Two-echelon MIP Approach to Design Green Supply...

11

Transcript of Two-echelon MIP Approach to Design Green Supply...

Page 1: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

aa

a

[email protected]

Page 2: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,
Page 3: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,
Page 4: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

i 1, ,i I

l 1, ,l L

b 1, ,b B

k 1, ,k K

j 1, ,j J

r 1, ,r R

t 1, ,t T

f 1,f F

il li

bp b

bh b

eh 1

kjtc kj

2

kitc ki

3

jitc ji

irtc ir

1

kj kj

2

ki ki

3

ji ji

ir ir

p

i i

b b

kbt bkt

b b

Page 5: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

td t

lC l

fS f

lS l

ilx li

jfx fj

kbt bkt

jbtz bjt

ibtz bit

itz it

1

kjbty bkjt

2

kibty bkit

3

jibty bjit

irty irt

ibtw bit

ite it

1 1 1 1 1 1 1 1 1

1 1 2 2 3 3

1 1 1 1 1 1 1 1 1 1 1

Min

K B T B T J I I Te

b kbt b jbt ibt it

k b t b t j i i t

I B T B T K J K I J I

b ibt kj kjbt ki kibt ji jibt

i b t b t k j k i j i

ir irt

p h z z h z

w tc y tc y tc y

tc y1 1 1 1 1

T I R I L

il il

t i r i l

x

1 1 2 2 3 3

1 1 1 1 1 1 1 1 1 1

MinK I J B T T I R T I

p

kj kjbt ki kibt ji jibt ir irt i it

k i j b t t i r t i

y y y y e

Subject to:

1,..., ; 1,..., 1,...,kbt kbt k K b B t T

1 2

1 1

1,..., ; 1,...,B; 1,...,J I

kbt kjbt kibt

j i

y y k K b t T

1 3

, 1

1 1

1 1,..., ; 1,..., 1,...,K I

kjbt jb t jibt jbt

k i

y z y z j J b B t T

Page 6: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

2 3

, 1

1 1

1 1,..., ; 1,..., ; 1,...,K J

kibt jibt ib t ibt ibt

k j

y y z z w i I b B t T

1

1,..., I; 1,...,B

it b ibt

b

e w i t T

, 1

1

1,..., ; 1,...,R

i t it it irt

r

z e z y i I t T

1 1

1,..., ; 1,...,F B

f jf jbt

f b

S x z j J t T

1 1

1,..., ; 1,...,TL B

l il ibt

l b

S x z i I t

1

1,..., ; 1,...,L

l il it

l

C x e i I t T

1 1

1,...,I R

irt t

i r

y d t T

1

1 1,...,L

il

l

x i I

1

1 1,...F

jf

f

x j J

0 0 0, , 0 1,..., ; 1,..., ; 1,...,ib jb iz z z i I j J b B

1 2 3

1,..., ; 1, ..., ; 1, ..., ; 1, ..., ; 1,...,

, , , , , , , , , 0kbt jbt ibt it kjbt kibt jibt irt ibt it

i I j J b B t T k K

z z z y y y y w e

, 0,1 1,..., ; 1,..., ; 1,..., ; 1,...,il jfx x i I j J l L f F

Page 7: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

321

2 3

...p

p

sssMax f x

r r r

2 2 2f x s

3 3 3f x s

p p pf x s

and ix S s R

3106101r2r

kbt td

t=1

t=2

t=3

Page 8: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

,

kbt

1

kjbty

kbt ite

1

kjbty

t=1

t=2

t=3

7746, 1064475

7809, 1063738

7845, 1062928

7911, 1062074

7984, 1061264

8143, 1060557

8216, 1059773

8297, 1058925

8385, 10581298456, 1057555

1057000

1058000

1059000

1060000

1061000

1062000

1063000

1064000

1065000

7700 7800 7900 8000 8100 8200 8300 8400 8500

Supply chain structure

Page 9: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

[1] Zecca, A. and Chiari, L., Fossil-fuel constraints on global warming. Energy Policy, Vol. 38, No. 1, (2010), 1-3

[2] Shafiee, S. and Topal, E., When will fossil fuel reserves be diminished? Energy Policy, Vol. 37, No. 1, (2009), 181-189

[3] Shafiee, S and Topal, E., A long-term view of worldwide fossil fuel prices. Applied Energy, Vol. 87, No. 3, (2010), 988-

1000

[4] De Meyer, A., Cattrysse, D., Rasinmäki, J., and Van Orshoven, J., Methods to optimise the design and management of

biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews, Vol. 31, (2014), 657-670

[5] Awudu, I. and Zhang, J., Uncertainties and sustainability concepts in biofuel supply chain management: A review.

Renewable and Sustainable Energy Reviews, Vol No. 2, (2012), 1359-1368

[6] Panichelli, L. and Gnansounou, E., GIS-based approach for defining bioenergy facilities location: A case study in

Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass and Bioenergy,

Vol. 32, No. 4, (2008), 289-300

[7] Frombo, F., Minciardi, R., Robba, M., Rosso, F., and Sacile, R., Planning woody biomass logistics for energy production:

A strategic decision model. Biomass and Bioenergy, Vol. 33, No. 3, (2009), 372-383

[8] Möller, B. and Nielsen, P.S., Analysing transport costs of Danish forest wood chip resources by means of continuous cost

surfaces. Biomass and Bioenergy, Vol. 31, No. 5, (2007), 291-298

[9] Perpina, C., Alfonso, D., Pérez-Navarro, A., Penalvo, E., Vargas C., and Cárdenas, R., Methodology based on

Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, Vol. 34, No. 3,

(2009), 555-565

[10] Tatsiopoulos, I. and Tolis, A., Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain

methods. Biomass and Bioenergy, Vol. 24, No. 3, (2003), 199-214

[11] Morrow, W.R., Griffin, W.M., and Matthews, H.S., Modeling switchgrass derived cellulosic ethanol distribution in the

United States. Environmental Science & Technology, Vol. 40, No. 9, (2006), 2877-2886

[12] Gronalt, M. and Rauch, P., Designing a regional forest fuel supply network. Biomass and Bioenergy, Vol. 31, No. 6,

(2007), 393-402

[13] Ren, J., Manzardo, A., Toniolo, S., Scipioni, A., Tan, S Dong, L., and Gao, S., Design and modeling of sustainable

bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective. Bioresource technology,

Vol. 146, (2013), 771-774

[14] Vlachos, D., Iakovou, E., Karagiannidis, A and Toka, A. A strategic supply chain management model for waste biomass

networks. in 3rd International Conference on Manufacturing Engineering. 2008

[15] Bowling, I.M., Ponce-Ortega, J.M., and El-Halwagi, M.M., Facility location and supply chain optimization for a

biorefinery. Industrial & Engineering Chemistry Research, Vol. 50, No. 10, (2011), 6276-6286

Page 10: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

[16] You, F., Tao, L., Graziano, D.J., and Snyder, S.W., Optimal design of sustainable cellulosic biofuel supply chains:

multiobjective optimization coupled with life cycle assessment and input output analysis. AIChE Journal, Vol. 58, No. 4,

(2012), 1157-1180

[17] Yue, D., Slivinsky, M., Sumpter, J., and You, F., Sustainable design and operation of cellulosic bioelectricity supply

chain networks with life cycle economic, environmental, and social optimization. Industrial & Engineering Chemistry

Research, Vol. 53, No. 10, (2014), 4008-4029

[18] Mol, R., Jogems, M., Van Beek, P., and Gigler, J., Simulation and optimization of the logistics of biomass fuel collection.

NJAS wageningen journal of life sciences, Vol. 45, No. 1, (1997), 217-228

[19] Nagel, J., Determination of an economic energy supply structure based on biomass using a mixed-integer linear

optimization model. Ecological Engineering, Vol. 16

[20] Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R., and Taramasso, A., Optimizing forest biomass exploitation

for energy supply at a regional level. Biomass and Bioenergy, Vol. 26, No. 1, (2004), 15-25

[21] Dunnett, A., Adjiman, C., and Shah, N., Biomass to heat supply chains: applications of process optimization. Process

Safety and Environmental Protection, Vol. 85, No. 5, (2007), 419-429

[22] Huang, Y., Chen, C.-W., and Fan, Y., Multistage optimization of the supply chains of biofuels. Transportation Research

Part E: Logistics and Transportation Review, Vol. 46, No. 6, (2010), 820-830

[23] Akgul, O., Zamboni, A., Bezzo, F., Shah, N., and Papageorgiou, L.G., Optimization-based approaches for bioethanol

supply chains. Industrial & Engineering Chemistry Research, Vol. 50, No. 9, (2010), 4927-4938

[24] Chen, C.-W. and Fan, Y., Bioethanol supply chain system planning under supply and demand uncertainties.

Transportation Research Part E: Logistics and Transportation Review, Vol. 48, No. 1, (2012), 150-164

[25] Aksoy, B., Cullinan, H., Webster, D., Gue, K., Sukumaran, S., Eden, M., and Sammons, N., Woody biomass and mill

waste utilization opportunities in Alabama: transportation cost minimization, optimum facility location, economic

feasibility, and impact. Environmental Progress & Sustainable Energy, Vol. 30, No. 4, (2011), 720-732

[26] Leduc, S., Schwab, D., Dotzauer, E., Schmid, E., and Obersteiner, M., Optimal location of wood gasification plants for

methanol production with heat recovery. International Journal of Energy Research, Vol. 32, No. 12, (2008), 1080-1091

[27] Natarajan, K., Leduc, S., Pelkonen, P., Tomppo, E., and Dotzauer, E., Optimal locations for methanol and CHP

production in Eastern Finland. Bioenergy Research, Vol. 5, No. 2, (2012), 412-423

[28] Marvin, W.A., Schmidt, L.D., Benjaafar, S., Tiffany, D.G., and Daoutidis, P., Economic optimization of a lignocellulosic

biomass-to-ethanol supply chain. Chemical Engineering Science, Vol. 67, No. 1, (2012), 68-79

[29] Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum, I., Obersteiner, M., and Lundgren, J., Optimal location

of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, Vol. 35, No. 6, (2010), 2709-2716

[30] Leão, R.R.d.C C., Hamacher, S., and Oliveira, F., Optimization of biodiesel supply chains based on small farmers: A case

study in Brazil. Bioresource technology, Vol. 102, No. 19, (2011), 8958-8963

[31] Leduc, S., Natarajan, K., Dotzauer, E., McCallum, I., and Obersteiner, M., Optimizing biodiesel production in India.

Applied Energy, Vol. 86, (2009), S125-S131

[32] Bai, Y., Hwang, T., Kang, S., and Ouyang, Y., Biofuel refinery location and supply chain planning under traffic

congestion. Transportation Research Part B Methodological, Vol. 45, No. 1, (2011), 162-175

[33] Bai, Y., Ouyang, Y., and Pang, J.-S., Biofuel supply chain design under competitive agricultural land use and feedstock

market equilibrium. Energy Economics, Vol. 34, No. 5, (2012), 1623-1633

[34] Bruglieri, M. and Liberti, L., Optimal design of a biomass-based energy production process. Operation Research Models

and Methods in the Energy Sector, Coimbra, Portugal, (2006

[35] Corsano, G., Vecchietti, A.R., and Montagna, J.M., Optimal design for sustainable bioethanol supply chain considering

detailed plant performance model. Computers & Chemical Engineering, Vol. 35, No. 8, (2011), 1384-1398

[36] onmentally friendly supply chain planning and design for

biodiesel production via wastewater sludge. Transportation Science, Vol. 48, No. 4, (2014), 555-574

[37] Singh, A., Chu, Y., and You, F., Biorefinery Supply Chain Network Design under Competitive Feedstock Markets: An

Agent-Based Simulation and Optimization Approach. Industrial & Engineering Chemistry Research, Vol. 53, No. 39,

(2014), 15111-15126

[38] Singh, J., Panesar, B., and Sharma, S., Geographical distribution of agricultural residues and optimum sites of biomass

based power plant in Bathinda, Punjab. Biomass and Bioenergy, Vol. 35, No. 10, (2011), 4455-4460

Page 11: Two-echelon MIP Approach to Design Green Supply Chainresearch.shahed.ac.ir/WSR/SiteData/PaperFiles/... · kbt 1 ykjbt kbt eit 1 ykjbt t=1 t=2 t=3 7746, 1064475 7809, 1063738 7845,

[39] Tang, M.C., Chin, M.W., Lim, K.M., San Mun, Y., Ng, R.T., Tay, D.H., and Ng, D.K., Systematic approach for

conceptual design of an integrated biorefinery with uncertainties. Clean Technologies and Environmental Policy, Vol. 15,

No. 5, (2013), 783-799

[40] -based multi-criteria optimisation of regional

biomass energy supply chains. Energy, Vol. 44, No. 1, (2

[41] Alex Marvin, W., Schmidt, L.D., Benjaafar, S., Tiffany, D.G., and Daoutidis, P., Economic optimization of a

lignocellulosic biomass-to-ethanol supply chain. Chemical Engineering Science, Vol. 67, No. 1, (2012), 68-79

[42] Mavrotas, G -constraint method in multi-objective mathematical programming

problems. Applied mathematics and computation, Vol. 213, No. 2, (2009), 455-465