Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL...

23
Experimental Demonstration of A Bilayer Thermal Cloak Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Transcript of Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL...

Page 1: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Experimental Demonstration of

A Bilayer Thermal Cloak

Tiancheng HanXue Bai

Dongliang GaoJohn T.L. Thong

Browen LiCheng-Wei Qiu

Paper Source:PRL 112,054302 (2014)

Page 2: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

preprocessing :前處理

solution :運算求解

Postprocessing :後處理

Simulation for 3D thermal cloak a finite element method (FEM)

Page 3: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)
Page 4: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(a)A bare object with radius of 6 mm. (b)A single layer of polystyrene with thickness of 4.2 mm. (c)A single layer of alloy with thickness of 4.2 mm. (d)A bilayer cloak. with a=6 mm, b=9 mm, c=10.2mm

Page 5: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Inner layer : a<r<b Outer layer : b<r<cK : thermal conductivity ( W/(m . K) )Kb : thermal conductivity of background

Page 6: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

K : thermal conductivity ( W/(m . K) )▽T : temperature gradient ( K . m-1 )Q : the inner heat-generation rate per unit volumeT : temperatureTi : temperature in different regionsAi

m , Bim : constants (determined by the boundary conditions)

(For steady state situation)

(Q=0)

(For Fourier-Legendre series)

i=1 for (r<a) , i=2 for the(a<r<b) , i=3 for (b<r<c) , i=4 for (r>c).

Page 7: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(For Laplace ‘s equation)

(Spherical coordinates of partial differential equations)

Page 8: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)
Page 9: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Simulation for 3D thermal cloak

(b) The bilayer cloaka= 6mm b= 9mm c=10.2mm

(a) A single layer of polystyrenethickness =4.2mm

Page 10: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

a=6mm , b=9.5mm , c=12mmCloaked object : an aluminum cylinder (r=6mm)Inner layer : expanded polystyrene (K=0.03 W/mK)Outer layer : Inconel 625 alloy (K=9.8 W/mK)sealant : (ACC SILICONES—AS1802) (K=2.3 W/mK)Host block : 45mm(width) , 45mm(depth) , 35mm(height)

hot : 60℃cold : 0 ℃(water)IR-camera : Flir i60

Page 11: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(a),(b) The bare perturbation (aluminum cylinder)without bilayer cloak(c),(d) The single layer of expanded polystyrene(e),(f ) The bilayer thermal cloak (a=6mm, b=9.5mm, c=12 mm)

Page 12: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

For quantitative comparison

Page 13: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(g),(h) The bilayer thermal cloak in the presence of a point heat source ,emitting cylindrical heat fronts.

Prove :The effectiveness of the bilayer thermal cloak in non-uniform thermal field.

Page 14: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

To examine the transient performance of the bilayer cloak

Temperature : 80 ℃

(a)The bare perturbation (aluminum cylinder)without bilayer cloak (b)The single layer of expanded polystyrene (c)The bilayer thermal cloak

Page 15: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Simulated time-dependent temperature distributions

Page 16: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)
Page 17: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

Temperature distributions for different thermal cloaking schemes

(a) A pure background (b) The bilayer thermal cloak (c) AI thermal cloak with m=0.2 (d) AH thermal cloak with n=3

Page 18: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

AI thermal cloak

AH thermal cloak

r : the radius in the physical spacer' : the radius in the virtual spacer1 : the inner radiusr2 : the outer radiusr0 : the radius of a finite small region Kb : the conductivity of the backgroundKr : the radial coefficientKθ : the azimuthal coefficient

Page 19: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

AH thermal cloak

a circular region (r<=b) in original space (r, θ, z) is compressed into an annular region (a<=r’<=b) in physical space (r’, θ’, z’).

Page 20: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)
Page 21: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(e) Temperature gradient at (0,0) for AI thermal cloak with different m(f ) Temperature gradient at (0,0) for the AH thermal cloak with different n

Page 22: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

(a) Oblique incidence with 30 ° (b) (b) Oblique incidence with 45 °

Page 23: Tiancheng Han Xue Bai Dongliang Gao John T.L. Thong Browen Li Cheng-Wei Qiu Paper Source: PRL 112,054302 (2014)

1. Not rely on transformation optics2. Use the regular materials3. Excellent performance

Summary :The bilayer thermal cloak is suitable for real engineering applications.