Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.;...

download Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; MilosavljeviÄ, V -- Applications of cold plasma

of 13

Transcript of Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.;...

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    1/13

    Review

    Applications of cold

    plasma technology in

    food packaging

    S.K. Pankaja, C. Bueno-Ferrera,

    N.N. Misraa, V. Milosavljevica,b,C.P. ODonnellb, P. Bourkea,

    K.M. Keenera,c and P.J. Cullena,*aBioPlasma Research Group, School of Food Science

    and Environmental Health, Dublin Institute ofTechnology, Cathal Brugha Street, Dublin 1, Ireland

    (Tel.: D353 1 402 7595; fax: D353 1 402 4495;e-mail:[email protected])

    bBiosystems Engineering, University College Dublin,Dublin 4, Ireland

    cPurdue University, Nelson Hall of Food Science, Rm3215, 745 Agriculture Mall Drive, West Lafayette, IN

    47907 2009, USA

    Cold plasma technology is an emerging, green process offering

    many potential applications for food packaging. While it was

    originally developed to increase the surface energy of poly-

    mers, enhancing adhesion and printability, it has recently

    emerged as a powerful tool for surface decontamination of

    both foodstuffs and food packaging materials. New trends

    aim to develop in-package decontamination, offering non-

    thermal treatment of foods post-packaging. This paper pro-

    vides an overview of cold plasma theory, equipment and sum-

    marises recent advances in the modification of polymeric food

    packaging materials along with potential applications in the

    food industry.

    IntroductionFor the past few decades the trend of replacing traditional

    materials such as glass, metals and paper by polymeric ma-

    terials has been growing continually within the various pro-

    cess industries, including the food industry. This is due to

    the fact that physical and chemical characteristics of poly-

    mers are on a par with conventional materials in terms of

    functionality. In addition, polymeric packaging materials

    provide greater flexibility, transparency, adequate chemical

    inertness, have low specific weights and typically cost less.

    However, in most cases polymeric surfaces are hydrophobic

    in nature and are often characterised by a low surface en-

    ergy (Medard, Soutif, & Poncin-Epaillard, 2002a; Vesel& Mozetic, 2012). This implies that these do not possess

    the specific surface properties demanded in various applica-

    tions. Moreover, the production of multi-layer structured

    food packaging polymers is economically demanding. In

    order to obtain polymers with the desired properties, in

    most instances various surface treatments are employed.

    Surface treatments of packaging can serve various pur-

    poses including surface functionalisation, surface cleaning

    or etching, and surface deposition. Surface functionalisa-

    tion refers to the introduction of specific functional groups

    onto the surface layer of a polymer. Surface functionalisa-

    tion of polymers is usually carried out to improve its wetta-

    bility, sealability, printability, dye up-take, resistance toglazing, or adhesion to other polymers or materials, without

    compromising the desired bulk properties of the polymer

    (Chou & Chang, 1994; Ozdemir, Yurteri, & Sadikoglu,

    1999a). Surface functionalisation has additionally been

    used to enhance barrier characteristics of food packaging

    polymers and to impart antimicrobial properties

    (Ozdemir, Yurteri, & Sadikoglu, 1999b). Surface treatments

    can also be employed to clean or etch polymer surfaces by

    removing unwanted materials and contaminants from poly-

    mer surface layers. Additionally surface treatments can be

    used for the deposition of thin layers of coatings on poly-

    mer surfaces or for sterilisation.Surface modification of polymers can be performed

    either by chemical or physical methods. Physical methods

    have gained preference over chemical techniques, offering

    greater precision, ease of process control, and environment

    friendliness. Classical physicochemical methods for modi-

    fying polymer surfaces include flame and corona treatment,

    ultraviolet light, gamma-ray, ion-beam techniques, low-

    pressure plasma and laser treatment (Adler et al., 1999).

    However, flame and corona treatments are not well suited

    to polymers due to the limited time scale of the improved

    properties.

    Cold plasma (CP) induces several chemical and physical

    processes within the plasma volume and on the* Corresponding author.

    0924-2244/$ - see front matter 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.tifs.2013.10.009

    Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.tifs.2013.10.009http://dx.doi.org/10.1016/j.tifs.2013.10.009http://dx.doi.org/10.1016/j.tifs.2013.10.009http://dx.doi.org/10.1016/j.tifs.2013.10.009http://dx.doi.org/10.1016/j.tifs.2013.10.009http://dx.doi.org/10.1016/j.tifs.2013.10.009mailto:[email protected]
  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    2/13

    plasmaepolymer interface, which modify the surface prop-

    erties. This phenomena is exploited in surface functionali-

    sation to impart selective and tuneable surface energies to

    the packaging polymers for promoting adhesion or some-

    times anti-adhesion (Poncin-Epaillard, Brosse, & Falher,

    1999), improved printability, sealability, imparting anti-mist properties and improving the polymers resistance to

    mechanical failure. Using plasma deposition of barrier

    layers, the barrier properties of the packaging materials to-

    wards gases (oxygen, carbon-dioxide) and chemical sol-

    vents can be improved (Schneider et al., 2009). Gas

    plasma reactions also establish efficient inactivation of

    micro-organisms (bacterial cells, spores, yeasts and

    moulds) adhering to polymer surfaces within short treat-

    ment times. Packaging materials such as plastic bottles,

    lids and films can be rapidly sterilised using cold plasma,

    without adversely affecting their bulk properties or leaving

    any residues (Muranyi, Wunderlich, & Heise, 2007).This paper reviews the state of the art for cold plasma

    applications for modification and surface sterilisation of

    polymers of importance to food packaging, following a

    brief overview of the physics and chemistry of cold

    plasmas. The polymers considered include polyethylene

    (PE), polypropylene (PP) and polyethylene-terephthalate

    (PET), which altogether account for more than 80% of

    food packaging polymers (Plastics-the Facts, 2012). The re-

    view also identifies research gaps and outlines the direction

    for future research work in this area.

    Plasma physics and chemistry

    The term plasma refers to a quasi-neutral ionised gas,primarily composed of photons, ions and free electrons as

    well as atoms in their fundamental or excited states with

    a net neutral charge. Plasma discharges are widely used

    for processing and are indispensable for many technolog-

    ical applications (Milosavljevic, Karkari, & Ellingboe,

    2007). Through their wide variety of operational condi-

    tions, plasma sources offer a tremendous freedom in the

    generation of radiation and the creation of chemical com-

    positions. As a result the field of technological and indus-

    trial plasma applications is expanding strongly. Several

    plasma applications have been identified in literature:

    high-efficiency light sources (the rich plasma UV sourcefor surface sterilisation), material processing, such as depo-

    sition, cleaning and surface modification (Lawet al., 2012),

    spectrochemical analysis (analytical chemistry e plasma

    spectral emission can be used for element detection with

    very low detection limits) (Milosavljevic, Ellingboe, &

    Daniels, 2011), waste treatment (e.g. detoxification e use

    of thermal plasma torches, cascaded arc plasmas, or micro-

    wave plasmas for the production of negative ions).

    The ions and electrons from the plasma are generated at

    an electrode by means of a radiofrequency (RF), micro-

    wave (MW) or dielectric barrier discharge (DBD) power

    source, and a biasing power source is applied to another

    (packaging holding) electrode to create a significant ion

    bombardment (remove-clean-deposit) component during

    plasma treatment (Breen, Milosavljevic, & Dowling,

    2011). The plasma process is a simultaneous deposition/

    removing process in which loosely deposited species

    over planar or topographical surfaces are sputtered off by

    reactive ions and radicals during deposition.Plasma is an effective, economical, environmentally safe

    method for critical cleaning. The vacuum ultraviolet (VUV)

    energy is very effective in the breaking most organic bonds

    (i.e., CeH, CeC, C]C, CeO, and CeN) of surface con-

    taminants. This helps to break apart high molecular weight

    contaminants (Donegan, Milosavljevic, & Dowling, 2013).

    A second cleaning action is carried out by the oxygen spe-

    cies created in the plasma (O2, O2

    , O3, O, O, O, ion-

    ised ozone, metastably-excited oxygen, and free electrons).

    These species react with organic contaminants to form

    H2O, CO, CO2, and lower molecular weight hydrocarbons.

    The resulting surface is ultra-clean/sterilised. The plasmaactivated atoms and ions cause molecular sandblasting

    and can break down organic contaminants.

    Most of the cleaning process by-products are small

    quantities of gases such as carbon-dioxide, and water

    vapour with trace amounts of carbon monoxide and other

    hydrocarbons (Prysiazhnyi, Zaporojchenko, Kersten, &Cernak, 2012). To put this in perspective, 10 min of auto-

    mobile exhaust is approximately equivalent to one year of

    plasma cleaning/sterilisation exhaust. Whether or not

    organic removal is complete can be assessed by contact

    angle measurements. When an organic contaminant is pre-

    sent, the contact angle of water with the device will be high.

    After the removal of the contaminant, the contact angle willbe reduced to the characteristic of contact with the pure

    substrate. Plasma cleaning requires optimisation of a num-

    ber of interrelated variables, most notably gas species, pres-

    sure, time treatment, nature of substrate, and power. Thus, a

    series of experiments designed to optimise processing con-

    ditions should be carried out. The net result is a high degree

    of day-to-day repeatability and improved yields.

    Different treatment systems are being studied for appli-

    cation to food packaging surfaces (Kowalonek, Kaczmarek,

    & Dabrowska, 2010). A capacity coupled plasma (CCP)

    sources is one of the most common types of technological

    plasma sources (Milosavljevic, Ellingboe, Gaman, &Ringwood, 2008). It essentially consists of two metal elec-

    trodes separated by a small distance, placed in a chamber.

    The gas pressure in the chamber can be lower or equal to

    atmospheric. A typical CCP system is driven by a single

    RF power supply, typically at 13.56 MHz. One of two elec-

    trodes is connected to the power supply, and the other one is

    grounded. As this configuration is similar in principle to a

    capacitor in an electric circuit, the plasma formed in this

    configuration is called a capacitively coupled plasma.

    CCPs have wide application including deposition, sputter-

    ing and cleaning (Ryan, OFarrell, & Ellingboe, 2011).

    An inductive coupled plasma (ICP) is a type of plasma

    source in which the energy is supplied by electrical currents

    2 S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    3/13

    which are produced by electromagnetic induction, that is,

    by time-varying magnetic fields (Milosavljevic, Faulkner,

    & Hopkins, 2007). There are two types of ICP geometries:

    planar and cylindrical. In the planar geometry, the electrode

    is a coil of flat metal wound like a spiral. In cylindrical ge-

    ometry, it is like a helical spring. When a time-varyingelectric current is passed through the coil, it creates a

    time varying magnetic field around it, which in turn induces

    azimuthal electric currents in the rarefied gas, leading to

    break down and formation of plasma. The benefit of ICP

    discharges is that they are relatively free of contamination

    because the electrodes are completely outside the reaction

    chamber. In a CCP, in contrast, the electrodes are often

    placed inside the reactor and are thus exposed to the plasma

    and subsequent reactive chemical species (Bauer, Schmuki,

    von der Mark, & Park, 2013).

    An electron cyclotron resonance (ECR) plasma source

    has a microwave input at 2.45 GHz and a magnetron gen-erates plasma (Milosavljevic, Macgearailt, Daniels, &

    Turner, 2013). Electrons trajectory is spiral vertically along

    the magnetic field lines. Magnetic field strength is 875

    Gauss with a dome shaped contour. The electrode which

    holds food packaging could be a RF power supplied and

    is used to generate direct current (DC) bias independently

    of plasma ionisation. In ECR electrons travel far enough

    to gain sufficient energy to strike gas molecules and cause

    ionisation. Electron density (ion flux) is over an order of

    magnitude higher than for CCP or ICP plasma tools, and

    therefore may be more efficient for surface treatments of

    packaging, i.e. surface functionalisation, surface cleaning,

    etching, and/or surface deposition.Dielectric-barrier discharge (DBD) is the electrical

    discharge between two electrodes separated by an insulating

    dielectric barrier (OConnor, Milosavljevic, & Daniels,

    2011). The process uses high voltage alternating current,

    often at lower RF frequencies, but recently even at micro-

    wave levels. DBD devices can be employed in many config-

    urations, typically planar, using parallel plates separated by a

    dielectric or cylindrical, using coaxial plates with a dielectric

    tube between them. In a common coaxial configuration, the

    dielectric is shaped in the same form as common fluorescent

    tubing. It is filled at atmospheric pressure with either a rare

    gas or rare gas-halide mix, with the glass walls acting asthe dielectric barrier. Due to the atmospheric pressure level,

    such processes require high energy levels to be sustained.

    Common dielectric materials include glass, quartz, ceramics

    and polymers (Liang, Jensen, Pappas, & Palmese, 2011).

    Modification of food packaging polymersPolyethylene (PE)

    Structurally PE is one of the simplest polymers used in

    food packaging. PE of varying densities, characterized by

    different WVTR (water vapour transmission rate), GTR

    (gas transmission rate), tensile strength, heat sealing and

    other properties are commercially available. This provides

    freedom to food manufacturers to choose the package

    type optimum for their needs (Pankaj, Kadam, & Misra,

    2011). However, the low surface energy of PE, has driven

    most of the research in cold plasma towards surface modi-

    fications of PE. Surface characterisation of PE with CO2,

    H2O and CO2/H2O plasma has been reported by Medard

    et al. (2002a)and the proposed mechanism of CO2 plasmais described inFig. 1(Medard, Soutif, & Poncin-Epaillard,

    2002b). Table 1 summarises the key findings from impor-

    tant studies conducted on PE using cold plasma.

    Polypropylene (PP)PP is a versatile polymer used in food packaging. Its low

    density, low cost, high melting point, good heat sealability

    and chemically inert nature have made it an obvious choice

    as a packaging material for different food products (Pankaj

    et al., 2011). The low surface tension of PP poses problems

    in printing, coating and lamination, thereby requiring some

    additional surface treatment to increase its surface energy.PP is a saturated hydrocarbon polymer with a carbon back-

    bone containing hydrogen and methyl (CH3) groups ar-

    ranged in an alternating fashion. The reactivity of the

    hydrogen groups for surface reactions in PP depends on the

    nature of the C atom towhich they are attached and in general

    it varies as Htert > Hsec > Hpriwhere Htertrefers to H atom

    bonded to three C atoms, Hsec refers to H atom bonded to

    two C atoms and Hpri which is bonded to only one C. Exhaus-

    tive work on modelling of modification of PP films in atmo-

    spheric pressure plasma discharges has been done byDorai

    and Kushner (2003)andWang and He (2006). The reaction

    mechanism for PP treatment by air plasma has been

    described byAkishevet al.(2008). The degradation of poly-propylene upon plasma treatment is mainly due to branch

    scissions, formation of low molecular weight organic mole-

    cules (LMWOM) and the degradation order is as follows:

    N2 < He < Air0 O2 (Poncin-Epaillard et al., 1999).

    Notable results of selected studies in cold plasma processing

    of PP have been summarised inTable 2.

    Poly(ethylene terephthalate) (PET)PET has many desirable properties, including good

    strength, rigidity, high strength-to-weight ratio, transpar-

    ency, thermal stability, gas barrier property, chemical resis-

    tance and formability which make it a packaging materialof choice for a wide range of food products (Pankaj

    et al., 2011). However, PET, like other synthetic polymers

    has lower surface energy, which necessitates surface modi-

    fication for good adhesion, printing and dyeing properties.

    The crystallinity of PET film is an important factor which

    determines the changes in surface energy upon CP treat-

    ments (Jacobset al., 2011). Surface characterisation studies

    for plasma treated PET film using oxygen, carbon-dioxide,

    nitrogen and helium plasma have been reported by

    Almazan-Almazanet al. (2005, 2006), Inagaki, Narushim,

    Tuchida, and Miyazaki (2004). Table 3 summarises the

    key findings of various studies conducted on PET using

    cold plasma.

    3S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    4/13

    Ageing effectThe modification of packaging surfaces with cold

    plasma processing may not be permanent over extended pe-

    riods. Because of the minimisation of the free surface

    enthalpy, dynamic processes are observed on all functional-

    ised surfaces which fade the initial modification effect

    (Adleret al., 1999). The loss of beneficial attributes derived

    from CP processing of polymers over time is often calledageing. For example, a loss in hydrophilicity is observed

    for CP treated polymeric films when stored. This is referred

    to as hydrophobic recovery. Such effects are attributed pri-

    marily to inward-diffusion, agglomeration or sublimation

    of LMWOMs, the reorientation or reptation of polymer

    chains, whereby covalently bonded polar groups become

    buried beneath the outer surface; and migration of addi-

    tives from the bulk towards the surface (Garcia, Fenollar,

    Lopez, Sanchis, & Balart, 2008; Guimond, Radu,

    Czeremuszkin, Carlsson, & Wertheimer, 2002; Poncin-Epaillard et al., 1999; Strobel, Strobel, Lyons, Dunatov,

    & Perron, 1991). Ageing effects are significant when the

    Fig. 1. Mechanisms of degradation, cross-linking and functionalisation occurring on polyethylene treated by CO2cold plasma. Adapted fromMedardet al. (2002b), with permission.

    Table 1. Summary of reported studies on cold plasma processing of polyethylene (PE).

    Polymericpackagingmaterial

    Plasma source Treatment conditions Key findings References

    LDPE film RF discharge(13.56 MHz, 100 W)

    Ar plasma (15e90 s,25e100 W, 15 ml/min)

    Contact angle (Y),Crystallinity (Y),Roughness ([)

    Ataeefard, Moradian, Mirabedini,Ebrahimi, and Asiaban (2009)

    LDPE film RF discharge(13.56 MHz, 100 W)

    O2plasma (15e90 s,25e100 W, 15 ml/min)

    Contact angle (Y),Crystallinity (Y),

    Roughness ([)

    Ataeefard et al. (2009)

    HDPE film RF discharge (13.56 MHz) Ar:O2 9:1 (150 W,30 sccm, 0.01 torr)

    Contact angle (Y) Banik et al. (2002)

    HDPE film RF discharge (13.56 MHz) Ar:O2 1:9 (150 W,30 sccm, 0.01 torr)

    Contact angle (Y) Banik et al. (2002)

    LDPE film RF discharge (13.56 MHz) O2plasma (150 W,0.02 torr)

    Contact angle (Y) Bronco, Bertoldo, Taburoni,Cepek, and Sancrotti (2004)

    LDPE film RF discharge (13.56 MHz) N2plasma (150 W,0.02 torr)

    Contact angle (Y) Broncoet al. (2004)

    LDPE film RF discharge (8 W, 50 mTorr) Ar (2 sccm), Ar:O2(1:1 sccm), Ar:H2O(1:1 sccm) plasma

    Contact angle (Y) Gilliam and Yu (2006)

    PE film Microwave plasma (2860 MHz) Air plasma (140 mA,0.04 mbar, 15e60 s)

    Contact angle (Y) Kaminska et al. (2002)

    LDPE film RF discharge (2 kV, 0.1 mA,

    13.56 MHz)

    O2, N2and Air plasma

    (60 s, 26 Pa)

    Surface energy ([) Novak et al. (2007)

    4 S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    5/13

    power input to the plasma and process times are both low.

    For the aforementioned example, this signifies insignificant

    changes in the surface roughness, i.e. less etching (Carrino,

    Polini, & Sorrentino, 2004; Mirabedini, Arabi, Salem, &

    Asiaban, 2007). Conversely, where intermediate to high

    doses of plasma discharges are employed, a further post-processing decrease in contact angle occurs (Kaminska,

    Kaczmarek, & Kowalonek, 2002; Upadhyay, Cui,

    Anderson, & Brown, 2004). Selection of suitable operating

    gas mixtures for plasma, such as use of an organic gas

    (CH4) with a highly reactive gas (O2) can considerably

    reduce the ageing process with respect to hydrophobic re-

    covery (Garcia et al., 2008). The mechanism of ageing

    and approaches to delay the hydrophobic recovery is a sub-

    ject of active research.Table 4provides a summary of the

    research works conducted to study the ageing effects in

    cold plasma treated polymeric surfaces. The ageing behav-

    iour of plasma treated polymers depends on different pa-rameters, such as the medium, temperature, crystallinity

    and humidity (Vesel & Mozetic, 2012).

    ApplicationsFood packaging surface sterilisation

    Most regulatory guidelines specify microbiological re-

    quirements for food packaging materials and in many cases

    the packaging process is an important critical control point

    in a hazard analysis critical control point (HACCP) system

    (Mittendorfer, Bierbaumer, Gratzl, & Kellauer, 2002). Food

    packaging materials are intended to preserve food quality

    along the distribution and storage chain and also to protectit from deterioration, damage or outside contamination. If

    food packaging is not properly sterilised this may cause

    further contamination of the food from the packaging sur-

    face and consequently lead to health risks and economic

    losses (Misra, Tiwari, Raghavarao, & Cullen, 2011). Steri-

    lisation methods such as dry heat, steam, UV light and

    chemicals like ethylene oxide and hydrogen peroxide

    have been traditionally used for medical instruments and

    implants as well as packaging materials in food industry,

    but certain limitations have motivated the search for new

    approaches (Lerouge, Wertheimer, & Yahia, 2001;

    Schneider et al., 2005). The main drawback associatedwith such conventional sterilisation techniques is the gener-

    ation of liquid effluents, which add to the overall cost of the

    process. On the contrary, cold plasma sterilisation is a

    chemical free, fast and safe approach, applicable to a

    wide range of packaging materials and does not result in

    any residues. However, its adoption for mass-production

    in the food packaging sector is limited by the treatment

    times, which often extend to minutes; extended sterilisation

    periods are not affordable by the food industry. Schneider

    et al. (2005)investigated the scalability of a plasma array

    system (Duo-Plasmaline) for industrial applications, and

    compared the performance to a laboratory scale system

    (Plasmodul) using PET foil substrates and common

    treatment times of 5 s. The spore reduction kinetics for

    both systems suggests scalability of the approach.

    Muranyi and co-researchers have reported on the use of

    cold plasma treatments for sterilisation of PET foils, poly-

    styrene, as well as multi-layer packaging based on PET/

    PVDC/PE-LD (Muranyi, Wunderlich, & Heise, 2008;Muranyi, Wunderlich, & Langowski, 2010). The group

    has identified an increase in relative gas humidity as a

    key factor to achieve a minimum of 2log10 inactivation in

    Aspergillus niger and Bacillus subtilis for 1 s treatments.

    Damage to the DNA of Bacillus atrophaeus endospores

    and vegetative cells as a consequence of synergistic combi-

    nation of UV radiation and direct plasma from cascaded

    dielectric barrier discharge (CDBD) have also been re-

    ported (Muranyi et al., 2010). This treatment combination

    suggests effective sterilisation with very short treatment

    times, whereby changes in packaging materials are

    restricted and functionality remains uncompromised. Otherstudies (Yang, Chen, Gao, & Guo, 2009) report the effect of

    O2 plasma excited by 13.56 MHz RF sterilisation of PET

    sheets depending on their position in the discharge area,

    afterglow area or remote area in the reaction equipment.

    Respectively decreasing germicidal effect was found for

    the three areas in Pseudomonas aeruginosa with less time

    exposure than other traditional methods.

    The immobilisation of bioactive functional compounds

    like lysozyme, nicin, vanillin, sodium benzoate, glucose

    oxidase or antimicrobial peptides into the packaging mate-

    rial by plasma treatment has been extensively studied in the

    emerging field of antimicrobial and active packaging

    (Appendini & Hotchkiss, 2002; Buonocore et al., 2004;Fernandez-Gutierrez, Pedrow, Pitts, & Powers, 2010;

    Ghanem & Ghaly, 2004; Lee, 2010; Lerouge et al., 2001;

    Mastromatteo, Lecce, De Vietro, Favia, & Del Nobile,

    2011; Misra et al., 2011). Other antimicrobial substances

    like chitosan, silver and trichlosan have been immobilised

    on films by plasma treatment (Joerger, Sabesan, Visioli,

    Urian, & Joerger, 2009; Nobile et al., 2004; Popelka

    et al., 2012; Vartiainen, Ratto, & Paulussen, 2005; Zhang

    et al., 2006). In the study ofJoerger et al. (2009), chitosan

    and chitosan/silver films were obtained by a relatively sim-

    ple coating process by means of corona treatment showing

    good antimicrobial activity in Escherichia coli and Listeriamonocytogenes. A recent study of Popelka et al. (2012)

    demonstrated the successful immobilisation of triclosan

    and chlorhexidine on LDPE via polyacrylic acid (PAA)

    grafted on LDPE by low-temperature barrier discharge

    plasma (Fig. 2). It was found that both substances were

    properly grafted and met the required antibacterial specifi-

    cations. Triclosan coated samples were more active against

    the two micro-organisms tested (E. coli and Staphylococcus

    aureus).

    PrintingSurface activation and functionalisation by atmospheric-

    pressure plasma enables the processing of different

    5S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    6/13

    materials and coatings that are very thin; as for example in

    the production of composite packaging. Whether labelling

    jam jars, printing on glass containers, or sealing liquid

    packages, a key concern in the packaging industry is the

    ability to process materials reliably and at low cost

    (Banu, 2012; Ozdemir & Sadikoglu, 1998).

    Imprints on packaging in the food and pharmaceutical

    industries are diverse (e.g. best-before dates or European

    Article Number codes -EAN-) and it is essential that such

    imprints are secure against abrasion. Plasma treatment

    can fulfil the requirements of precise colour matching and

    high pixel accuracy, when applying decoration to glass bot-

    tles or jars. In addition, it enables exclusion of air bubbles,

    improvement of coating adhesion and high scratch resis-

    tance, without posterior damage.

    Several techniques are in practice for quantification of

    surface changes resulting from plasma treatment that affect

    printability. However, surface contact angle is a widespread

    Table 2. Summary of reported studies on cold plasma processing of polypropylene (PP).

    Polymericpackagingmaterial

    Plasma source Treatment conditions Key findings References

    PP film AC discharge (50 Hz,

    2 electrodes, 1000 Pa)

    Air plasma

    (30 kV, 20 dm3/h, 120 s)

    Contact angle (Y),

    Adhesion ([)

    Carrino, Moroni,

    and Polini (2002)PP film Jet plasma DC discharge

    (35 W, diffusive-filamentarymode)

    Air plasma (20 m/s, 6 W/cm2) Contact angle (Y) Akishevet al. (2008)

    PP film Jet plasma DC discharge(35 W, diffusive-filamentarymode)

    Nitrogen plasma(15 m/s, 3e5 W/cm2)

    Contact angle (Y) Akishevet al. (2008)

    IsotacticPP film

    Microwave plasma(433 MHz, 0e250 W)

    CO2 plasma(60 W, 20 sccm, 0.75 mbar)

    Degradation yield ([),Roughness ([),Total surface energy ([)

    Bertrand andPoncin-Epaillard (2003)

    PP film Air corona Air plasma (30 kHz, 1.7 J/cm2) Contact angle (Y),Ink Adhesion ([)

    Dixon and Meenan(2012), Strobelet al. (1991)

    PP film RF plasma(13.56 MHz, 150 W)

    CH4eO2 plasma [80:20](100 cm3/min, 31e32 Pa)

    Contact angle (Y),Increase in weight,Oxygen content ([),Nitrogen content (w),Roughness([)

    Garcia et al. (2008),Lopez, Sanchis, Garca,Fenollar, and Balart (2009)

    PP film RF plasma(13.56 MHz, 155 W)

    Ar plasma(20 sccm, 23.33 Pa, 8 min)

    Contact angle (Y),Roughness ([)

    Gomathi and Neogi (2009)

    BiaxiallyOriented PP(BOPP) film

    Air corona Air plasma (1 kHz) Contact angle (Y),Roughness ([)

    Guimond et al. (2002)

    BOPP film APGD N2 plasma (1e6 kHz) Contact angle (Y),Roughness ([)

    Guimond et al. (2002)

    BOPP film RF plasma(13.56 MHz, 10e50 W)

    Ar plasma(15 ml/min, 0.35 bar, 0e300 s)

    Contact angle (Y),Roughness ([)

    Mirabedini et al. (2007)

    BOPP film RF plasma(13.56 MHz, 10e50 W)

    O2 plasma(15 ml/min, 0.35 bar, 0e300 s)

    Contact angle (Y),Roughness ([)

    Mirabedini et al. (2007)

    PP film Glow discharge (DC)(400 V, 10 W, 25 mA)

    Air plasma(0.2 mbar, 2e20 min)

    Contact angle (Y),Adhesion work ([),Polarity ([),Degradation yield ([),Oxygen content ([),Roughness ([)

    Navaneetha Pandiyarajet al. (2008)

    PP film Diode plasma discharge(3.1, 8.3 W)

    Ar plasma (10 Pa, 0e240 s) Contact angle (Y),Oxygen content ([),Roughness (w)

    Slepicka et al. (2010)

    PP film DC plasma (1e30 kV) O2 plasma (5e120 s,0.5e2 kPa)

    Contact angle (Y) Sorrentino, Carrino,and Napolitano (2007)

    PP film DBD plasma (3e20 kV,25e50 kHz)

    Air plasma (upto 6.7 J/cm2) Contact angle (Y),O/C ratio ([and thensaturates)

    Sorrentino et al. (2007)

    PP film Microwave plasma

    (2860 MHz)

    Air plasma

    (140 mA, 0.04 mbar, 15e

    135 s)

    Contact angle (Y) Kaminska et al. (2002)

    PP film DBD plasma (15 kV,300e1000 W, 30 kHz)

    Air plasma (1.2e60 kJ/m2) Contact angle (Y), (Y),O/C ratio ([and thensaturates), Roughness ([)

    Leroux, Campagne,Perwuelz, andGengembre (2008)

    6 S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    7/13

    technique to investigate wettability and surface energy,

    which is closely related to ink adhesion (Dixon &

    Meenan, 2012; Navaneetha Pandiyaraj, Selvarajan,

    Deshmukh, & Gao, 2008; Strobel et al., 1991). Notably,

    the wetting of a surface is not only determined by the

    magnitude of its surface energy, but also by the free energy

    of adhesion between the solid and liquid as well as the sur-

    face tension of the liquid (Bardos & Barankova, 2010). This

    aspect must be taken into consideration for all practical ap-plications. The benefits of plasma processing in regards to

    printing on packages can be visually appreciated from

    Fig. 3, which compares the effects on a PE surface (a)

    before and (b) after a 5 s exposure to a Ne-FHC plasma

    treatment. Clearly, post-plasma processing, the spread-

    ability of ink on PE is dramatically enhanced.

    Mass transferTreatment of food packaging materials with cold plasma

    can enhance food packaging barrier properties. Whether

    used as a sterilisation method or for surface modification

    of packages, cold plasma treatment can affect mechanical

    and mass transfer (barrier and migration) properties. This

    has remained an under researched topic and future work

    should consider e (i) permeation of gases or vapours (ox-

    ygen, water vapour, aroma compounds, etc.) through the

    packaging materials from the external atmosphere into

    the food or the headspace and vice versa; and (ii) migration

    of low-molecular weight substances from the packaging

    into the food (e.g. monomers, plasticisers, solvents) that

    need to be evaluated for legislation and toxicological eval-

    uation (Guillard, Mauricio-Iglesias, & Gontard, 2010).Alteration of barrier properties in materials for food con-

    tact applications has been one of the most studied applica-

    tions in polymers treated by cold plasma (Lee, 2010;

    Ozdemir & Sadikoglu, 1998) since it is crucial factor to

    control shelf life of fresh produce. Tennet al. (2012)eval-

    uated the water vapour permeability of plasma treated

    ethylene vinyl alcohol (EVOH) films with different percent-

    ages of ethylene content. They reported that the hydropho-

    bicity was significantly improved after plasma treatment for

    all films and consequently water permeability was

    decreased by up to 28% in some cases. Furthermore, the ef-

    fects varied with content of ethylene and hydroxyl groups

    of film, following cross-linking reactions. Literature also

    Table 3. Summary of reported studies on cold plasma processing of PET.

    Polymericpackagingmaterial

    Plasma source Treatment conditions Key findings References

    PET film Jet plasma DC discharge

    (35 W, diffusive-filamentary mode)

    Air plasma (20 m/s, 6 W/cm2) Contact angle (Y) Akishev et al. (2008)

    PET film Jet plasma DC discharge(35 W, diffusive-filamentary mode)

    Nitrogen plasma(15 m/s, 3e5 W/cm2)

    Contact angle (Y) Akishev et al. (2008)

    PET film Microwave plasma (200 W) CO2 plasma(4 and 15 min, 1.33 mbar)

    Surface energy ([),Roughness ([)

    Almazan-Almazanet al. (2005)

    PET film Microwave plasma (200 W) O2plasma(4 and 15 min, 1.33 mbar)

    Surface energy ([),Roughness ([)

    Almazan-Almazanet al. (2005)

    PET fibre RF plasma (13.56 MHz, 50 W) O2plasma (40 Pa, 5e100 s) Contact angle (Y),Average tensilestrength ([)

    Cioffi, Voorwald,and Mota (2003)

    PET film DBD plasma(3e20 kV, 40e80 kHz)

    Air plasma(9.6, 14, 21.9 W/cm2)

    Contact angle (Y),O/C ratio ([)

    Cui, Upadhyay, Anderson,Meenan, and Brown (2007)

    PET film RF plasma(150e300 W, 15 kV, 30 kHz)

    Air plasma(43.4, 73.4, 105.4 J/cm2)

    Reflectivity ([),Roughness ([)

    Esena, Zanini,and Riccardi (2007)

    PET film(biaxiallyoriented)

    Jet plasma (285 V, 6 A, 16 kHz) Air plasma (0.16e0.81 m/s) Contact angle (Y) Gotoh, Yasukawa, andTaniguchi (2011)

    PET film Microwave plasma (2860 MHz) Air plasma (140 mA,0.04 mbar, 15e135 s)

    Contact angle (Y) Kaminska et al. (2002)

    PET film Glow discharge (DC)(400 V, 10 W, 25 mA)

    Air plasma (0.2 mbar,2e20 min)

    Contact angle (Y),Adhesion work ([),Polarity ([),Degradation yield ([),Oxygen content ([),Roughness ([)

    Navaneetha Pandiyarajet al. (2008)

    PET film Corona discharge (0.14e1 kW) Air plasma (5e25 m/min) Contact angle (Y),Oxygen content (w),

    OHare et al. (2002)

    PET film Glow discharge (400 V) Air plasma (0.2 mbar,2e25 min)

    Contact angle (Y),Degradation yield ([),Roughness ([),Crystallinity ([),Oxygen content ([)

    Pandiyaraj et al. (2008)

    7S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    8/13

    Table 4. Summary of reported studies on the ageing effects in cold plasma treated polymeric surfaces.

    Polymericpackagingmaterial

    Plasma source Treatment conditions Storageperiod

    Observations

    BOPP film RF plasma

    (13.56 MHz, 10e50 W)

    Ar and O2 plasma

    (15 ml/min, 0.35 bar, 0e300 s)

    30 days Aging effect on samples treated

    for a longer time is less than samtreated for shorter time

    BOPP film Air corona and APGD Air and N2 plasma(1 kHz; 1e6 kHz)

    3 months Similar aging kinetics for both tre

    PP film RF plasma(13.56 MHz, 150 W)

    CH4eO2 plasma [80:20](100 cm3/min, 31e32 Pa)

    3 weeks Reduction in wettability is low thother gas plasma,Storage temperature and RH are cfor hydrophobic recovery process

    PP film AC discharge(50 Hz, 2 electrodes,1000 Pa)

    Air plasma(30 kV, 20 dm3/h, 120 s)

    10 days Wettability decrease not significafirst few hours treatment, but is reafter one or more days,Wettability decay is not influencecold plasma parameters like tenstreatment time and air flow rate

    PP film Diode plasma

    discharge (3.1, 8.3 W)

    Ar plasma (10 Pa, 0e240 s) 7 days Independent to plasma discharge

    full surface relaxation and contacrestoration to saturated value waafter about 70 h of aging

    PP film DC plasma (1e30 kV) O2plasma(5e120 s, 0.5e2 kPa)

    30 days Decrease of 5% wettability in onafter the treatment while it achie18% after 30 days

    PP film DBD plasma(3e20 kV, 25e50 kHz)

    Air plasma (upto 6.7 J/cm2) 30 days Lower doses: slight recovery of cangle; intermediate and high dosdecrease in contact angle

    LDPE film RF discharge(13.56 MHz, 100 W)

    Ar plasma (15e90 s,25e100 W, 15 ml/min)

    7 days Non-linear decrease in contact a

    HDPE film RF discharge(13.56 MHz)

    Ar:O2 1:9/9:1 plasma(50e150 W, 30 sccm, 0.01 torr)

    30 days Decrease in aging effects by incrcrystallinity

    LDPE film Corona discharge(1 kW, 50 Hz)

    Air plasma (600 W, 15 m/min) 21 days Partial hydrophobic recovery

    PET film DBD plasma(3e20 kV, 40e80 kHz)

    Air plasma (9.6, 14, 21.9 W/cm2) 3 months Partial hydrophobic recovery

    PET film(biaxiallyoriented)

    Jet plasma(285 V, 6 A, 16 kHz)

    Air plasma (0.16e0.81 m/s) 14 days Partial hydrophobic recovery

    PET film Glow discharge (400 V) Air plasma(0.2 mbar, 2e25 min)

    20 days Increase in contact angle, no sigdifference in 10 and 20 days stor

    Pleasecitethisarticleinpressas:Pankaj,S.K.,etal.,Applicationsofcoldplasmatechnologyinfoodpackaging,TrendsinFoodScience&

    Technology

    (2013),http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    9/13

    reveals numerous studies for improvement of barrier prop-

    erties through deposition of thin layers of SiOx

    on PET foils

    by plasma enhanced chemical vapour deposition (PECVD)

    (Deilmann, Grabowski, Thei, Bibinov, & Awakowicz,

    2008; Deilmann, Thei, & Awakowicz, 2008; Plog,

    Schneider, Walker, Schulz, & Stroth, 2011). In general, a

    reduction by more than a factor of two in water vapour

    flux has been observed in coated PET foils. Films havethe advantage of being colourless, thereby permitting cus-

    tomers to have a clear view of the packaged food. Fortu-

    nately, PECVD does not compromise transparency of

    packaging films. Novel green bio-polymers such as poly(-

    lactic acid) (PLA), chitosan and arabinoxylans (AXs) in-

    tended for food packaging applications, are under

    development. Of these, only PLA enjoys commercialised

    status. Unfortunately, barrier properties of these materials

    are usually inferior to traditional polymers. Cold plasma

    treatment has been shown to enhance gas permeability

    through cross-linking PLA with tetramethoxysilane

    (TMOS) (Uemuraet al., 2006), or deposition of hydropho-

    bic silicon coating onto chitosan polysaccharide film

    Fig. 2. AFM surface changes for Sample 1e5: 1 e untreated LDPE; 2 e plasma-treated; 3 e AA grafted; 4 e triclosan coated; 5 e chlorhexidinecoated. Adapted fromAnton Popelka et al. 2012, with permission.

    Fig. 3. Effect of FHC plasma activation on PE web surface. Testing inkballs up and forms drops on an untreated surface (surface energyb34 mN/m), while on the plasma treated surface (surface energy56 mN/m) the ink forms a continuous film. Adapted from Bardos

    and Barankova, 2010, with permission.

    9S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    10/13

    surface (Assis & Hotchkiss, 2007) and grafting omega-3

    fatty acids onto AX polymeric chains (Peroval et al., 2003).

    Although permeation of gases can affect shelf life and

    quality of packaged food and beverage, the second type

    of mass transfer, namely migration, could be a potential

    risk to consumers health. Only a few studies have reportedon migration in food packaging materials resulting from

    cold plasma processing (Audic, Poncin-Epaillard, Reyx,

    & Brosse, 2001). The potential migration of low-

    molecular substances when plasma is applied with other

    objectives (surface sterilisation, increase in adhesion or

    printability, etc) has not been investigated to date. In the

    case of poly(vinyl chloride) (PVC)-based commercial

    wrap films or gaskets in metal lids for glass jars, various

    processing aids like plasticisers and/or stabilisers may

    exude from the packaging material during storage or can

    be extracted by the foodstuff. This migration phenomenon

    causes chemical contamination of the packaged food anda decrease of chemical and physical properties of the plas-

    tic material.Audic et al. (2001) have investigated the cold

    plasma modification of PVC flexible films with respect to

    the migrational properties. They employed different gases

    for PVC films with conventional (bis(2-ethylhexyl)adipate

    -DEHA-, and epoxidised soybean oil -ESO-) and non-

    conventional (permanent elastomeric EVACO) plasticisers.

    The group reported a decrease in overall migration when

    DEHA and ESO were substituted by EVACO, but an in-

    crease in specific migration of DEHA and ESO. After treat-

    ment with Ar plasma, a significant reduction in migration

    from all plasticised PVC films was also noted.

    Despite the numerous efforts made by food safety re-searchers to control migration of polymer additives from

    food packaging materials to food products, the problem re-

    mains unresolved. In light of the aforementioned studies for

    safety assessment of packaging materials following plasma

    treatment to avoid migration or the extent of effects in food

    packaging materials, adjustment and optimisation of the

    technique should be addressed as a function of the targeted

    effects in future works.

    In-package plasma technologyRecently DBDs have been employed for generation of

    plasma inside sealed packages containing bacterial samples(Connolly et al., 2013; Leipold, Schultz-Jensen, Kusano,

    Bindslev, & Jacobsen, 2011; Misra, Ziuzina, Cullen, &

    Keener, 2012), fresh produce (Klockow & Keener, 2009),

    fish (Chiper, Chen, Mejlholm, Dalgaard, & Stamate,

    2011) and meat (Rd, Hansen, Leipold, & Knchel,

    2012). The in-package plasma decontamination of foods

    and biomaterials relies on use of the polymeric package it-

    self as a dielectric and has been studied using several pack-

    aging materials such as LDPE, HDPE, polystyrene (PS),

    Tyvek etc. (Keener et al., 2012). All these works have

    demonstrated significant reduction in microbial population

    on food products. Moreover, this approach is easy to scale-

    up to continuous industrial processing and could prevent

    post-packaging contamination (Misra et al., 2011). For a

    complete assessment of the technology, it is essential to

    quantify all possible changes to the packaging, induced

    by the cold plasma. For example, the migration limits of ad-

    ditives, monomers, oligomers and low molecular weight

    volatile compounds from the packaging material into thefood (following in-package plasma) should be evaluated

    for food safety reasons, as well as water vapour and oxygen

    permeability.

    ConclusionsBesides modification of chemical and physical states of

    material surfaces (without altering the bulk properties),

    cold plasma treatment of polymeric surfaces is an important

    technique for achieving surface sterilisation. The numerous

    works reported to date for the characterisation of surface

    modifications in cold plasma treated polymeric materials

    of importance to food packaging have been consolidatedin this review. The quantitation of bulk and mass transport

    properties (WVTR, GTR, chemical migration) of cold

    plasma treated films is an under-researched area. These

    properties are essential for design of packages suitable for

    both respiring and non-respiring foods, and also the assess-

    ment of product safety.

    Future trendsPlasma modification of polymeric surfaces has evolved

    as an alternative to wet chemical surface modifying treat-

    ments due to its many important advantages such as unifor-

    mity, reproducibility, short reaction time and environmental

    safety. Although our review focused on cold plasma assis-ted surface modification of food packaging materials, the

    technique can also be used for suitably modifying the bio-

    responsive properties of food contact surfaces, including

    metals. For example, when stainless steel is deposited

    with ethylenediamine (EDA) it decreases the microbial

    attachment and creates bacterial anti-fouling surfaces

    (Sen, Bagc, Gulec, & Mutlu, 2012).

    Fernandez-Gutierrez et al. (2010) demonstrated the appli-

    cation of cold gas plasma to apples for the deposition of

    vanillin film, the antimicrobial nature of which against bac-

    teria, yeasts and fungi is well established (Cerrutti &

    Alzamora, 1996; Fitzgeraldet al., 2004). Thus, cold plasmaaided deposition of bioactives and antimicrobials (Orhan,

    Kut, & Gunesoglu, 2012; Popelka et al., 2012) can add a

    new dimension in the emerging field of edible films and

    active packaging of foods. Future studies should be directed

    towards assessment of the efficacy of antimicrobials after im-

    mobilisation on cold plasma grafted food contact surfaces.

    AcknowledgementsThe authors would like to acknowledge funding from the

    European Communitys Seventh Framework Program (FP7/

    2207-2013) under grant agreement number 285820 and the

    Food Institutional Research Measure, administered by the

    Department of Agriculture, Food & the Marine Ireland.

    10 S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    11/13

    References

    Adler, H. J., Fischer, P., Heller, A., Jansen, I., Kuckling, D., Komber, H.,et al. (1999). Trends in polymer chemistry 1998.Acta Polymerica,50, 232e239.

    Akishev, Y., Grushin, M., Dyatko, N., Kochetov, I., Napartovich, A.,

    Trushkin, N., et al. (2008). Studies on cold plasmaepolymersurface interaction by example of PP- and PET-films. Journal ofPhysics D: Applied Physics, 41, 235203.

    Almazan-Almazan, M. C., Paredes, J. I., Perez-Mendoza, M.,Domingo-Garcia, M., Lopez-Garzon, F. J., Martinez-Alonso, A.,et al. (2005). Effects of oxygen and carbon dioxide plasmas on thesurface of poly(ethylene terephthalate). Journal of Colloid andInterface Science, 287, 57e66.

    Almazan-Almazan, M. C., Paredes, J. I., Perez-Mendoza, M.,Domingo-Garcia, M., Lopez-Garzon, F. J., Martinez-Alonso, A.,et al. (2006). Surface characterisation of plasma-modifiedpoly(ethylene terephthalate). Journal of Colloid and InterfaceScience, 293, 353e363.

    Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial foodpackaging. Innovative Food Science & Emerging Technologies, 3,

    113e126.Assis, O. B. G., & Hotchkiss, J. H. (2007). Surface hydrophobic

    modification of chitosan thin films by hexamethyldisilazaneplasma deposition: effects on water vapour, CO2 and O2permeabilities. Packaging Technology and Science, 20,293e297.

    Ataeefard, M., Moradian, S., Mirabedini, M., Ebrahimi, M., &Asiaban, S. (2009). Investigating the effect of power/time in thewettability of Ar and O2 gas plasma-treated low-densitypolyethylene.Progress in Organic Coatings, 64, 482e488.

    Audic, J. L., Poncin-Epaillard, F., Reyx, D., & Brosse, J. C. (2001). Coldplasma surface modification of conventionally andnonconventionally plasticized poly(vinyl chloride)-based flexiblefilms: global and specific migration of additives into isooctane.Journal of Applied Polymer Science, 79, 1384e1393.

    Banik, I., Kim, K. S., Yun, Y. I., Kim, D. H., Ryu, C. M., & Park, C. E.(2002). Inhibition of aging in plasma-treated high-densitypolyethylene.Journal of Adhesion Science and Technology, 16,1155e1169.

    Banu, M. S. (2012). Cold plasma as a novel food processingtechnology.International Journal of Emerging Trends inEngineering and Developments, 4, 15.

    Bardos, L., & Barankova, H. (2010). Cold atmospheric plasma:sources, processes, and applications.Thin Solid Films, 518,6705e6713.

    Bauer, S., Schmuki, P., von der Mark, K., & Park, J. (2013). Engineeringbiocompatible implant surfaces: part I: materials and surfaces.Progress in Materials Science, 58, 261e326.

    Bertrand, P., & Poncin-Epaillard, F. (2003). Characterization ofpolypropylene surface treated in a CO2 plasma.Plasmas and

    Polymers, 8, 225e236.Breen, A., Milosavljevic, V., & Dowling, D. (2011). Influence of gas

    type on the thermal efficiency of microwave plasmas for thesintering of metal powders. Plasma Chemistry and PlasmaProcessing, 31, 771e785.

    Bronco, S., Bertoldo, M., Taburoni, E., Cepek, C., & Sancrotti, M.(2004). The effects of cold plasma treatments on LDPE wettabilityand curing kinetic of a polyurethane adhesive. MacromolecularSymposia, 218, 71e80.

    Buonocore, G. G., Sinigaglia, M., Corbo, M. R., Bevilacqua, A., LaNotte, E., & Del Nobile, M. A. (2004). Controlled release ofantimicrobial compounds from highly swellable polymers. Journalof Food Protection, 67, 1190e1194.

    Carrino, L., Moroni, G., & Polini, W. (2002). Cold plasma treatment ofpolypropylene surface: a study on wettability and adhesion.

    Journal of Materials Processing Technology, 121, 373e382.

    Carrino, L., Polini, W., & Sorrentino, L. (2004). Ageing time ofwettability on polypropylene surfaces processed by cold plasma.Journal of Materials Processing Technology, 153e154, 519e525.

    Cerrutti, P., & Alzamora, S. M. (1996). Inhibitory effects of vanillin onsome food spoilage yeasts in laboratory media and fruit purees.International Journal of Food Microbiology, 29, 379e386.

    Chiper, A. S., Chen, W., Mejlholm, O., Dalgaard, P., & Stamate, E.(2011). Atmospheric pressure plasma produced inside a closedpackage by a dielectric barrier discharge in Ar/CO(2) for bacterialinactivation of biological samples. Plasma Sources Science &Technology, 20, 10.

    Chou, N. J., & Chang, C. A. (1994). Surface modification of polymers.In H. M. Tong, S. P. Kowalczyk, R. Saraf, & N. J. Chou (Eds.),Characterization of polymers(pp. 169e197). Boston: Butterworth-Heinemann Inc.

    Cioffi, M. O. H., Voorwald, H. J. C., & Mota, R. P. (2003). Surfaceenergy increase of oxygen-plasma-treated PET. MaterialsCharacterization, 50, 209e215.

    Connolly, J., Valdramidis, V. P., Byrne, E., Karatzas, K. A. G.,Cullen, P. J., K.M., K., et al. (2013). Characterization andantimicrobial efficacy against E. coli of a helium/air plasma at

    atmospheric pressure created in a plastic package.Journal ofPhysics D: Applied Physics, 46, 035401, (035412 pp.).

    Cui, N. Y., Upadhyay, D. J., Anderson, C. A., Meenan, B. J., &Brown, N. (2007). Surface oxidation of a Melinex 800 PETpolymer material modified by an atmospheric dielectric barrierdischarge studied using X-ray photoelectron spectroscopy andcontact angle measurement. Applied Surface Science, 253,3865e3871.

    Deilmann, M., Grabowski, M., Thei, S., Bibinov, N., &Awakowicz, P. (2008a). Permeation mechanisms of pulsedmicrowave plasma deposited silicon oxide films for foodpackaging applications.Journal of Physics D: Applied Physics, 41.

    Deilmann, M., Thei, S., & Awakowicz, P. (2008b). Pulsed microwaveplasma polymerization of silicon oxide films: application ofefficient permeation barriers on polyethylene terephthalate.

    Surface and Coatings Technology, 202, 1911e1917.Dixon, D., & Meenan, B. J. (2012). Atmospheric dielectric barrier

    discharge treatments of polyethylene, polypropylene, polystyreneand poly(ethylene terephthalate) for enhanced adhesion. Journalof Adhesion Science and Technology, 26, 2325e2337.

    Donegan, M., Milosavljevic, V., & Dowling, D. P. (2013). Activation ofPET using an RF atmospheric plasma system. Plasma Chemistryand Plasma Processing, http://dx.doi.org/10.1007/s11090-013-9474-4.

    Dorai, R., & Kushner, M. J. (2003). A model for plasma modification ofpolypropylene using atmospheric pressure discharges. Journal ofPhysics D: Applied Physics, 36, 666.

    Esena, P., Zanini, S., & Riccardi, C. (2007). Plasma processing forsurface optical modifications of PET films.Vacuum, 82, 232e235.

    Fernandez-Gutierrez, S. A., Pedrow, P. D., Pitts, M. J., & Powers, J.

    (2010). Cold atmospheric-pressure plasmas applied to activepackaging of apples.Plasma Science, IEEE Transactions on PlasmaScience, 38, 957e965.

    Fitzgerald, D., Stratford, M., Gasson, M., Ueckert, J., Bos, A., &Narbad, A. (2004). Mode of antimicrobial action of vanillinagainst Escherichia coli, Lactobacillus plantarumand Listeriainnocua. Journal of Applied Microbiology, 97, 104e113.

    Garcia, D., Fenollar, O., Lopez, R., Sanchis, R., & Balart, R. (2008).Durability of the wettability properties of a polypropylene filmwith a low-pressure CH4eO2plasma treatment.Journal of AppliedPolymer Science, 110, 1201e1207.

    Ghanem, A., & Ghaly, A. (2004). Immobilization of glucose oxidasein chitosan gel beads.Journal of Applied Polymer Science, 91,861e866.

    Gilliam, M. A., & Yu, Q. S. (2006). Surface characterization of low-

    temperature cascade arc plasma-treated low-density polyethylene

    11S.K. Pankaj et al. / Trends in Food Science & Technology xx (2013) 1e13

    Please cite this article in press as: Pankaj, S. K., et al., Applications of cold plasma technology in food packaging, Trends in Food Science & Technology

    (2013), http://dx.doi.org/10.1016/j.tifs.2013.10.009

    http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://dx.doi.org/10.1007/s11090-013-9474-4http://dx.doi.org/10.1007/s11090-013-9474-4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref35http://refhub.elsevier.com/S0924-2244(13)00229-X/sref35http://refhub.elsevier.com/S0924-2244(13)00229-X/sref35http://refhub.elsevier.com/S0924-2244(13)00229-X/sref35http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref34http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref33http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref32http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref31http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref30http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://refhub.elsevier.com/S0924-2244(13)00229-X/sref29http://dx.doi.org/10.1007/s11090-013-9474-4http://dx.doi.org/10.1007/s11090-013-9474-4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref27http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref26http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref25http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref24http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref23http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref22http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref21http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref20http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref19http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref18http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref17http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref16http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref15http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref14http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref13http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref12http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref11http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref10http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref9http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref8http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref7http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref6http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref5http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref4http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref3http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref2http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1http://refhub.elsevier.com/S0924-2244(13)00229-X/sref1
  • 8/10/2019Trends in Food Science & Technology Volume issue 2013 [doi 10.1016_j.tifs.2013.10.009] Pankaj, S.K.; Bueno-Ferr

    12/13

    using contact angle measurements. Journal of Applied PolymerScience, 99, 2528e2541.

    Gomathi, N., & Neogi, S. (2009). Surface modification ofpolypropylene using argon plasma: statistical optimization of theprocess variables.Applied Surface Science, 255, 7590e7600.

    Gotoh, K., Yasukawa, A., & Taniguchi, K. (2011). Water contact angles

    on poly(ethylene terephthalate) film exposed to atmosphericpressure plasma.Journal of Adhesion Science and Technology, 25,307e322.

    Guillard, V., Mauricio-Iglesias, M., & Gontard, N. (2010). Effect ofnovel food processing methods on packaging: structure,composition, and migration properties. Critical Reviews in FoodScience and Nutrition, 50, 969e988.

    Guimond, S., Radu, I., Czeremuszkin, G., Carlsson, D. J., &Wertheimer, M. R. (2002). Biaxially oriented polypropylene(BOPP) surface modification by nitrogen atmospheric pressureglow discharge (APGD) and by air corona. Plasmas and Polymers,7, 71e88.

    Inagaki, N., Narushim, K., Tuchida, N., & Miyazaki, K. (2004). Surfacecharacterization of plasma-modified poly(ethylene terephthalate)film surfaces.Journal of Polymer Science Part B: Polymer Physics,

    42, 3727e3740.Jacobs, T., De Geyter, N., Morent, R., Van Vlierberghe, S., Dubruel, P.,

    & Leys, C. (2011). Plasma modification of PET foils with differentcrystallinity.Surface and Coatings Technology, 205(Suppl. 2),S511eS515.

    Joerger, R. D., Sabesan, S., Visioli, D., Urian, D., & Joerger, M. C.(2009). Antimicrobial activity of chitosan attached to ethylenecopolymer films.Packaging Technology and Science, 22,125e138.

    Kaminska, A., Kaczmarek, H., & Kowalonek, J. (2002). The influenceof side groups and polarity of polymers on the kind andeffectiveness of their surface modification by air plasma action.European Polymer Journal, 38, 1915e1919.

    Keener, K. M., Jensen, J., Valdramidis, V., Byrne, E., Connolly, J.,Mosnier, J., et al. (2012). Decontamination of Bacillus subtilis

    spores in a sealed package using a non-thermal plasma system. InK. Hensel, & Z. Machala (Eds.), NATO Advanced ResearchWorkshop: plasma for bio-decontamination, medicine and foodsecurity(pp. 445e455), Jasna, Slovakia.

    Klockow, P. A., & Keener, K. M. (2009). Safety and quality assessmentof packaged spinach treated with a novel ozone-generationsystem. LWTe Food Science and Technology, 42, 1047e1053.

    Kowalonek, J., Kaczmarek, H., & Dabrowska, A. (2010). Air plasma orUV-irradiation applied to surface modification of pectin/poly(vinylalcohol) blends.Applied Surface Science, 257, 325e331.

    Law, V. J., ONeill, F. T., Twomey, B., Milosavljevic, V.,Kong, M. G., Anghel, S. D., et al. (2012). Electrical powerdissipation within a helium APPJ flowing afterglow and itsimpact on spatial-temporal properties. IEEE Transitions onPlasma Science, 40, 2994e3002.

    Lee, K. T. (2010). Quality and safety aspects of meat products asaffected by various physical manipulations of packaging materials.Meat Science, 86, 138e150.

    Leipold, F., Schultz-Jensen, N., Kusano, Y., Bindslev, H., &Jacobsen, T. (2011). Decontamination of objects in a sealedcontainer by means of atmospheric pressure plasmas.FoodControl, 22, 1296e1301.

    Lerouge, S., Wertheimer, M. R., & Yahia, L. H. (2001). Plasmasterilization: a review of parameters, mechanisms, and limitations.Plasmas and Polymers, 6, 175e188.

    Leroux, F., Campagne, C., Perwuelz, A., & Gengembre, L. (2008).Polypropylene film chemical and physical modifications bydielectric barrier discharge plasma treatment at atmosphericpressure. Journal of Colloid and Interface Science, 328, 412e420.

    Liang, Y., Jensen, R. E., Pappas, D. D., & Palmese, G. R. (2011).

    Toughening vinyl ester networks with polypropylene meso-fibers:

    interface modification and composite properties.Polymer, 52,510e518.

    Lopez, R., Sanchis, R., Garca, D., Fenollar, O., & Balart, R. (2009).Surface characterization of hydrophilic coating obtained by low-pressure CH4eO2 plasma treatment on a polypropylene film.Journal of Applied Polymer Science, 111, 2992e2997.

    Mastromatteo, M., Lecce, L., De Vietro, N., Favia, P., & DelNobile, M. A. (2011). Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release oflysozyme from PVOH monolayer film. Journal of FoodEngineering, 104, 373e379.

    Medard, N., Soutif, J.-C., & Poncin-Epaillard, F. (2002a). CO2, H2O,and CO2/H2O plasma chemistry for polyethylene surfacemodification. Langmuir, 18, 2246e2253.

    Medard, N., Soutif, J. C., & Poncin-Epaillard, F. (2002b).Characterization of CO2 plasma-treated polyethylene surfacebearing carboxylic groups.Surface and Coatings Technology, 160,197e205.

    Milosavljevic, V., Ellingboe, A. R., Gaman, C., & Ringwood, J. V.(2008). Real-time plasma control in a dual-frequency, confinedplasma etcher.Journal of Applied Physics, 103, 083302e083310.

    Milosavljevic, V., Faulkner, R., & Hopkins, M. B. (2007). Real timesensor for monitoring oxygen in radio-frequency plasmaapplications. Opt. Express, 15, 13913e13923.

    Milosavljevic, V., Ellingboe, A. R., & Daniels, S. (2011). Influence ofplasma chemistry on oxygen triplets. The European PhysicalJournal D, 64, 437e445.

    Milosavljevic, V., Karkari, S. K., & Ellingboe, A. R. (2007).Characterization of the pulse plasma source.Plasma SourcesScience and Technology, 16, 304.

    Milosavljevic, V., Macgearailt, N., Daniels, S., & Turner, M. M. (2013).Phase resolved optical emission spectroscopy for an electroncyclotron resonance etcher. Journal of Applied Physics, 113,163302.

    Mirabedini, S., Arabi, H., Salem, A., & Asiaban, S. (2007). Effect oflow-pressure O2 and Ar plasma treatments on the wettability and

    morphology of biaxial-oriented polypropylene (BOPP) film.Progress in Organic Coatings, 60, 105e111.

    Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J.(2011). Nonthermal plasma inactivation of food-borne pathogens.Food Engineering Reviews, 3, 159e170.

    Misra, N. N., Ziuzina, D., Cullen, P. J., & Keener, K. M. (2012).Characterization of a novel cold atmospheric air plasma system fortreatment of packaged liquid food products. In American Societyof Agricultural and Biological Engineers. Dallas, Texas, July 29-August 1, 2012 121337629.

    Mittendorfer, J., Bierbaumer, H., Gratzl, F., & Kellauer, E. (200