T“p ba : C¡c tuy”n t“p cıa t¡c gi£ n÷îc ngo€i...

download T“p ba : C¡c tuy”n t“p cıa t¡c gi£ n÷îc ngo€i · PDF fileHardy - Littlewood - Polya Inequality ..... 496 8.Epsilons 498 9.Appendix 607 References

If you can't read please download the document

Transcript of T“p ba : C¡c tuy”n t“p cıa t¡c gi£ n÷îc ngo€i...

  • chung.png

    Tp ba : Cc tuyn tp ca tc gi ncngoi

  • Tuyn tp cc phng php, kthut chng minh

    Bt ng ThcTp ba : Cc tuyn tp ca tc gi nc ngoi

  • Li ni u

    Ngun ti nguyn ton trn Internet l v cng phong ph. Ti liu v

    Bt ng thc trn Internet rt nhiu v nhiu chuyn trong s chng

    l nhng cng c mnh gii bt ng thc. Vic tp hp chng li

    thnh mt n bn ln tin nghin cu u c l cng l nhu cu ca

    nhiu ngi. Qua mt thi gian su tm v chn lc cc ti liu theo mt

    vi "tiu ch", n bn ln "Tuyn tp cc chuyn , k thut chng minh

    Bt ng thc " hon thnh. V dung lng qu ln ( khong trn 2000

    trang ) th nn n bn c chia lm 3 tp. cho cc bi vit c thng

    nht theo mt khi chung, ti buc phi can thip, chnh sa mt cht ti

    liu gc, rt mong s b qua ca cc tc gi ti liu trn. Mt s phng

    php kinh in nh MV, GLA, ABC, UCT cng s khng xut hin trong

    n bn ny, c gi hy lng th cho iu . Hi vng n bn trn l

    mt tp hp tng i y v Bt ng thc, mt lnh vc lun c s

    quyn r, cun ht n khng ng.

    Mi kin ng gp xin gi v

    Nguyn Minh Tun

    K62CLC Ton- Tin HSPHN

    Gmail : [email protected]

    Facebook : Popeye Nguyn

    Ti liu c pht hnh trn din n : www.k2pi.net.vn. Mi hot

    ng s dng ti liu v mc ch thng mi u khng c cho php.

    Xin chn thnh cm n

    Nguyn Minh Tun (Popeye)

  • Mc Lc

    T.Andreescu, V.Cirtoaje, G.Dospinescu, M.Lascu

    Old and New Inequalities (Bn dch ca Dng Vit Thng ) 1

    Li ni u 3

    Chng 1. Cc bi ton 4

    Chng 2. Cc li gii 24

    T in thut ng 138

    Ti liu tham kho 142

    MathLinks Members - Inequalities Marathon 144

    MathLinks Members

    Inequalities From Around the World 1995-2005 199

    Years 2001-2005 205

    Years 1996-2000 259

    Years 1990-1995 304

    Supplementary Problems 320

    Classical Inequalities 353

    Bibliography and Web Resources 358

    Nguyen Manh Dung, Vo Thanh Van

    Inequalities from 2008 Mathematical Competition 362

    Problems 366

    Solutions 372

    The inequality from IMO 2008 400

  • Hojoo Lee, Tom Lovering, Cosmin Pohoata - INFINITY 408

    1. Number Theory 412

    Fundamental Theorem of Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

    Fermats Infinite Descent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414

    Monotone Multiplicative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

    There are Infinitely Many Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    Towards $1 Million Prize Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .424

    2. Symmetries 425

    Exploiting Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

    Breaking Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    Symmetrizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

    3. Geometric Inequalities 432

    Triangle Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

    Conway Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

    Hadwiger-Finsler Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

    Trigonometry Rocks! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

    Erdos, Brocard, and Weitzenbock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

    From Incenter to Centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

    4. Geometry Revisited 456

    Areal Co-ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

    Concurrencies around Cevas Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461

    Tossing onto Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

    Generalize Ptolemys Theorem!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465

    5. Three Terrific Techniques (EAT) 472

    Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472

    Algebraic Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

    Establishing New Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

    6. Homogenizations and Normalizations 480

    Homogenizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

    Schur and Muirhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .482

    Normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

    Cauchy-Schwarz and Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

    7. Convexity and Its Applications 491

  • Jensens Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

    Power Mean Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    Hardy - Littlewood - Polya Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

    8. Epsilons 498

    9. Appendix 607

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

    IMO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

  • T. Andreescu, V. Cartoaje, G. Dospinescu, M. Lascu

    Bin dch: Dng Vit Thng

    Bt ng Xa v Nay

    1

  • Mc lc

    Li ni u 3

    Chng 1. Cc bi ton 4

    Chng 2. Cc li gii 24

    T in thut ng 138

    Ti liu tham kho 142

    2

  • Li ni u

    Quyn sch kt hp nhng kt qu kinh in v bt ng thc vi nhng bi ton rtmi, mt s bi ton c nu ch vi ngy trc y. Lm sao c th vit c iu gc bit khi c qu nhiu sch v bt ng thc? Chng ti tin chc rng d tiny rt tng qut v thng dng, quyn sch ca chng ti vn rt khc bit. Tt nhinni th rt d, vy chng ti nu vi l l minh chng. Quyn sch cha mt s ln biton v bt ng thc, phn ln l kh, cc cu hi ni ting trong cc cuc thi ti v kh v v p ca chng. V quan trng hn, trong cun sch chng ti s dng nhngli gii ca chnh mnh v xut mt s ln bi ton c o mi. Trong quyn schc nhng bi ton ng nh v c nhng li gii ng nh. V th quyn sch thch hpvi nhng sinh vin s dng thnh tho bt ng thc Cauchy-Schwarz v mun ci tink thut v k nng i s ca mnh. H s tm thy y nhng bi ton kh hc ba,nhng kt qu mi v c nhng vn c th nghin cu tip. Cc sinh vin cha saym trong lnh vc ny c th tm c mt s ln bi ton, tng, k thut loi va vd chun b tt cho cc k thi ton. Mt s bi ton chng ti chn l bit nhngchng ti a ra nhng li gii mi chng t s a dng ca nhng tng lin quann bt ng thc. Bt k ai cng tm thy y vic th thch cho nhng k nng camnh. Nu chng ti cha thuyt phc ni bn, xin hy xem nhng bi ton cui cng vhy vng bn s ng vi chng ti.

    Cui cng nhng khng kt thc, chng ti t lng bit n su sc nhng ngi tra cc bi ton c trong quyn sch ny v xin li v khng a ra y xut x dchng ti c gng ht sc. Chng ti cng xin cm n Marian Tetiva, Dung Tran Nam,Constantin Tnsescu, Clin Popa v Valentin Vornicu v nhng bi ton p m h nura cng nhng bnh lun qu gi, cm n Cristian Bab, George Lascu v Clin Popa vvic nh my bn tho v nhiu nhn xt xc ng ca h.

    Cc tc gi

    3

  • Chng 1. Cc bi ton

    4

  • 1. Chng minh rng bt ng thc

    a2 + (1 b)2 +

    b2 + (1 c)2 +

    c2 + (1 a)2 3

    2

    2.

    ng vi cc s thc a, b, c bt k.

    Komal

    2. [Dinu Serbanescu] Cho a, b, c (0, 1), chng minh rngabc +

    (1 a)(1 b)(1 c) < 1.

    Junior TST 2002, Romania

    3. [Mircea Lascu] Cho a, b, c l cc s thc dng tha mn abc = 1. Chng minh rng

    b+ ca

    +c + a

    b+

    a+ bc

    a +b+

    c + 3.

    Gazeta Matemati

    4. Nu phng trnh x4+ax3+2x2+bx+1 = 0 c t nht mt nghim thc, th a2+b2 8.

    Tournament of the Towns, 1993

    5. Tm gi tr ln nht ca biu thc x3 + y3 + z3 3xyz vi x2 + y2 + z2 = 1 v x, y, zl cc s thc.

    6. Cho a, b, c, x, y, z l cc s thc dng tha mn x+ y + z = 1. Chng minh rng

    ax+ by + cz + 2(xy + yz + zx)(ab + bc + ca) a+ b+ c.

    Ukraine, 2001

    7. [Darij Grinberg] Nu a, b, c l cc s thc dng, th

    a

    (b+ c)2+

    b

    (c + a)2+