Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

24
Time to Equilibrium for Finite State Markov Chain 許許許 許許許許許許許許許許 ()

Transcript of Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Page 1: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Time to Equilibrium for Finite State Markov Chain

許元春(交通大學應用數學系)

Page 2: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

a finite set ( state space) a sequence of valued random variables ( random process, stochastic process)

( finite-dimensional distribution)

( Here )

:SS

),,,( 1100 nn iXiXiXP

),|()|()( 110022001100 iXiXiXPiXiXPiXP

),,,|(),,,|( 111100110011 nnnnkkkk iXiXiXiXPiXiXiXiXP

)(

)()|(

AP

BAPABP

:,,,,, 210 nXXXX

Page 3: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

What is ?Among all possibilities, the following two

are the simplest: (i.i.d.)

where is a probability measure on

• Example: ( Black-Scholes-Merton Model)

the price of some asset at time t

),,,|( 110011 kkkk iXiXiXiXP

)(),,|( 10011 kkkkk iPiXiXiXPP

S

)(

))1((ln

nS

nSX n

)(tS

Page 4: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Here is a stochastic matrix

(i.e. and )

In this case,

is the transition probability for the Markov chain

),(),,|( 10011 kkkkkk iiKiXiXiXP

K

|||| SS0),( jiK

i

j,

Sj

jiK 1),(

),( yxK

0}{ nnX

Page 5: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Example: ( Riffle Shuffles )

(Gilbert, Shannon ‘55, Reeds ‘81) n

k kn

n

k

n

kn

a

b

ba

a

ba

b

n

n

k

n

2

binomial

n

k

Page 6: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Markov Chain with transition kernel K and initial distribution λ

This implies

In particular, we observe

Here and

),(),(),()(),....,,( 1211001100 nnnn iiKiiKiiKiiXiXiXP

),(),(),()|,....,( 121100011 nnnn iiKiiKiiKiXiXiXP

),()|( 0 jiKiXjXP nn KK 1

KKK nn 1

Page 7: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

What is the limiting distribution of given ? (i.e. What is the limiting behavior for ?)

Example: ( Two State Chain )

1

0

1

1

0

1

,10

10

nX iX 0

nK

K

Page 8: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

0 I

20 II

1 III

10

01nK

nn

nn

nK)1()1(

)1()1(

n

IK n 2

KK n 12

n

nK

lim

does not exist

Page 9: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

invariant/equilibrium/stationary distribution

Suppose for some , that

for all

Then

Sx)(),( yyxK

nn

Sy

K ..ei

)(),()( yyxKxSx

Sy

Page 10: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Ergodic Markov Chain

Assume is aperiodic and irreducible.

Then there admits a unique invariant

distribution λ and

How the distribution of converge to its

limiting distribution?

K

)(),( yyxK n Syx ,

nX

Page 11: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Distance between two probability measures ν and μ on S . ( total variation distance )

( distance )

( Note that )

)}()({sup AASA

TV

PL

Px

x

x

x

Pxx

x

x

xP

Sx

P

P

,)(

)(

)(

)(sup

1,)()(

)(

)(

)(/1

,

1,2

1

TV

Page 12: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

For

is a non-increasing sub-additive function

( )

This implies that if

for some and

then

p1n

P

n

SxxK

,)(),(sup

..ei )()()( mfnfmnf

mn,

P

m

SxxK

,)(),(sup

m

10

nn

m

n

P

n

Sx

m

n

xK

,)(),(sup

1

lnexpm

n

n

n

mn

1

ln/

exp

Page 13: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

We say is reversible if it satisfies the detailed balance condition

Assume is reversible, irreducible and aperiodic.Then there exists eigenvalue and for any corresponding orthonormal basis of eigenvectors with , we have

and

K

),()(),()( xyKyyxKx Syx ,K

1....1 012||1|| SS

1||

0

)()()(

),( S

iii

ni

n

yxy

yxK

1||

1

222

2,|)(|||),(

S

ii

ni

n xxK

}{ i 10

Page 14: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

the smallest non-zero eigenvalue of = the spectral gap of

where

is the smallest constant satisfying the Poincare inequality

Holding for all

11 KI

),( K

0)(|)(

),(inf fVar

fVar

ff

2)()( fEfEfVar

yx

xyxKxfyfff,

2 )(),(|)()(|2

1),(

"1

" A

),()( ffAfVar f

'

Page 15: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Setting .Then

( The Divichlet form associated with the semigroup )

and

Note that

Hence

0

)(

!m

mtKIt

t m

KeeH

),)((1

lim),(200

2

2

ffHIt

fHt

ff tttt

2

2

2

2)()( ffH

dt

dffH

dt

dtt

)(2

))(),((2

fHVar

ffHffH

t

tt

)( fHVardt

dt

)()( 22

2fVareffH t

t

tH

),(22

2fHfHfH

t ttt

Page 16: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Theorem:

The mixing time is given by

• Theorem:

where

)(),(

2, x

exH

t

t

tt e

x

yyyxH

)(

)()(),(

2T

exHtT t

Sx

1),(max|0inf

2,2

)1

log2

11(

11

*2

T

)(min* xSx

Page 17: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Consider the entropy – like quantity

And

The log-Sobolev constant is given by the

Formula Hence is the smallest constant satisfying

the log-Sobolev inequality

holding for all function

)(|)(|

log|)(|)(2

2

22 s

f

sfsff

Ss

,

)(

),(inf{

f

ff

}0)( f

1 A

),()( ffAf

f

Page 18: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Theorem:

• •

2

)1

loglog4

11(

1

2

1*2 T

2T

)1

loglog2

12(

1*

)1

log2

11(

1*

1

21

)1

loglog4

11(

1*

Page 19: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Can one compute or estimate the constant ?The present answer is that it seems to be a very difficult

problem to estimate . Lee-Yau(1998), Ann. of probability symmetric simple exclusion/random transpositionDiaconis-Saloff-Coste(1996), Ann. Of Applied

Probability . For simple random walk on cycle,

. The exact value of for with all rows equal to Chen-Sheu(03), Journal of Functional Analysis when and is even

n

2

1~nn

K

)2

log1(2

1

nn

4n

n

Page 20: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Who Cares ?

Page 21: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

a set. a group.

Action of group on set :

Orbit of for some

What’s the number of orbits (or patterns) ?

:S

:G

yxSyOx gx |{

}Gg

Z

G S

SxSGxg g ),(

Page 22: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Example ( balls, boxes, Bose-Einstein distribution)

Polya’s theory of counting

(See Enumerative Combinatorics, Vol II, by R. Stanley, Sec7.24)

Burnside Process (Jerrum and Goldberg)

n

k,][ nkS

},...,2,1{][ kk

nSG

}|{ xxGgG gx

}|{ ssSsS gg

n

l

Page 23: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Diaconis (‘03) ( balls, boxes)

for all

yx GGg g

x

SG

OyxK

||

1

||

||),(

zOx

x

1

||

1)(

zOx

1)( x

|1

),(||)(),(|z

OxKOOxK yl

yyl

TV

l xK ),(

n

k

,))(1(),0( l

TV

l kCK !

1~)(k

kC

)( nk

0ddK

TV

l ),0(

nl log

Page 24: Time to Equilibrium for Finite State Markov Chain 許元春(交通大學應用數學系)

Cut-off phenomenon

Bayer and Diacoins (’86)

The total variation distance for riffle shuffles of 52 cards

“neat riffle shuffles”?

l