  reaction  

container.  However,  this  variation  is  not  easily  predictable  or  explainable.  § In  order  to  explain  this,  we  can  rewrite  the  equilibrium  constant  to  show  the  volume  of  the  

container  (for  N! g + 3H! g → 2NH! g ):  

K! =n NH! ! RT

V!

n N!RTV ∙ n H! ! RT

V! =

n NH! !

n N! ∙ n H! ! RTV

!  

K!RTV

!=

n NH! !

n N! ∙ n H! !  

• When  the  volume  increases,  the  left  side  of  the  equation  decreases  –  therefore,  the  right  side  must  also  decrease,  so  the  denominator  (N2  and  H2)  must  increase  while  the  numerator  (NH3)  decreases.  This  shifts  the  equilibrium  from  products  to  reactants.  

o Changes  in  temperature  § Kp  increases  with  T  for  endothermic  reactions  

• The  products  are  increasingly  favored.  § Kp  decreases  with  T  for  exothermic  reactions.  

·····

= ��

= ��

� ��

Page 5: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  5  • The  reactants  are  increasingly  favored.  • In  exothermic  reactions,  the  reverse  reaction  is  endothermic.  

§ The  equilibrium  shifts  in  the  direction  of  the  endothermic  reaction  when  the  temperature  increases.  

o Le  Chatelier’s  Principle  –  when  a  reaction  at  equilibrium  is  stressed  by  a  change  in  conditions,  the  equilibrium  will  be  reestablished  in  such  a  way  as  to  counter  the  stress.  

o Changes  in  volume  § Increasing  the  volume  reduces  the  partial  pressures  of  all  the  gases  present  and  thus  reduces  

the  total  pressure.  § The  reaction  responds  to  the  stress  of  a  volume  increase  by  offsetting  the  pressure  decrease  

with  an  increase  in  the  number  of  moles  of  gas  at  equilibrium.  

McMurry  &  Fay  13.1–13.11  

Equilibrium  constant  Kc  (13.2)   The  number  obtained  by  multiplying  the  equilibrium  concentrations  of  all  the  products  and  dividing  by  the  product  of  the  equilibrium  concentrations  of  all  the  reactants,  with  the  concentration  of  each  substance  raised  to  the  power  of  its  coefficient  in  the  balanced  chemical  equation.    For  the  reaction  𝑎A + 𝑏B ⇌ 𝑐C + 𝑑D:  

𝐾! =C ! D !

A ! B !  

Heterogeneous  equilibria  (13.4)  

Homogeneous  equilibria  have  all  reactants  in  products  in  the  same  phase,  usually  gaseous  or  solution.  Conversely,  heterogeneous  equilibria  are  those  in  which  the  reactants  and  products  are  present  in  more  than  one  phase.    The  concentrations  of  pure  solids  and  liquids  are  not  included  when  writing  an  equilibrium  equation.  The  equilibrium  equation  for  the  reaction  CaCO! s ⇌ CaO s +CO! g  is  simply  𝐾! = CO!  since  CaCO3  and  CaO  are  both  solids.  

Judging  the  Extent  of  Reaction  (13.5)  

The  numerical  value  of  the  equilibrium  constant  for  a  reaction  indicates  the  extent  to  which  reactants  are  converted  to  products.  

 

Predicting  the  Direction  of  Reaction  (Reaction  Quotient)  (13.5)  

The  reaction  quotient  is  the  same  as  the  equilibrium  constant  Kc,  except  that  the  concentration  values  it  uses  are  not  necessarily  equilibrium  values.  

• If  Qc  <  Kc,  net  reaction  goes  from  left  to  right  (reactants  to  products).  • If  Qc  >  Kc,  net  reaction  goes  from  right  to  left  (products  to  reactants).  • If  Qc  =  Kc,  no  net  reaction  occurs.  

Altering  an  Equilibrium  Mixture:  Changes  in  Concentration  (13.7)  

• The  concentration  stress  of  an  added  reactant  or  product  is  relieved  by  net  reaction  in  the  direction  that  consumes  the  added  substance.  

• The  concentration  stress  of  a  removed  reactant  or  product  is  relieved  by  net  reaction  in  the  direction  that  replenishes  the  removed  substance.  

Page 6: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  6  

Altering  an  Equilibrium  Mixture:  Changes  in  Pressure  and  Volume  (13.8)  

• An  increase  in  pressure  by  reducing  the  volume  will  bring  about  net  reaction  in  the  direction  that  decreases  the  number  of  moles  of  gas.  

• A  decrease  in  pressure  by  expanding  the  volume  will  bring  about  net  reaction  in  the  direction  that  increases  the  number  of  moles  of  gas.  

These  observations  are  due  to  the  Ideal  Gas  Law:  the  pressure  of  an  ideal  gas  is  inversely  proportional  to  the  volume  at  constant  temperature  and  quantity.  

Catalysts  and  equilibrium  (13.10)  

• If  a  reaction  mixture  is  at  equilibrium  in  the  absence  of  a  catalyst,  it  will  still  be  at  equilibrium  after  a  catalyst  is  added  because  the  forward  and  reverse  rates,  though  faster,  remain  equal.    

• If  a  reaction  mixture  is  not  at  equilibrium,  a  catalyst  accelerates  the  rate  at  which  equilibrium  is  reached,  but  it  does  not  affect  the  composition  of  the  equilibrium  mixture.    

• Catalysts  do  not  appear  in  the  equilibrium  constant  expression.  

Link  between  chemical  equilibrium  and  chemical  kinetics  (13.11)  

Step   Explanation  

A + B ⇌ C + D   Consider  this  reaction.  

Rate  forward = 𝑘! A B  Rate  reverse = 𝑘! C D  

The  forward  and  reverse  reactions  are  elementary  reactions  with  these  rate  laws.  

𝑘! A B = 𝑘! C D  at  equilibrium   The  forward  and  reverse  rates  are  equal  at  equilibrium.  

𝑘!𝑘!=

C DA B

 Rearrange.  

𝐾! =C DA B

 The  right  side  of  the  equation  is  the  same  as  the  equilibrium  constant  expression  for  the  forward  reaction,  which  equals  the  equilibrium  constant  Kc  since  the  reaction  mixture  is  at  equilibrium.  

𝐾! =𝑘!𝑘!  

The  equilibrium  constant  is  simply  the  ratio  of  the  rate  constant  for  the  forward  and  reverse  reactions.  

 

CDS  Chapter  16:  Phase  Transitions  and  Phase  Equilibrium  • Introduction  

o Liquids  and  solids  don’t  follow  the  Kinetic  Molecular  Theory  of  Gases  § The  densities  of  these  condensed  phases  are  thousands  of  times  greater  than  the  typical  density  

of  a  gas.  § Unlike  the  Kinetic  Molecular  Theory,  molecules  in  liquid  and  solid  phases  must  interact  with  

each  other.  • Observation  1:  Gas-­‐Liquid  Phase  Transitions  

o Recall  Charles’  Law:  the  volume  of  a  fixed  sample  of  gas  is  proportional  to  the  absolute  temperature  of  the  gas,  provided  that  the  pressure  is  constant.  

Page 7: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  7  § The  typical  Charles’  Law  experiment  traps  gas  in  a  cylinder  (with  a  piston  to  maintain  a  constant  

pressure)  and  varies  the  temperature.  With  each  new  temperature,  the  piston  moves  to  establish  a  new  volume.  

o If  we  keep  lowering  the  temperature  of  a  sample  of  butane  gas,  the  linear  relationship  between  volume  and  temperature  abruptly  stops  at  272.6  K  –  the  volume  drops  to  only  0.097  L:  

 § This  change  in  physical  properties  at  one  temperature  is  a  phase  transition.  At  272.6  K,  butane  

converted  from  gas  to  liquid.  The  temperature  of  this  transition  is  the  boiling  point.  § The  boiling  point  does  not  depend  on  how  much  liquid  or  gas  there  is  in  a  sample.  

o If  we  increase  the  applied  pressure,  the  phase  transition  occurs  at  a  higher  temperature  (for  butane,  20  K  higher).  The  temperature  of  the  phase  transition  depends  on  the  applied  pressure.  

o The  boiling  point  temperature  also  depends  on  substance  identity.  Different  substances  have  vastly  different  boiling  points.  

• Observation  2:  Vapor  pressure  of  a  liquid  o Obviously,  liquids  left  in  an  open  container  will  eventually  evaporate  even  if  the  temperature  of  the  

liquid  is  well  below  its  boiling  point.  o The  tendency  of  a  liquid  to  evaporate  is  known  as  its  volatility  –  a  more  volatile  liquid  evaporates  more  

readily.  § A  quantitative  measure  of  volatility  can  be  found  by  modifying  the  previous  cylinder  by  adding  a  

gauge  to  measure  the  pressure.  The  cylinder  is  filled  with  water  only;  the  piston  is  then  pulled  back,  creating  an  empty  space  above  the  liquid  water.  We  would  assume  that  the  pressure  of  this  space  is  zero.  

§ Instead,  the  pressure  rises  to  a  constant  23.8  torr.  Therefore,  there  must  be  gaseous  water  in  the  container.  Since  there  was  no  gas  initially,  this  gas  must  have  come  from  evaporation  of  the  liquid  water.  

§ Since  not  all  of  the  water  is  evaporated  at  equilibrium,  both  the  liquid  and  gas  phases  are  present  at  the  same  time.  They  are  in  phase  equilibrium  

o The  pressure  of  the  vapor  above  the  liquid  rises  to  23.8  torr  regardless  of  the  volume  or  initial  amount  of  liquid.  

§ However,  the  amount  of  water  that  evaporates  must  differ  when  the  volume  or  initial  amount  is  varied.  This  is  because  the  volume  available  for  the  vapor  to  occupy  changes  with  these  modifications  –  in  order  to  maintain  the  same  pressure  (23.8  torr),  the  quantity  of  water  vapor  must  change.  

Page 8: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  8  § This  reveals  that  the  pressure  of  the  vapor  is    the  most  important  property  in  establishing  

phase  equilibrium.  § The  vapor  pressure  of  a  liquid  is  the  single  specific  pressure  at  which  it  will  be  in  phase  

equilibrium  with  its  vapor.  o Vapor  pressure  varies  with  temperature  –  and  the  relationship  is  not  proportional.  

 § The  vapor  pressure  also  depends  on  the  identity  of  the  substance.  

• Observation  3:  Dynamic  Equilibrium  between  Liquid  and  Gas  Phases  o Why  do  we  always  get  the  same  pressure  at  equilibrium  for  the  same  temperature,  regardless  of  other  

conditions?  o Since  the  vapor  exerts  the  same  pressure  in  a  larger  volume  (for  constant  T),  the  Ideal  Gas  Law  states  

that  there  are  more  molecules  in  the  vapor  after  the  volume  is  increased  and  equilibrium  is  reestablished.  

§ More  liquid  must  have  evaporated  for  this  to  happen.  § The  only  way  that  the  liquid  could  have  “known”  to  evaporate  when  the  volume  increased  is  if  

the  molecules  in  the  liquid  were  always  evaporating  –  even  at  equilibrium.  There  must  be  a  constant  movement  of  molecules  from  liquid  to  gas.  

§ Since  the  pressure  of  the  vapor  remains  constant  when  volume  is  fixed,  condensation  must  also  always  be  occurring.  This  constant  pressure  at  a  fixed  volume  shows  that  the  number  of  molecules  going  from  liquid  to  gas  must  exactly  offset  the  number  of  molecules  going  from  gas  to  liquid.  

§ This  constant  movement  of  molecules  between  the  phases  is  known  as  dynamic  equilibrium.  o What  factors  are  important  in  dynamic  equilibrium?  

§ When  the  volume  is  increased,  the  vapor  pressure  remains  constant  and  the  quantity  of  gas  increases.  

§ For  this  to  be  possible,  evaporation  initially  occurs  more  rapidly  than  condensation  until  equilibrium  is  achieved.  

§ Mechanics  of  evaporation  and  condensation  • Molecules  leave  the  gas  phase  and  enter  the  liquid  phase  by  striking  the  surface  of  the  

liquid.  Therefore,  the  rate  of  condensation  depends  on  the  frequency  of  molecules  striking  the  liquid  surface.  

• This  strike  frequency  decreases  when  the  volume  is  increased  because  the  density  of  gas  molecules  decreases  (think  KMT).  

Page 9: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  9  • The  rate  of  condensation  becomes  lower  than  the  rate  of  evaporation,  so  there  is  a  net  

flow  of  molecules  from  liquid  to  gas.  This  continues  until  equilibrium  is  reestablished,  at  which  point  the  rates  of  evaporation  and  condensation  are  once  again  equal.  

§ The  vapor  pressure  doesn’t  depend  on  the  surface  area  of  the  liquid  since  the  rate  of  evaporation  and  the  rate  of  condensation  increase  with  increasing  surface  area.  

o What  determines  the  rate  of  evaporation?  The  increase  in  vapor  pressure  with  increasing  temperature  is  not  solely  due  to  the  relationship  between  P  and  T  in  the  Ideal  Gas  Law.  

§ While  the  Ideal  Gas  Law  relationship  between  P  and  T  is  proportional,  the  relationship  between  vapor  pressure  and  temperature  is  much  larger  than  proportional.  

§ Since  the  vapor  pressure  rises  with  temperature,  there  must  be  a  greater  quantity  of  gas  in  the  vapor  phase  at  higher  temperature.  Therefore,  the  rate  of  condensation  must  be  higher.  

§ However,  at  equilibrium  the  rates  of  condensation  and  evaporation  must  be  equal.  Therefore,  the  rate  of  evaporation  is  also  higher  at  higher  temperatures.  

§ Since  the  rate  of  evaporation  depends  on  the  identity  of  the  liquid  is,  vapor  pressures  differ  for  each  liquid.  

o A  model  for  the  relationship  between  temperature  and  evaporation  § Temperature  is  a  measure  of  the  kinetic  energy  of  molecules  in  both  gases  and  liquids.  This  is  

shown  by  the  fact  that  a  greater  quantity  of  molecules  is  able  to  escape  the  liquid  at  higher  temperatures  (they  are  able  to  overcome  the  liquid’s  intermolecular  forces).  

§ What  causes  different  substances  to  have  different  rates  of  evaporation?  • Substances  with  lower  vapor  pressures  have  lower  rates  of  evaporation  and  

condensation  –  this  means  the  substance  has  fewer  molecules  with  high  enough  KE  to  escape  the  liquid  at  a  given  temperature.  

§ Dynamic  equilibrium  • At  a  given  temperature,  only  a  fraction  of  the  liquid  molecules  have  enough  KE  to  

evaporate  –  this  fixes  the  rate  of  evaporation  • The  rate  of  condensation  must  match  the  rate  of  evaporation  at  equilibrium  –  this  is  

only  possible  at  one  specific  pressure.  • Therefore,  at  a  given  temperature,  only  a  single  pressure  will  result  in  phase  

equilibrium  for  that  substance.  

McMurry  &  Fay  10.1–10.4  

Polar  covalent  bonds  and  dipole  moments  (10.1)  

Polar  covalent  bonds  form  between  atoms  of  different  electronegativity.  These  bonds  are  characterized  by  an  unequal  sharing  of  the  bonding  electrons  between  the  two  atoms.  These  bonds  have  positive  and  negative  ends,  known  as  dipoles.    Molecules  as  a  whole  can  also  be  polar  because  of  the  net  sum  of  the  individual  bond  polarities  and  lone-­‐pair  contributions.  

Intermolecular  forces  (10.2)   Water  (H2O)  has  clear  intramolecular  forces  between  each  of  the  two  hydrogen  atoms  and  the  oxygen  atom.  However,  H2O  exists  as  a  gas,  liquid  or  solid  depending  on  its  temperature  –  therefore,  there  are  also  intermolecular  forces  that  act  between  molecules  to  hold  them  together  in  these  phases.  

Ion-­‐dipole  forces  (10.2)   An  ion-­‐dipole  force  is  the  result  of  electrical  interactions  between  an  ion  and  the  partial  charges  on  a  polar  molecule.  

Page 10: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  10  

 

Dipole-­‐dipole  forces  (10.2)   Dipole-­‐dipole  forces  occur  between  neutral  but  polar  molecules  as  the  result  of  electrical  interactions  among  dipoles  on  neighboring  molecules.  These  forces  are  generally  weak  (3–4  kJ/mol).  The  strength  of  a  dipole-­‐dipole  interaction  depends  on  the  sizes  of  the  dipole  moments  involved.  

 

London  Dispersion  Forces  (10.2)   Intermolecular  forces  occur  between  nonpolar  molecules  and  among  the  individual  atoms  of  a  noble  gas.  All  atoms  and  molecules,  regardless  of  structure,  experience  London  Dispersion  Forces  which  result  from  the  motion  of  electrons.  While  the  average  distribution  of  electrons  throughout  a  symmetrical  molecule  is  symmetrical,  at  any  given  moment  there  may  be  more  electrons  at  one  end  of  the  molecule  than  the  other.  This  instantaneous  dipole  can  affect  the  electron  distributions  in  neighboring  molecules  and  induce  temporary  dipoles.    LDFs  are  generally  small  (1–10  kJ/mol).  

Hydrogen  bonds  (10.2)   A  hydrogen  bond  is  an  attractive  interaction  between  a  hydrogen  atom  bonded  to  a  very  electronegative  atom  (O,  N  or  F)  and  an  unshared  electron  pair  on  another  electronegative  atom.  Hydrogen  bonds  are  especially  strong  because  O-­‐H,  N-­‐H  and  F-­‐H  bonds  are  highly  polar  and  hydrogen  atoms  lack  core  electrons  to  shield  their  nuclei.    Hydrogen  bonds  are  strong  (40  kJ/mol).  

Page 11: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  11  

A  Comparison  of  Intermolecular  Forces  (10.2)  

 

Viscosity  (10.3)   Viscosity  is  the  measure  of  a  liquid’s  resistance  to  flow.  It  is  realted  to  the  ease  with  which  individual  molecules  move  around  in  the  liquid  (which  is,  in  turn,  related  to  the  IMFs).  Substances  with  small,  nonpolar  molecules  expeirence  weak  IMFs  and  have  low  viscosities.  Larger,  more  polar  substances  experience  stronger  IMFs  and  have  higher  viscosities.  

Surface  tension  (10.3)   Surface  tension  is  the  resistance  of  a  liquid  to  spread  out  and  increase  its  surface  area.  It  is  caused  by  the  difference  in  IMFs  experienced  by  molecules  at  the  surface  of  a  liquid  and  those  experienced  by  molecules  in  the  interior.    Molecules  at  the  surface  feel  attractive  forces  on  only  one  side  and  are  thus  pulled  in  toward  the  liquid  –  molecules  in  the  interior  are  surrounded  and  pulled  equally  in  all  direcitons.    Surface  tension  is  higher  in  liquids  that  have  stronger  IMFs.  Surface  tension  and  viscosity  are  also  temperature-­‐dependent  –  molecules  at  higher  temperatures  have  more  KE  to  counteract  the  attractive  forces  holding  them  together.  

Phase  changes  (10.4)  

   Heating  curve:  

Page 12: Unit 2 study guide (part 1) - Cracking GenChem - Homericegenchem.weebly.com/.../6/41968131/unit_2_study_guide_(part_1).pdfConclusion:’this’reactionachieves ... The’typical’Charles’’Law’experiment’traps’gas’in’acylinder’(with’apiston’to’maintain’aconstant

General  Chemistry  II  |  Unit  II  |  Part  1  |  12  

   The  heat  of  fusion  (ΔHfusion)    describes  the  amount  of  energy  required  to  convert  a  solid  into  a  liquid.  The  heat  of  vaporization  (ΔHvap)  describes  the  amount  of  energy  required  to  convert  a  liquid  into  a  gas.